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Abstract: Ir-catalyzed asymmetric hydroboration of bicyclic hy-
drazine 4 in the presence of chiral ligand 1a, leads to bicyclic alco-
hol 5 after oxidative workup in good yield (76%) and moderate
enantioselectivity (71% ee).
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The preparation of new chiral ligands for performing of
metal-catalyzed reactions is an important research field.1

We have recently reported a new synthesis of P,N-ligands
1a,b which proved to be excellent ligands to perform var-
ious iridium-catalyzed hydrogenation reactions.2 Espe-
cially interesting were the hydrogenation of
unfunctionalized stilbenes, which proceeded with up to
96% ee and the first asymmetric iridium-catalyzed asym-
metric hydrogenation of dehydroamino acids with up to
96.5% ee.2 Herein, we wish to report another application
of ligands 1a,b for the asymmetric hydroboration of
meso-bicyclic hydrazines3 as well as the use of ligand
1a,b for asymmetric Pd-catalyzed allylic substitution.4

Both ligands 1a,b were readily available from the corre-
sponding triflates 2a,b which were obtained from D-(+)-
camphor and (R)-(+)-nopinone.5 The Pd-catalyzed
Negishi cross-coupling6 of 2a,b with 2-pyridylzinc bro-
mide furnished the unsaturated pyridines 3a,b in 78–85%
yield. The addition of diphenylphosphine oxide in NMP
or DMSO to 3a,b proceeded readily at 70 °C in the
presence of t-BuOK (20 mol%).7

After the reduction of the intermediate phosphine oxides
with HSiCl3 and Et3N in toluene (120 °C, 12 h),8 the de-
sired ligands 1a,b were obtained in 70% and 68% yields,

respectively (Scheme 1). We have first investigated the
asymmetric hydroboration9 of the meso-bicyclic hydra-
zine 4 with catecholborane (CatBH) in the presence of
[Ir(cod)Cl]2. After H2O2 oxidation the alcohol 5 was ob-
tained with variable enantioselectivities (Table 1). Bicy-
clic alcohol 5 can be readily converted to interesting
diaminocyclopentanols of type 6 by a reductive cleavage
of the N–N bond and subsequent benzoylation
(Scheme 2).3b

We found that 1a and 1b are effective ligands for the hy-
droboration of meso-hydrazine 4 providing high conver-
sion in short reaction times (4–6 h). Ligand 1a furnished
alcohol 5 with a higher enantioselectivity (58% ee) where-
as 1b provided alcohol 5 with 44% ee at 25 °C (Table 1,
entries 1 and 2). Performing the hydroboration at 0 °C led

Scheme 1 Reagents and conditions: a) Pd(dba)2 (2 mol%), dppf (2
mol%), 2-pyridylzinc bromide, reflux, 12 h; b) t-BuOK (20 mol%),
DMSO, diphenylphosphine oxide, 70 °C, 16 h; c) HSiCl3 (10 equiv),
Et3N (20 equiv), toluene, 120 °C, 16 h.
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Scheme 2 Reagents and conditions: a) i) [Ir(cod)Cl]2 (1 mol%), ligands 1a or 1b (2.1 mol%), catecholborane (2 equiv), THF, 0 °C, ii) 30%
H2O2, NaOH, EtOH; b) i) H2, AcOH, Pt (cat), ii) PhCOCl, pyridine.
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to a further improvement of the enantioselectivity provid-
ing alcohol 5 with 71% ee and 61% yield (entry 3). On
lowering the reaction temperature further (–20 °C), no
significant reaction occurred (entry 4). Using toluene as
solvent led to a lower conversion (30% yield) and 65% ee
(entry 5) whereas change to DME provided alcohol 5 in
63% yield and 67% ee (entry 6). In order to improve the
reaction yield we increased the concentration (compare
entries 3, 7 and 8) and obtained our best result with a 0.6
M solution of bicycle 4 (76% yield, 71% ee, entry 8).
Lowering the amount of CatBH from 2 equivalents to 1
equivalent in order to avoid an eventual uncatalyzed race-
mic hydroboration did not succeed and resulted in 54%
yield and 52% ee (entry 3). Compared to previous studies
using (R,S)-Josiphos,3a the use of the new ligand 1a repre-
sents an improvement of yield and a slight improvement
in enantioselectivity (from 68% ee to 71% ee).

Next, we have used ligands 1a,b to perform palladium-
catalyzed allylation reactions. We examined the Pd(0)-
catalyzed amination of 1,3-diphenylallyl acetate 7 with
benzylamine as well as the reaction of 7 with dimethyl

malonate in the presence of [Pd(C3H5)Cl]2 (1–2.5 mol%)
and the new P,N-ligands 1a,b under standard conditions.
We found that both ligands gave good enantioselectivi-
ties. Thus, the reaction with benzylamine under standard
conditions provided the desired allylic amine 8 in 95%
yield and 87% ee using the ligand 1b (2 mol%). Similarly,
substitution with dimethylmalonate provided the expected
product 9 in the presence of ligand 1a (5 mol%) in 75%
yield and 96% ee (Scheme 3).

In summary, we have reported the use of the new modular
ligands 1a,b for Ir-catalyzed asymmetric hydroboration
and Pd(0)-catalyzed allylation. Further applications of
this new family of ligands are currently underway in our
laboratories.11
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Table 1 Enantioselective Ir-Catalyzed Hydroboration of the meso-Hydrazine 4 in the Presence of Ligands1a,b

Entry L* Molarity Solvent Temp (°C) Yield (%)a %eeb,c

1 1a 0.25 THF 25 57 58

2 1b 0.25 THF 25 67 44

3 1a 0.25 THF 25 61 (54)c 71 (52)d

4 1a 0.25 THF –20 – –

5 1a 0.25 toluene 25 30 65

6 1a 0.25 DME 0 63 67

7 1a 0.1 THF 0 56 62

8 1a 0.6 THF 0 76 71

9 (R,S)-Josiphos 0.6 THF 0 61 64e

a Yield of analytically pure products.
b The enantioselectivity was determined by chiral HPLC (Chiracel AD: i-PrOH:n-hexane, 20:80, flow: 0.8 mL/min).
c The absolute configuration of the major enantiomer with 1a has been established to be (1S,4R,5R).
d Results in parentheses were obtained using 1 equivalent of CatBH.
e The absolute configuration of the major enantiomer has been established to be (1S,4R,5R).3a

Scheme 3
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