

Available online at www.sciencedirect.com

Journal ofOrgano metallic Chemistry

Journal of Organometallic Chemistry 689 (2004) 2975-2978

www.elsevier.com/locate/jorganchem

2,2'-Bis((di-*tert*-butylphosphino)methyl)-1,1'-biphenyl (ditbi): a bulky analogue of bisbi. The crystal structure of $[Rh_2Cl_2(1,5-cod)_2(\mu-ditbi)]$

Lee J. Higham *,1, Katie Heslop, Paul G. Pringle *, A. Guy Orpen

School of Chemistry, University of Bristol, Bristol BS8 1TS, UK

Received 18 June 2004; accepted 21 June 2004 Available online 30 July 2004

Abstract

Diphosphine 2,2'-bis(di-*tert*-butylphosphino)methyl)-1,1'-biphenyl (ditbi) is synthesised by the addition of $Bu'_2P(BH_3)Li$ to 2,2'-bis(bromomethyl)-1,1'-biphenyl, followed by deprotection with diethylamine. Treatment of $[Rh_2Cl_2(1,5-cod)_2]$, with ditbi gives $[Rh_2Cl_2(1,5-cod)_2(\mu-ditbi)]$ (2) as confirmed by its X-ray crystal structure determination. Hydroformylation of 1-hexene using $[Rh(acac)(CO)_2]/ditbi$ as catalyst gave *n*- and *iso*-heptanal in a ratio of 1:1. © 2004 Elsevier B.V. All rights reserved.

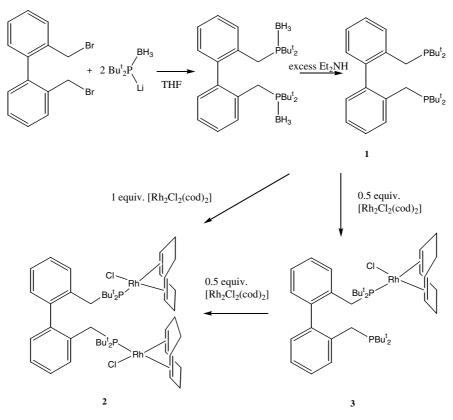
Keywords: Diphosphine; Hydroformylation; Rhodium; Synthesis and characterisation

1. Introduction

The diphosphine bisbi ((2,2'-bis)(diphenylphosphino)methyl)-1,1'-biphenyl) [1] has attracted much attention because it is an outstanding ligand forhydroformylation catalysis: its rhodium complexes arehighly active under mild conditions and*n:i*product ratios of 66:1 have been achieved [2]. The flexibility ofthe bisbi backbone enables this ligand to span anglesat the metal ranging from 90–120° and it is this propertythat may be at the root of its success [3]. We are interestedin other ligands that contain the bisbi backbone andhere we report the bulky diphosphine ditbi (1).

2. Results and discussion

The synthesis of ditbi was carried out according to Scheme 1. Difficulties were encountered in the final borane deprotection step including the regeneration of Ph_2PH and the formation of many by-products, as evidenced by the complicated ³¹P NMR spectra. Several amines (morpholine, diazabicyclo[2.2.2]octane (DAB-CO), triethylamine and diethylamine) were investigated as deprotecting reagents and the reactions were carried out at different temperatures, concentrations of amine and reaction times; the most convenient procedure used diethylamine under the conditions given in the Section 4.3.


Reaction of ditbi with one equivalent of $[Rh_2Cl_2(1,5-cod)_2]$ in CH₂Cl₂ yielded an orange solution which ³¹P NMR spectroscopy showed contained a single P-containing species with a chemical shift of 40.6 ppm (¹J_{Rh-P}=137.7 Hz). Orange crystals that deposited from this solution were suitable for X-ray crystallography. The crystal structure (see Fig. 1 and Tables 1 and 2)

^{*} Corresponding authors.

E-mail address: lee.higham@ucd.ie (L.J. Higham).

¹ Present address: Chemistry, University College Dublin, Belfield, Dublin, Ireland. Tel.: +35-317-162-316; fax: +35-317-162-308.

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2004.06.029

Scheme 1. Synthesis of ditbi (1) and its reactions with [Rh₂Cl₂(cod)₂].

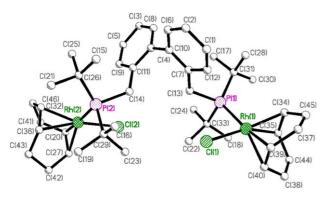


Fig. 1. Crystal structure of [Rh₂Cl₂(1,5-cod)₂(µ-ditbi)] (2).

Table 1 Bond distances (Å) and angles (°) for $[Rh_2Cl_2(1,5\text{-cod})_2(\mu\text{-ditbi})]$ (2)

Bond lengths (Å)		Angles (°)	
Rh(1)–P(1)	2.390(3)	Cl(1)–Rh(1)–P(1)	89.80(10)
Rh(2) - P(2)	2.407(3)	Cl(2)-Rh(2)-P(2)	88.40(11)
Rh(1)-Cl(1)	2.381(3)	C(35)-Rh(1)-C(40)	81.3 (5)
Rh(2)–Cl(2)	2.370(3)	C(13)-P(1)-C(31)	102.3(5)
P(1)–C(13)	1.860(10)	C(14)-P(2)-C(26)	102.5(5)
P(2)–C(14)	1.853(11)	C(7)-C(13)-P(1)	121.6(7)
C(1)–C(2)	1.399(16)	C(28)-C(31)-C(30)	110.7(10)
C(2)–C(8)	1.407(15)		
C(34)–C(35)	1.398(15)		
C(38)-C(44)	1.475(19)		

Table 2 Crystal and refinement data for $[Rh_2Cl_2(1,5\text{-}cod)_2(\mu\text{-}ditbi)]~(2)\,\cdot\,CHCl_3$

Crystal	$\begin{array}{l} [Rh_2Cl_2(1,5\text{-cod})\\ (\mu\text{-ditbi})] \ \textbf{(2)}\cdot CHCl_3 \end{array}$	
Colour, habit	Orange block	
Size (mm)	0.4×0.35×0.2	
Formula	$C_{47}H_{73}Cl_5P_2Rh_2$	
Formula weight	1083.06	
Crystal system	Monoclinic	
Space group (No.)	$P2_1/c(14)$	
a (Å)	12.0851(14)	
b (Å)	20.188(2)	
<i>c</i> (Å)	23.201(3)	
β (°)	95.553(2)	
$V(\text{\AA}^3)$	5633.8(11)	
Ζ	4	
$\mu (\mathrm{mm}^{-1})$	0.907	
Reflections collected	27474	
Unique data	8832	
R _{int}	0.0662	
Final $R_1[I > 2\sigma(I)]$	0.0814	
Max, min difference map features ($eÅ^{-3}$)	0.78, -0.98	

confirmed the binuclear structure of **2**. Binuclear complexes have previously been reported when 1,n-bis(diphenylphosphino)alkanes (n=3-6) reacted with [Rh₂Cl₂-(diolefin)₂] [4].

A space-filling model of **2** (see Fig. 2) shows the twisted bisbi backbone and the crowded nature of the structure.

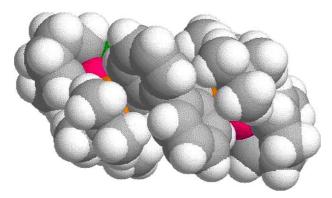


Fig. 2. Space-filling model of [Rh₂Cl₂(1,5-cod)₂(µ-ditbi)] (2).

The bulk of the PBu^{*t*}₂ groups may explain why ditbi seems reluctant to *cis*-chelate; addition of ditbi to 0.5 equivalents of [Rh₂Cl₂(1,5-cod)₂] gave a species characterised in solution as the mononuclear ditbi complex **3** from the ³¹P NMR spectrum. The coordinated phosphine appears as a doublet at δ 38.6 ppm (¹J_{Rh-P}= 145.7) and the non-coordinated phosphine at δ 28.2 ppm. Treatment of solutions of **3** with 0.5 equivalents of [Rh₂Cl₂(1,5-cod)₂] gave **2**.

We compared ditbi and bisbi in rhodium-catalysed hydroformylation of hex-1-ene. Under the reaction conditions employed (9.0 bar H₂/CO, 36 °C, 11 h) the alkene had completely reacted but the *n:iso* ratio of product aldehydes was found to be ca. 1:1 with ditbi. Others have shown [2] that using bisbi under similar conditions led to an *n:i* ratio of greater than 66:1

3. Conclusion

The bulky diphosphine ditbi has been made and shown to bridge in a dirhodium(I) complex. The great steric bulk of ditbi perhaps inhibits the formation of *cis*-chelates which may explain the low *n*:*i* ratio in the hydroformylation of 1-hexene.

4. Experimental

4.1. General methods

All operations were carried out under a N₂ atmosphere using standard Schlenk-line techniques. Toluene, CH_2Cl_2 and THF were dried using the Grubbs drying system [5] and purged with nitrogen; CH_3OH was refluxed and distilled under nitrogen from Mg/I₂. Et₃N and Et₂NH were dried and distilled from P₂O₅ and KOH respectively. Anhydrous *n*-pentane, 2,2'-bis(bromomethyl)-1,1'-biphenyl, morpholine, diazabicy-clo[2.2.2]octane (DABCO) and [Rh(acac)(CO)₂] were all purchased from Aldrich. 1-Hexene was purchased from

Aldrich and purged with nitrogen prior to use. C_6D_6 and $CDCl_3$ were degassed with nitrogen and stored over molecular sieves. [Rh₂Cl₂(1,5-cod)₂] was synthesised according to a literature procedure [6]. The NMR spectra were recorded at 23 °C on a Jeol ecp300 spectrometer with chemical shifts relative to tetramethylsilane for ¹H and ¹³C spectra and 85% H₃PO₄ for ³¹P spectra.

4.2. Synthesis of $Bu_2^tPH \cdot BH_3$

To Bu¹₂PH (5.00 g, 34.0 mmol) in THF (50 cm³) at room temperature, was slowly added BH₃·THF (40 cm³ of a 1 M solution in THF, 40 mmol). The reaction mixture was stirred for 1 h and then the solvent and other volatiles were removed under reduced pressure. The residue was dissolved in *n*-pentane (40 cm³) and the solution was set-aside at 0 °C for 7 days to give the crystalline product (5.03 g, 92%). ³¹P NMR (CDCl₃): 48.3 (q, ¹J_{B-P}=53.0 Hz) ppm.

4.3. Synthesis of 2,2'-bis((di-tert-butylphosphino)methyl)-1,1'-biphenyl (ditbi) (1)

1.25 g (7.80 mmol) of $Bu_2^t PH \cdot BH_3$ was dissolved in THF (20 cm³) and cooled to 0 °C. To this was added *n*-BuLi (4.9 cm^3 , 1.6 M solution in hexanes, 7.8 mmol). The resulting pale vellow solution was allowed to warm to room temperature and stirred for 1 h. The solution was then cooled to 0 °C, and bis(bromomethyl)-1,1'-biphenyl (1.33 g, 3.90 mmol) was added as a solid, generating a yellow solution which became colourless after 5 min. The ice-bath was removed and the reaction mixture allowed to warm to room temperature. After 2 h, the mixture was heated to 35 °C and then a large excess of diethylamine (20 cm³, 14.14 g, 0.20 mol) was added by syringe to give a suspension which was then stirred for a further 60 h. The volatiles were then removed and CH_2Cl_2 (50 cm³) added. The solution was filtered from the ammonium salt and then the solvent removed to yield an oil. Methanol (30 cm³) was added to this oil to give a colourless solution which was filtered from a small quantity of an oily solid and then cooled to 0 °C overnight. The resultant white solid product was filtered off and dried (0.66 grams, 51.3%). EI mass spectrum: m/z 470 (M^+) . Elemental composition to within 1.7 ppm. ¹H NMR (CDCl₃): 7.69 (m, 2H, ArH), 7.0-7.3 (m, 6H, Ar*H*), 2.59 (m, 4H, C*H H* b), 1.03 (d, 18H, ${}^{3}J_{P-H}=11.0$ Hz, CH₃), 0.77 (d, 18H, ${}^{3}J_{P-H}$ =10.7 Hz, CH₃) ppm. ¹³C NMR (CDCl₃): 25.6 (d, ${}^{1}J_{P-C}=22.5$ Hz, C H₂), 29.7 (m, 13.3 Hz, CH_3), 31.4 (d, ${}^{1}J_{P-C}=20.7$ Hz, CMe₃), 32.0 (d, ${}^{1}J_{P-C}$ =23.0 Hz, *C* Me₃), 125.3–130.4 (m, CH, aromatic) 139.7 (d, ${}^{1}J_{P-C}$ =12.1 Hz, *o C* 2), 141.3 (br, *ipso C* 1) ppm. ³¹P NMR: 31.6 (s) ppm. IR (solid, cm^{-1}): v(aryl-H) 3059 (w), 756 (s), 737 (s), v(C=C) 1597 (m), v(C-H) 1469 (m), v(aryl-P) 1432 (m).

4.4. Synthesis of $[Rh_2Cl_2(1,5-cod)_2(\mu-ditbi)]$ (2)

To a solution of ditbi (0.19 g, 0.4 mmol) in CH₂Cl₂ (10 cm³) was added [Rh₂Cl₂(1,5-cod)₂] (0.16 g, 0.4 mmol). The resulting deep-red solution was stirred for 1 h and then the volatiles were removed. The residue was dissolved in CDCl₃ (2 cm³) and after 2 weeks red crystals of **2** had formed. ³¹P NMR: 40.6 (d, ¹ J_{P-Rh} = 137.7 Hz) ppm. FAB mass spectrum: *m/e* 987 ([MNa]⁺).

4.5. Catalytic hydroformylation of 1-hexene

The diphosphine ditbi (9.0 mg, 0.019 mmol) was added to a solution of [Rh(acac)(CO)₂] (5.0 mg, 0.019 mmol) in anhydrous C_6D_6 (3 cm³) and the emerald green solution became orange. The solution was transferred under nitrogen to the autoclave which was then evacuated and refilled 3 times with a 1:1 mixture of H₂ and CO. The reaction mixture was stirred for 1 h at 36 °C and 9.0 bar of syngas. 1-Hexene (1.2 cm³, 9.6 mmol) was injected into the autoclave and the reaction monitored by syngas uptake. After 11 h the uptake was complete but the conditions were maintained for a further 5 h. The pressure was released slowly and the autoclave purged with nitrogen. The ratio of linear:branched products was calculated by integrating the ¹H NMR signals for the aldehyde protons at 9.22 (n)and 9.15 (*i*) in C_6D_6 .

4.6. X-ray crystal structure of $[Rh_2Cl_2(1,5-cod)_2(\mu-ditbi)]$ (2)

X-ray diffraction experiments on $[Rh_2Cl_2(1,5-cod)_2(\mu-ditbi)]$ (2) as a chloroform solvate were carried out at -100 °C on a Bruker SMART diffractometer using Mo K α X-radiation, α =0.71073 Å. Crystal and refinement data are given in Table 2. Absorption corrections were based on equivalent reflections and structures refined against all F_o^2 data with hydrogen atoms riding in calculated positions. A disordered chloroform solvate molecule was found in the electron density

difference map. Attempts to model this disorder produced unsatisfactory results and an improved model was obtained by applying a diffuse solvent correction to the data using the Squeeze routine in the Platon suite of software [7].

5. Supplementary material

Crystallographic data for the structural analysis has been deposited with the Cambridge Crystallographic Data Centre, CCDC No. 241328 for **2**. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(1223)336033 or e-mail: deposit@ ccdc.cam.ac.uk or www.ccdc.cam.ac.uk/conts/retrieving.html.

Acknowledgement

We would like to thank BP Chemicals for financial support, the Leverhulme Trust for a Research Fellowship (to PGP) and Johnson Matthey for the loan of rhodium compounds.

References

- T.A. Puckette, T.J. Devon, G.W. Phillips, J.L. Stavinoha, U.S. Patent US 4879416, 1989.
- [2] C.P. Casey, G.T. Whiteker, M.G. Melville, L.M. Petrovich, J.A. Gavney Jr., D.R. Powell, J. Am. Chem. Soc. 114 (1992) 5535.
- [3] (a) P.W.N.M. Van Leeuwen, P.C.J. Kamer, Dierkes, P. Reek, Chem. Rev. 100 (2000) 2741;
 (b) P.C.J. Kamer, P.W.N.M. Van Leeuwen, J.N.H. Reek, Acc.
- Chem. Res. 34 (2001) 895.[4] M.A. Garralda, L. Ibarlucea, J. Organomet. Chem. 377 (1989) 367.
- [5] A.B. Pangborn, M.A. Giardello, R.H. Grubbs, R.K. Rosen, F.J. Timmers, Organometallics 15 (1996) 1518.
- [6] J. Chatt, L.M. Venanzi, J. Chem. Soc. A (1957) 4735.
- [7] A.L. Spek, J. Appl. Cryst. 36 (2003) 7-13.