Supporting Information for:

Bis-Boranes in the Frustrated Lewis Pair Activation of Carbon Dioxide

Xiaoxi Zhao, Douglas W. Stephan*

General considerations:

All preparations and manipulations were performed on a double manifold N₂/vacuum line with Schlenk-type glassware or in a N₂-filled M-Braun glove box. Solvents (Aldrich) were dried using an Innovative Technologies solvent system. NMR spectra were obtained on a Bruker or Varian System 400 MHz spectrometer and spectra were referenced to residual solvent (¹H, ¹³C) or externally (¹¹B; BF₃OEt₂, ¹⁹F; CFCl₃, ³¹P; 85% H₃PO₄). NMR solvents were purchased from Cambridge Isotopes, dried over Na/benzophenone or CaH₂, distilled prior to use, and stored over 4Å molecular sieves in the glovebox. IR spectra were recorded on a Perkin-Elmer CHN Analyzer. ClB(C₆F₅)₂¹, Me₂CC(BCl₂)₂² and Zn(C₆F₅)₂.C₆H₈³ were prepared as previously described.

O(B(C₆F₅)₂)₂ (1):

In a Schlenk tube, ClB(C₆F₅)₂ (1.774 g, 4.66 mmol) was dissolved in dichloromthane (20 mL), and cool at -78 °C. Distilled H₂O (40.0 µL, 2.22 mmol) was added in two portions, and the reaction stirred at -78 °C for 1 h. Particular attention was paid to venting of the reaction vessel. The reaction was then warmed up to room temperature, and volatiles pumped off to dryness. The residue solid was thoroughly washed with pentane (30 mL) to yield a white microcrystalline product. More product was recrystallized from the pentane washings. Yield: 0.779 g, 50 %. Single crystals suitable for X-ray diffraction were grown by recrystallization from pentane at -35°C. ¹¹B NMR (128 MHz, C₆D₅Br, 298 K): no resonance was observed. ¹³C {¹H} NMR (101 MHz, C₆D₅Br, 298 K): δ 148.78 (dm, ¹*J*_{CF} = 249 Hz, *ortho*-C₆F₅), 143.70 (dm, ¹*J*_{CF} = 262 Hz, *para*-C₆F₅), 136.84 (dm, ¹*J*_{CF} = 254 Hz, *meta*-C₆F₅), 107.43 (br, *ipso*-C₆F₅). ¹⁹F (376 MHz, C₆D₅Br, 298 K): δ -131.68 (d, ³*J*_{FF} = 21.4 Hz, 8H, *ortho*-C₆F₅), -144.20 (tt, ³*J*_{FF} = 21.0 Hz, ⁴*J*_{FF} = 4.8 Hz, 4H, *para*-C₆F₅), -159.53 (m, 8H, *meta*-C₆F₅). Anal. Calcd. for C₂₄B₂F₂₀O: C, 40.84; H, 0; N, 0. Found: C, 40.48; H, 0.18; N, 0.43 %.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Me₂CC(BCl₂)₂(CO₂)PtBu₃ (4):

Me₂CC(BCl₂)₂ was prepared according to a modified literature procedure. It was not possible to completely separate Me₃SnCl byproduct from Me₂CC(BCl₂)₂ (27 % contamination), but the sample was used as it is since Me₃SnCl does not affect the reaction in reasonable lengths of time. In a well-dried Schlenk flask, Me₂CC(BCl₂)₂ (200 mg, 0.69 mmol of the diborane, 27 % Me₃SnCl) and PtBu₃ (186 mg, 0.92 mmol) were dissolved in cold bromobenzene (5 mL). 1 atm of CO₂ was introduced to the reaction while keeping the flask in an ice bath. A precipitate immediately started to come out. The reaction was quickly filtered while kept cold. The white solid was further washed with cold bromobenzene and cold pentane. Yield: 219 mg, 68 %. Single crystals suitable for X-ray diffraction were grown by layering a CH₂Cl₂ solution of the product with pentane at -35°C. ¹H NMR (400 MHz, CD₂Cl₂, 253 K): δ 1.96 (s, 6H, CH₃), 1.79 $(d, {}^{3}J_{HP} = 15.7 \text{ Hz}, 27\text{H}, t\text{Bu}_{3})$. ${}^{11}\text{B} \{{}^{1}\text{H}\}$ NMR (128 MHz, $CD_{2}Cl_{2}, 253 \text{ K}$): δ 10.30 (br). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂, 253 K): δ 169.72 (d, ${}^{1}J_{CP}$ = 85.7 Hz, PCO), 152.95 (s, =CMe₂), 43.59 (d, ${}^{1}J_{CP}$ = 15.6 Hz, quarternary-*t*Bu), 30.44 (s, *t*Bu), 26.45 (s, CH₃). The olefinic carbon bound to boron atoms was not observed. ${}^{31}P$ { ${}^{1}H$ } (162 MHz, CD₂Cl₂, 253 K): δ 52.70 (s). IR (KBr): 1608 cm⁻¹ (C-O asym. stretch). Anal. Calcd. for C₁₇H₃₃B₂Cl₄O₂P: C, 44.02; H, 7.17. Found: C, 43.92; H, 7.27 %.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Me₂CC(B(C₆F₅)₂)₂(CO₂)PtBu₃ (6):

To Me₂CC(BCl₂)₂ (113 mg, 0.27 mmol of the diborane, 50 % Me₂SnCl₂) stirring in toluene (1 mL) was added $Zn(C_6F_5)_2C_6H_8$ (266 mg, 0.54 mmol) dissolved in toluene (2 mL), and the mixture was stirred at RT overnight. A white precipitate formed in a yellow solution. The entire reaction mixture was then transferred to a well-dried Schlenk bomb, and was heated at 60 °C for 2 days. The reaction mixture was passed though a plug of Celite in order to eliminate ZnCl₂ byproduct. Volatiles were pumped down from the filtrate, and the resulting yellow oil was redissolved in toluene-d₈ (1.0 mL) along with $PtBu_3$ (20 mg, 0.10 mmol). After 30 min the mixture separated into a yellow solution on the top layer and an orange oil at the bottom layer. The top layer was transferred to a NMR tube equipped with a J-Young tap, and the sample was charged with 1 atm of CO_2 . Leaving the sample at RT under a CO_2 atmosphere over 1 day resulted in the precipitation of a colourless crystalline product. The product was quickly filtered on a frit, and washed with cold toluene and pentane, and lightly dried in vacuo. Yield: 34 mg, 35 %. Single crystals suitable for X-ray diffraction were grown by layering a CH₂Cl₂ solution of the product with pentane at -35°C. ¹H NMR (400 MHz, CD_2Cl_2 , 243 K): $\delta 1.51$ (d, ${}^{3}J_{HP} = 16.0$ Hz, 27H, tBu₃), 1.30 (s, 6H, CH₃). ${}^{11}B{}^{1}H{}$ NMR (128) MHz, CD_2Cl_2 , 243 K): δ no signal was observed. ¹³C{¹H} NMR (101 MHz, CD_2Cl_2 , 243 K): δ 170.85 (d, ${}^{1}J_{CP}$ = 91.9 Hz, PCO), 148.00 (dm, ${}^{1}J_{CF}$ = 236 Hz, ortho-C₆F₅), 140.50 (s, = CMe_2), 139.20 (dm, ${}^{1}J_{CF}$ = 263 Hz, para-C₆F₅), 136.53 (dm, ${}^{1}J_{CF}$ = 238 Hz, meta-C₆F₅), 136.27 (br s, = $C(B(C_6F_5)_2)_2$), 119.59 (br s, quarternary- C_6F_5), 42.36 (d, ${}^{1}J_{CP}$ = 17.2 Hz, quarternary-*t*Bu), 30.02 (s, *t*Bu), 24.75 (s, CH₃). ¹⁹F NMR (376 MHz, CD₂Cl₂, 243 K): δ -132.28 (br s, 8F, ortho- C_6F_5), -159.53 (br s, 4F, para- C_6F_5), -165.88 (br s, 8F, meta- C_6F_5). ${}^{31}P$ { ${}^{1}H$ } (162 MHz, CD₂Cl₂, 243 K): δ 54.96 (s). IR (KBr): 1617 cm⁻¹ (C-O asym. stretch). Anal. Calcd. for C₄₁H₃₃B₂F₂₀O₂P: C, 49.73; H, 3.36. Found: C, 49.34; H, 3.21 %.

(1) Parks, D. J.; Piers, W. E.; Yap, G. P. A. Organometallics **1998**, *17*, 5492.

(2) Siebert, W.; Hildenbrand, M.; Hornbach, P.; Karger, G.; Pritzkow, H. Z. *Naturforsch.* **1989**, *44b*, 1179.

(3) Walker, D. A.; Woodman, T. J.; Hughes, D. L.; Bochmann, M. *Organometallics* **2001**, *20*, 3772.