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Dialkyl(aryl)cyclobutenylphosphine oxides are obtained via two routes: from the corresponding cyclob-
utenylphosphonic dichlorides using organomagnesium chemistry and from 1,3-dienylphosphine oxides
by thermal electrocyclic ring closure.
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erties remain vastly underexplored. Methods for the synthesis of
cyclobutenes are based mainly on catalytic [2+2] cycloaddition
reactions between alkenes and acetylenes,1–3 and expansion of
cyclopropane rings with subsequent transformations.4,5 Substi-
tuted cyclobutenes have been obtained by intramolecular Wittig
reaction using the vinyltriphenylphosphonium salt.6 It was
reported7,8 that in some cases, 1-substituted 2-chloro-3-tert-bu-
tyl-1,3-butadiene-1-phosphonic dichlorides readily undergo
butadiene-cyclobutene thermal isomerization. This approach has
allowed the synthesis of a variety of cyclobutenyl dichlorophosph-
onates and can be used as a generic pathway to phosphorus-con-
taining cyclobutenes.9

However, cyclobutenylphosphine oxides, which are interesting
compounds for the study of their subsequent transformations
and for practical applications, are not readily available. Herein,
we report the synthesis of several previously undescribed 1,3-
dienyl- and cyclobutenylphosphine oxides. The cyclobutenylphos-
phine oxides were prepared in two ways: (1) by the replacement of
a halogen with an alkyl(aryl) group in the corresponding cyclob-
utenyl dichlorophosphonates, and (2) through thermal, solvent-
free 1,3-butadiene-cyclobutene isomerization of 1,3-dienylphos-
phine oxides. These general routes to the synthesis of substituted
dialkyl(aryl)cylobutenylphosphine oxides are described in
Scheme 1.

Methyl propargyl ether was prepared by the reaction of propar-
gyl alcohol with dimethyl sulfate using a known method.10 The
acetylenic alcohol 1 was prepared by the reaction of methyl prop-
ll rights reserved.
potassium tert-butoxide similar to the method described by
Miyamoto et al.11 Alcohol 1 was reacted with phosphorus trichlo-
ride to form intermediate 2, which underwent spontaneous isom-
erization to allene 3.12 Hydrogen chloride formed during this
reaction was efficiently removed with a stream of nitrogen. Next,
allene 3 was chlorinated with a solution of chlorine in carbon tet-
rachloride to give unstable salt 4, which liberated hydrogen chlo-
ride upon heating to form 1,3-diene 5. This isomerized on
8, 11 R= Et; Hal = Br
9, 12 R= Ph; Hal = Br

Scheme 1. Synthesis of dialkyl(aryl)cyclobutenylphosphine oxides.
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Figure 1. X-ray crystal structure (ORTEP) of 10.

Table 1
Synthesis of cyclobutene derivatives 10–12 by cyclization of 1,3-dienes 7–9

1,3-Diene Time (h) T (�C) Ratioa Isolated yieldb

7 2 150 13:87 10 (84%)
8 2 150 17:83 11 (79%)
9 2.5 0.5 150 20:80 12 (70%)

2 200 25:75

a Ratio of diene/cyclobutene, determined by 1H NMR spectroscopy.
b Yield obtainted via method B.13
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heating to give cyclobutene 6, which was purified by distillation
under reduced pressure.7,8

Typically, phosphine oxides 7–1213 were prepared by organo-
magnesium synthesis from 6. The crude products were purified
either by flash chromatography on silica gel (dichloromethane/
methanol 97/3; compounds 7–9, 12) or by distillation under vac-
uum (compounds 10 and 11). The structure of compound 10 was
confirmed by X-ray crystal structure analysis (Fig. 1).14

Successful butadiene-cyclobutene isomerization of phosphine
oxides on heating (conversions of 5 into 6 and 7–9 in 10–12) shows
that the formation of the cyclobutene isomer is determined mainly
by steric requirements (Table 1), rather than the polarization of the
parent 1,3-diene molecule.

In conclusion, we have reported the synthesis of several previ-
ously undescribed cyclobutenylphosphine oxides, obtained by the
cyclization of the corresponding 1,3-dienyl-phosphine oxides.
There is reason to suppose that similar cyclizations can be carried
out using a variety of sterically hindered 1,3-dienes, and not neces-
sarily bearing a phosphorus-containing group.
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cyclobut-2-ene (10): Yield 4.2 g (63%, method A), colorless hygroscopic crystals,
mp 62–63 �C, bp 110–112 �C (0.006 Torr). IR (KBr, cm�1): 3429, 2963, 2932,
2882, 2824, 1655, 1474, 1366, 1304, 1177, 1103, 934, 868, 745, 718. 1H NMR
(400 MHz, CDCl3): d 1.02 (s, 9H, C(CH3)3), 1.37 (d, 3H, CH3P, 2JHP 12.8 Hz), 1.45
(d, 3H, CH3P, 2JHP 13.2 Hz), 2.22 (dd, 1H, @CCH2, 2JHH 12.4 Hz, 3JHP 2.2 Hz), 2.44
(dd, 1H, @CCH2, 2JHH 12.4 Hz, 3JHP 6.2 Hz), 3.27 (s, 3H, CH3O), 3.62 (t, 1H,
CH3OCH2, 2JHH 10.4 Hz, 3JHP 10.4 Hz), 3.70 (t, 1H, CH3OCH2, 2JHH 10.4 Hz, 3JHP

10.4 Hz). 13C NMR (100 MHz, CDCl3): d 14.2 (d, CH3P, 1JCP 174.8 Hz), 14.9 (d,
CH3P, 1JCP 172.9 Hz), 27.5 (s, C(CH)3), 30.9 (s, @CCH2), 33.0 (s, C(CH3)3), 51.7 (q,
CH2CP, 1JCP 71.6 Hz), 59.2 (s, CH3O), 72.5 (s, CH3OCH2), 117.0 (d, C@CH2, 3JCP

5.8 Hz), 152.6 (d, @CCl, 2JCP 1.12 Hz). 31P NMR (81 MHz, CDCl3): d 44.3. HRMS
m/z: 265.1109 found (calcd for C12H23ClO2P, (M+H)+ requires 265.1124). 2-
Chloro-1-diethylphosphoryl-1-methoxymethyl-3-tert-butylcyclobut-2-ene (11):
Yield 3.81 g (52%, method A), pale yellow oil, bp 120–122 �C (0.005 Torr). IR
(KBr, cm�1): 3395, 2966, 2882, 2827, 1655, 1458, 1366, 1281, 1173, 1107,
1030, 1003, 980, 949, 764. 1H NMR (400 MHz, CDCl3): d 1.07 (s, 9H, C(CH3)3),
1.13 (dt, 3H, CH3CH2P, 3JHH 8.4 Hz, 3JHP 16.8 Hz), 1.15 (dt, 3H, CH3CH2P, 3JHH

8.4 Hz, 3JHP 15.6 Hz), 1.77 (q, 2H, CH3CH2P, 3JHH 8.4 Hz, 2JHP 15.2 Hz), 1.80 (q,
2H,CH3CH2P, 3JHH 8.4 Hz, 2JHP 15.0 Hz), 2.26 (dd, 1H, @CCH2, 3JHP 2.2 Hz, 2JHH

11.9 Hz), 2.57 (dd, 1H, @CCH2, 3JHP 6.0 Hz, 2JHH 11.9 Hz), 3.31 (s, 3H, CH3O),
3.62 (t, 1H, CH3OCH2, 2JHH 9.9 Hz, 3JHP 9.9 Hz), 3.73 (t, 1H, CH3OCH2, 2JHH 9.9 Hz,
3JHP 9.9 Hz). 13C NMR (50 MHz, CDCl3): d 5.8 (d, CH3CH2P, 2JCP 9.6 Hz), 18.9 (d,
CH3CH2P, 1JCP 64.7 Hz), 19.7 (d, CH3CH2P, 1JCP 64.1 Hz), 27.6 (s, C(CH3)3), 31.3 (s,
@CCH2), 33.0 (s, C(CH3)3), 52.4 (d, CH2CP, 1JCP 65.7 Hz), 59.2 (s, CH3O), 72.8 (s,
CH3OCH2), 116.9 (d, C@CH2, 3JCP 6.7 Hz), 152.7 (d, @CCl, 2JCP 9.11 Hz). 31P NMR
(81 MHz, CDCl3): d 50.4. HRMS m/z: 293.1423 found (calcd for C14H27ClO2P,
(M+H)+ requires 293.1437). 2-Chloro-1-diphenylphosphoryl-1-methoxymethyl-
3-tert-butylcyclobut-2-ene (12): Yield 3.3 g (34%, method A), colorless crystals,
mp 113–114.5 �C, Rf = 0.66 (CH2Cl2/MeOH 95:5). IR (KBr, cm�1): 3437, 3055,
2963, 2928, 2870, 2827, 1651, 1474, 1458, 1439, 1366, 1281, 1192, 1115, 984,
756, 725, 698, 548. 1H NMR (400 MHz, CDCl3): d 0.78 (s, 9H, C(CH3)3), 2.39 (dd,
1H, @CCH2, 3JHP 7.0 Hz, 2JHH 12.2 Hz), 2.61 (dd, 1H, @CCH2, 3JHP 3.3 Hz, 2JHH

12.2 Hz), 3.26 (s, 3H, CH3O), 3.77 (dd, 1H, CH3OCH2, 2JHH 11.0 Hz, 3JHP 7.4 Hz),
3.82 (dd, 1H, CH3OCH2, 2JHH 11.0 Hz, 3JHP 5.4 Hz), 7.40–7.53 (m, 6H, 4m-H, 2p-
H), 7.87 (dd, 4o-H, 3JHH 11.4 Hz, 3JHP 19.5 Hz). 13C NMR (100 MHz, CDCl3): d
27.4 (s, C(CH3)3), 31.2 (s, @CCH2), 32.9 (s, C(CH3)3), 53.5 (d, CH2CP, 1JCP 73.4 Hz),
59.6 (s, CH3O), 69.9 (d, CH3OCH2, 2JCP 8.1 Hz), 128.2 (d, 4m-C, 3JCP 11.4 Hz),
130.2 (d, ipso-C, 1JCP 96.9 Hz), 130.8 (d, ipso-C, 1JCP 96.9 Hz), 132.0 (d, 4o-C, 4JCP

1.1 Hz), 132.1 (d, 2p-C, 2JCP 10.4 Hz), 152.9 (d, C@CP, 2JCP 1.1 Hz). 31P NMR
(81 MHz, CDCl3): d 34.3. HRMS m/z: 389.1418 found (calcd for C22H27ClO2P,
(M+H)+ requires 389.1437).

14. The X-ray crystal structure for compound 10 has been deposited at the
Cambridge Crystallographic Data Centre and allocated the deposition number
CCDC 847993. Formula: C12H22ClO2P. Crystal system, space group
Orthorhombic, Pcab. Unit cell parameters: a = 11.0602(2) Å, b = 13.8647(2) Å,
c = 19.2508(4) Å, a = 90�, b = 90�, c = 90�. V = 2952.04(9) Å3; T = 193(2) K; Z = 8;
qcalc = 1.191 g cm�3; l = 0.354 mm�1 (for MoKa, k = 0.71073 Å); F(000) = 1136;
full-matrix least-squares on F2; parameters = 145; restraints = 0; R(all) = 0.083;
wR(all) = 0.341; GooF(all) = 1.889. Key intramolecular bond lengths, Å: C(1)–C(2)
1.332(2); C(2)–C(3) 1.524(2); C(3)–C(4) 1.568(2); C(4)–C(1) 1.515(2); C(1)–
Cl(5) 1.7232(13); C(2)–C(6) 1.496(2); P(10)–C(13) 1.7943(15); P(10)–C(12)
1.794(2); P(10)–O(11) 1.4911(10). Key intramolecular bond angles: Cl(5)–C(1)–
C(2) 134.99(11)�; C(1)–C(2)–C(3) 91.65(10)�; C(2)–C(3)–C(4) 87.57(9)�; C(3)–
C(4)–C(1) 83.50(9)�; C(1)–C(2)–C(6) 138.59(13)�.
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