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ABSTRACT. A simple, efficient, cheap and broadly applicable system for the carboxylation of 

benzylic bromides with carbon monoxide and water is reported. Upon simple reaction with only 

2.5 wt% of Pearlman’s catalyst and 10 mol% of TBAB in THF at 110 °C for 4 hours, a range of 

benzylic bromides can be smoothly converted to the corresponding arylacetic acids in good to 

excellent yields after simple extraction and acid-base wash. The reaction was found to be broadly 

applicable, scalable and could be successfully extended to the use of ex situ-generated carbon 

monoxide and applied to the synthesis of the non-steroidal anti-inflammatory drug diclofenac. 

KEYWORDS: palladium catalysis, heterogeneous catalysts, carboxylation, benzylic bromides, 

benzylic acids, arylacetic acids, carbon monoxide. 

 

1. INTRODUCTION 

Arylacetic (or benzylic) acids are key molecules in organic synthesis. In addition to their use in 

a number of chemical transformations, they are also important molecules in the food industry – 

phenylacetic acid itself being an important food additive with caramel, floral and honey taste –, 

or in the cosmetic industry where phenylacetic acid is commonly used for its honey-like odor 

even at low concentrations. This moiety is also found in a plethora of well-known drugs such as 

ibuprofen 1, naproxen 2 and diclofenac 3, major non-steroidal anti-inflammatory drugs, or 

olopatadine 4, a medication used to decrease the symptoms of allergic conjunctivitis and rhinitis 

(Figure 1). Arylacetic acid derivatives are in addition commonly found in a number of drugs that 

include penicillin G 5, an antibiotic, clopidogrel 6, an antiplatelet medication, or methyl phenidate 
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 4 

7, a drug used to treat attention deficit hyperactivity disorder and narcolepsy. Arylacetic acids 

and their derivatives are also commonly utilized in the agrochemical sector, representative 

examples including 1-naphthaleneacetic acid 8, a synthetic plant hormone found in many 

commercial plant rooting horticultural products, or fenvalerate 9, a pyrethroid insecticide. 

 

 
 

Figure 1. Representative arylacetic acid derivatives from the food, cosmetic, medicinal and 
agrochemical indutries. 

 

While benzylic acids can be produced by a number of methods from a range of precursors, 

which includes the oxidation of homobenzylic alcohols, the hydrocarboxylation of styrenes1,2 or 

the more recently developed -arylation of aliphatic carboxylic acids3 and direct 

(photo)carboxylation of benzylic C-H bonds,4 all these reactions suffer from limitations in terms 
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 5 

of precursors availability, scope, efficiency and/or selectivity and the precursors of choice, 

notably from an industrial perspective, remain the corresponding benzylic bromides.5 

Traditionally, they have indeed been converted in two steps to the corresponding benzylic acids 

by cyanation followed by hydrolysis. Despite the obvious limitations of this sequence in terms of 

toxicity and efficiency, it is still however a method of choice commonly utilized for the large scale 

preparation of a range of arylacetic acids, notably in industrial settings. The main alternative 

processes for the conversion of benzylic bromides to the corresponding benzylic acids include 

their transformation to benzylic Grignard reagents and their further reaction with carbon dioxide, 

a reaction that suffers from significant competitive dimerization of the starting benzylic bromide 

due to a facile Wurtz coupling and that is not especially practical –5,6 even if benzylic bromides 

can now be directly carboxylated with carbon dioxide by various catalytic7 or electrochemical 

processes5 –, their Nef-type oxidation with sodium nitrite and acetic acid8 or their palladium-

catalyzed carboxylation with chloroform under basic conditions9 or with formic acid.10 A more 

appealing alternative in terms of cost, efficiency, generality and atom economy lies in their 

catalytic carboxylation with carbon monoxide, a reaction that can be catalyzed by a range of acids 

and metals:5 while acid catalysts suffer from harsh conditions and limited substrate scope, 

various metals have been shown over the years to efficiently mediate the conversion of benzylic 

halides and carbon monoxide to the corresponding acids. They include cobalt,11 iron,12 

rhodium,13 nickel,14 ruthenium,15 and palladium,16 the latter being usually more efficient, and 

therefore, preferred. If a range of palladium-based catalysts have been shown to promote the 

carboxylation of benzylic halides to benzylic acids with carbon monoxide, a number of them 

however still suffer from competitive reduction or dimerization of the starting halides5 and no 

Page 5 of 38

ACS Paragon Plus Environment

Organic Process Research & Development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 6 

general heterogeneous palladium catalyst has been reported to date,16 despite a strong potential 

in terms of catalyst separation and recovery as well as product contamination. In an attempt to 

address these limitations and based on our combined interests in metal catalysis17 and process 

chemistry,18 we became interested in developing an efficient, cheap and general heterogeneous 

catalytic system for the carboxylation of benzylic bromides with carbon monoxide and we report 

herein the results of our investigations. 

 

2. RESULTS AND DISCUSSION 

Optimization of the heterogeneous palladium-based catalytic system. We initiated our 

studies by evaluating the efficiency of a range of heterogeneous palladium catalysts for the 

carboxylation of a model benzylic bromide, p-tert-butyl-benzyl bromide 10a, which was selected 

as the substrate for the optimization for its high boiling point and since its carboxylation yields to 

non-volatile p-tert-butyl-phenylacetic acid 11a. This model substrate was therefore reacted with 

carbon monoxide (10 bar) in the presence of 10 wt% of the heterogeneous catalyst (5 wt% Pd), 

except in the case of Pd(OH)2/C (20 wt% Pd) for which 2.5 wt% were used, 10 mol% of 

tetrabutylammonium bromide (TBAB) – an additive commonly used in ligand-free palladium-

based catalytic systems to improve catalyst activity and stability19 and which had been in addition 

shown to be efficient when used as a solvent for the carboxylation of benzyl halides –16n and 4 

equiv. of water in 50 volumes of THF at 110 °C for 4 hours. Yields, conversions and proportions 

of p-tert-butyl-toluene 12a and p-tert-butyl-benzyl alcohol 13a, the only formed byproducts 

resulting from competing reduction and hydrolysis of 10a, respectively, were calculated by 1H 
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 7 

NMR analysis of the crude reaction mixtures after filtration of the catalyst: results from these 

studies are shown in Figure 2 and reveal that while most studied catalysts (Pd/C, Pd(OH)2/C, Pd 

black, Pd/BaSO4, Pd/CaCO3 and Pd/Al2O3) promoted the reaction, Pd/C was found to be quite 

efficient but higher yields and conversions were obtained with Pd(OH)2/C and Pd/BaSO4. Due to 

the lower cost of the former, it was therefore selected as the optimal catalyst for the rest of the 

optimization. In all cases, minor amounts of reduced 12a and hydrolyzed 13a products were 

detected in the crude reaction mixtures.  

Having determined the superiority of Pearlman’s catalyst, we next moved to screening the 

influence of the solvent utilized for the carboxylation, the solvents for this second step of the 

optimization being selected on the basis of their miscibility with water and of their use on a larger 

scale. As evidenced by results summarized in Figure 2, the solvent was found to have a dramatic 

impact on the outcome of the reaction: while almost no reaction occurred in toluene, poor 

conversions were observed in dioxane and acetonitrile. A higher conversion was achieved in DMF 

but with a significant increase of competing hydrolysis – a reaction that was found, quite logically, 

to be the main reaction when the carboxylation was performed in water – due to the too high 

polarity of this solvent. The best result was actually obtained with the solvent we had chosen at 

the beginning of our studies, THF, which was therefore selected as the solvent of choice for the 

carboxylation.  

A broad range of additives commonly utilized in palladium-catalyzed reactions was next 

evaluated. While the presence of an additive was found to be crucial for the carboxylation to 

occur, no product being basically formed in the absence of additive, tetrabutylammonium salts 
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 8 

had a positive impact on the outcome of the reaction, except in the case of tetrabutylammonium 

iodide which gave a poor conversion and an important amount of competing hydrolysis, a side 

reaction that could be facilitated by an in situ Finkelstein reaction. Among all 

tetrabutylammonium salts evaluated, TBAB gave the best result. Tetrabutylphosphonium 

hydroxide was also found to have a positive impact on the reaction but, as with TBAOH, also 

favored the hydrolysis and tetramethylammonium salts, which were evaluated because of their 

higher stability since they cannot undergo degradation through a Hofmann elimination, were 

found to be inefficient, mostly due to their poor solubility in THF. Triphenylphosphine was also 

shown to be a suitable additive but a low conversion and a higher amount of reduced product 

12a were noted in this case; increasing the amount of this additive in order to reach a higher 

conversion proved to be successful but a too high proportion of competing hydrolysis to 

compound 13a was still observed. As a note, increasing the loading of TBAB, which was selected 

as the best additive, did not result in a higher yield. 

Having selected the best palladium catalyst, additive and solvent, we next evaluated the 

influence of the concentration by performing the reaction in more diluted and concentrated 

media. As highlighted in Figure 2, the concentration did not have a major influence on the 

reaction, too high concentrations however resulting in higher amounts of hydrolysis while too 

low concentrations favored the reduction, the best compromise relying on the use of 40 volumes 

of THF. We finally focused on the impact of the last reaction parameters: the pressure of carbon 

monoxide, the temperature and the reaction time. Decreasing the pressure to 9, 7 or 5 bar 

resulted in decreased yields and lower conversions while performing the reaction at 60 °C instead 

of 110 °C (not shown) brought the conversion down to 11%. Finally, a longer reaction time (not  
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 9 

 

 
Figure 2. Optimization of the palladium-catalyzed carboxylation. a with 2.5 wt% Pd(OH)2/C. b with 
20 mol%. 
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 10 

shown) was found to be detrimental since performing the reaction overnight in place of for 4 

hours gave a lower yield (76% vs 89%) and a higher amount of reduced product 12a (18% vs 5%), 

presumably due to a decarboxylation of the desired product 11a with prolonged reaction times.  

 

At this stage, we briefly focused our efforts on understanding the origin of the formation of 

the reduced product 12a, which could be useful to potentially minimize its proportion. One 

possibility that might account for the formation of this byproduct would involve the 

decarboxylation of acid 11a; this hypothesis could however be easily discarded since upon 

reacting p-tert-butyl-phenylacetic acid 11a under the standard reaction conditions for 4 hours, it 

could be fully recovered and 1H NMR analysis of the crude mixture revealed the absence of p-

tert-butyl-toluene 12a (Scheme 1, eq. 1). THF and TBAB being hardly reducing agents in 

palladium-catalyzed reactions and the reduction being in addition also observed with other 

solvents and additives, we therefore wondered if the reduction did not result from the water-gas 

shift reaction between carbon monoxide and water that would produce molecular hydrogen 

within the reaction mixture. The carboxylation of p-tert-butyl-benzyl bromide 10a was thus 

performed with deuterated water, 1H NMR analysis of the crude reaction mixture revealed the 

formation of deuterated reduced product 12aD with a good level of deuteration (Scheme 1, eq. 

2), therefore suggesting that the reduction was due to the reagents needed for the carboxylation, 

i.e. carbon monoxide and water, minimizing the formation of the reduced product being 

therefore highly challenging if not impossible. 
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 11 

 

Scheme 1. Origin of the competing reduction of benzylic bromides. 
 

Screening all parameters of the carboxylation therefore resulted in an optimal system for the 

carboxylation based on the use of 2.5 wt% of Pd(OH)2/C (20 wt% Pd), 10 mol% of TBAB, 4 equiv. 

of water under 10 bar of carbon monoxide in 40 volumes of THF at 110 °C for 4 hours. These 

conditions resulted in a 1H NMR yield of 89% for the desired benzylic acid 11a with a full 

conversion and around 5% of reduced 12a and hydrolyzed 13a products. The desired acid could 

be easily isolated in a pure form by filtration of the crude reaction mixture over a plug of Celite®, 

concentration, extraction with a 1M aqueous solution of sodium hydroxide which was washed 

with pentane to remove all byproducts, acidification with a 10% aqueous solution of hydrochloric 

acid and extraction with diethyl ether. Using this simple and standard procedure, an isolated yield 

of 77% could be obtained. 

Having in hand the optimized conditions and work-up procedure, we then assessed the scope 

and limitations of our system for the palladium-catalyzed carboxylation of a series of benzylic 

bromides. Results from these studies will now be overviewed.  

Scope and limitations of the Pd(OH)2/C-catalyzed carboxylation of benzylic bromides. To test 

the efficiency of our procedure, a set of benzylic bromides 10 with representative electronic and 

Page 11 of 38

ACS Paragon Plus Environment

Organic Process Research & Development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 12 

steric properties was therefore subjected to our optimized conditions: results from this study are 

summarized in Figure 3. As evidenced by these results, our procedure was found to be rather 

general and the desired arylacetic acids 11 could be obtained in good to excellent yields in most 

cases and without the need for further purification after the acid-base wash. Para-, meta-, and 

even ortho- substituted benzylic bromides were shown to be readily carboxylated, the former 

giving however a superior yield. Electron-rich and electron-poor substrates worked equally well, 

providing the corresponding arylacetic acids 11a-f and 11g-n in good yields. A range of 

substituents were tolerated, including a benzyl ether (11f), a nitrile (11g) and a tert-butyl ester 

(11i) while a more labile ethyl ester (11h) was cleaved under the reaction conditions and a nitro 

group (11j) gave a poorer yield, presumably due to its competing reduction. Interestingly, an 

aromatic chloride (11m) and even a bromide (11n) were stable under the reaction conditions and 

no competing carboxylation was noted, which offers interesting possibilities for further 

derivatization. Interestingly, the procedure was also amenable to the production of 

2-naphthalen-2-ylacetic acid 11o in good yield (81%).  

In an effort to further highlight the efficiency and attractiveness of our procedure, we next 

briefly studied its extension to the preparation of heteroarylacetic acids, useful building blocks in 

medicinal chemistry and agrochemistry (Figure 4). To our delight, benzofuran (15a), 

benzothiophene (15b) and indole (15c) derivatives could be obtained in fair to good yields from 

the corresponding bromides. As for pyridin-3-ylacetic acid 15d, it was also formed by 

carboxylation of the corresponding bromide, but in lower yield due to the poor stability of the 

starting material combined with a less efficient reaction and a much more tedious purification.  
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 13 

 
Figure 3. Scope and limitations of the Pd(OH)2/C-catalyzed carboxylation of benzylic bromides. a 
from ethyl 4-(bromomethyl)benzoate. 

 

 
Figure 4. Pd(OH)2/C-catalyzed carboxylation of heterobenzylic bromides.  

 

Pd(OH)2/C-catalyzed carboxylation of benzylic bromides on a multigram scale. In a further 

effort to demonstrate the synthetic potential of our procedure, a scale up of the carboxylation 

of p-bromo-benzyl bromide 10n to p-bromo-phenylacetic acid 11n was next explored (Figure 5). 

A 1 L autoclave was therefore charged with 20 grams of p-bromo-benzyl bromide followed by 

TBAB, water and Pd(OH)2/C in 800 mL of THF (industrial grade: KF  0.1%). The resulting 

suspension was purged with carbon monoxide (3 bar) and then heated to 110 °C before 

Page 13 of 38

ACS Paragon Plus Environment

Organic Process Research & Development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 14 

pressurizing with 10 bar of carbon monoxide. The reaction mixture was stirred at 110 °C under 

10 bar of carbon monoxide for 6 hours: in-process control (LCAP) revealed the formation of 71% 

of the targeted product 11n, 10% of starting material and 11% of the reduced product. Shorter 

reaction times led to lower conversions and a longer one or the use of additional catalyst did not 

improve conversion and selectivity. After cooling to 20-25 °C, the mixture was filtered through 

filter cloth to provide a clear solution which was fully concentrated under atmospheric pressure 

before adding a 30% aqueous solution of sodium hydroxide, water and dichloromethane. The 

aqueous layer was next treated with charcoal before adding 34% hydrochloric acid until pH 1-2 

and stirring the resulting white slurry at 20-25 °C for 1 hour. The mixture was then held at 0-5 °C 

for 1 hour, and the solid was collected by filtration. The cake was washed twice with cold water 

and the solid was oven-dried overnight (40 °C) to afford 10.8 grams of the desired p-bromo-

phenylacetic acid 11n (60% yield, 99.3% LCAP). 

 

 

 
Figure 5. Pd(OH)2/C-catalyzed synthesis of p-bromo-phenylacetic acid on a multigram scale.  

 

Heterogeneous nature of the catalyst and catalyst recycling. On an industrial setting, and 

especially for large scale applications, the nature of the catalyst (i.e. heterogeneous vs 
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homogeneous) and its recycling are of crucial importance. Indeed, a totally heterogeneous 

catalyst with limited leaching ensures low levels of residual palladium into the final product 

together with facilitating its recycling. We therefore first decided to address the nature of the 

catalyst and to perform leaching studies: ICP analysis of the crude filtrate prior to any extraction 

or treatment gratifyingly revealed a really low level of palladium (0.9 ppm) in solution, therefore 

highlighting the heterogeneous nature of our system. 

Our catalytic system being heterogeneous, we could therefore next address its potential 

recyclability, an important point even if our procedure involves a low catalyst loading. A large 

scale carboxylation of 10n was therefore set up and the catalyst that could be recovered after 

the filtration step was reused for another carboxylation: as demonstrated by the percentage of 

starting material 10n, carboxylated and reduced products 11n and 12n, whose yields were 

evaluated by HPLC analysis of the crude reaction mixture, shown in Figure 6, this recycled catalyst 

was shown to be much less efficient since lower conversion and yield were obtained under 

otherwise identical conditions. In an attempt to solve this problem, a spiking strategy that is 

commonly utilized for large scale metal-catalyzed reactions, involving the addition of a minimum 

of the fresh catalyst to the recycled one was envisioned. This turned out to be rather fruitful since 

a comparable catalytic activity could be restored, at the expense of the conversion however.   
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 16 

 
Figure 6. Catalyst recycling.  

 

Pd(OH)2/C-catalyzed carboxylation of benzylic bromides with ex situ-generated carbon 

monoxide in a two-chamber reactor. Having demonstrated the efficiency, the applicability and 

the scale up of our process for the carboxylation of benzylic bromides with carbon monoxide 

relying on the use of a heterogeneous and recyclable catalyst, we next moved to a brief study of 

its extension to the use of precursors of carbon monoxide. Certain academic and industrial 

laboratories being either not equipped to handle carbon monoxide or reluctant to use it, the use 

of stable precursors of this reagent indeed provides an interesting alternative, notably for small 

scale reactions. Skrydstrup’s two-chamber reactor COware,20 in which carbon monoxide is ex 

situ-generated in one chamber before reacting in the second one, having proved its efficiency for 

such processes, we therefore tested its use for our carboxylation. Among all stable precursors of 

carbon monoxide reported to date, a combination of formic acid and sulfuric acid21 – the later 

dehydrating the former (Morgan reaction)22 at elevated temperatures – was selected, these two 

reagents being cheap and readily available.  

 

To test this alternative carboxylation procedure, the CO-generation chamber of a 20 mL two-

chamber COware reactor (Figure 7, chamber A) was charged with 10 equiv. of sulphuric acid while 
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 17 

the carboxylation chamber (Figure 7, chamber B) was charged with p-tert-butyl-benzyl bromide 

10a, 20 wt% of palladium hydroxide on carbon (20 wt% Pd), 10 mol% of tetrabutylammonium 

bromide and water (4 equiv.) in THF.  The COware reactor was tightly closed, heated at 80 °C and 

formic acid (10 equiv.) was then added dropwise in the CO-generation chamber. After 24 hours 

at 80 °C – this temperature being selected to stay within the pressure limit of the two-chamber 

reactor, – a simple filtration followed by an acid-base extraction provided the desired arylacetic 

acid 11a in 54% yield, a yield that was not further optimized but demonstrated that the use of 

gaseous carbon monoxide is not strictly needed for our carboxylation. As a note, the amount of 

Pearlman’s catalyst as well as the reaction time had to be increased in this case to ensure a full 

conversion of the starting material.    

 

 

 
Figure 7. Pd(OH)2/C-catalyzed carboxylation of p-tert-butyl-benzyl bromide with ex situ-
generated carbon monoxide in a two-chamber reactor.  

 

Application to the synthesis of diclofenac. In a final attempt to highlight the synthetic 

potential of our carboxylation, notably in medicinal and process chemistry, we envisioned its use 

for the synthesis of an API. Diclofenac 3, commercialized under various trade names such as 
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VoltarenTM, CataflamTM, or PennsaidTM, was selected as the target due to its importance as a non-

steroidal anti-inflammatory drug which has been among the best-selling anti-inflammatory drugs 

for more than a decade and due to the number of processes reported and patented for its 

synthesis.23 It was first patented in 1965 by Ciba-Geigy and came into medical use in 1988.24 

Among all the syntheses reported and/or patented, the ones relying on an Ullmann coupling 

are especially appealing in terms of number of steps and availability/cost of the starting 

materials. This was actually already featured in one of Ciba-Geigy’s original routes which involved 

a key Ullmann coupling between 2,6-dichloroaniline and o-chloro-benzoic acid.23a Starting from 

an o-halo-phenylacetic acid in place of the corresponding benzoic acid resulting in more 

straightforward syntheses, several processes have been developed based on this strategy, using 

o-iodo-phenylacetic,25 o-bromo-phenylacetic,26 or o-chloro-phenylacetic10,27 acids, the latter 

being more appealing in terms of cost, although its amination being challenging. While its 

classical preparation from o-chloro-benzyl bromide or chloride rely on a nucleophilic substitution 

with a cyanide followed by hydrolysis (Scheme 2, bottom), it could be more conveniently 

prepared by a direct carboxylation with carbon monoxide (Scheme 2, top).10 We therefore 

envisioned testing the efficiency of our catalytic system for this step: with this goal in mind, 

o-chloro-benzyl bromide 10p was thus reacted under our optimized conditions, providing 

o-chloro-phenylacetic acid 11p in 70% after filtration and a simple acid-base wash. A further 

coupling with 2,6-dichloroaniline under previously reported conditions10 then afforded 

diclofenac 3 in two steps from commercially available starting materials.  
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Scheme 2. Pd(OH)2/C-catalyzed carboxylation of benzylic bromides applied to the synthesis of 
diclofenac.  

 

3. CONCLUSION 

In conclusion, we have developed a simple, efficient and broadly applicable system for the 

carboxylation of benzylic bromides. Upon simple reaction with carbon monoxide and water in 

the presence of only 2.5 wt% of Pearlman’s catalyst and 10 mol% of TBAB in THF at 110 °C for 4 

hours, a range of benzylic bromides can be smoothly converted to the corresponding arylacetic 

acids in good to excellent yields. The reaction was found to be rather general, scalable and both 

its extension to ex situ-generated carbon monoxide and its application to the synthesis of the 

non-steroidal anti-inflammatory drug diclofenac highlight its synthetic potential. Attractive 

features of this procedure include the low cost of the palladium catalyst, its easy removal by 

simple filtration, the operational simplicity of the process and its generality and broad substrate 

scope. It should facilitate the synthesis of arylacetic acids and could contribute to the 

development of shorter and more efficient industrial processes. 
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EXPERIMENTAL SECTION 

General Information. All reactions were carried out in oven-dried glassware unless 

otherwise stated.  

All solvents were reagent grade. Tetrahydrofuran was freshly distilled from 

sodium/benzophenone under argon prior to use (for small scale reactions – for the large scale 

reaction, industrial grade THF (KF  0.1%) was used without purification). N,N-

Dimethylformamide (99.8% purity, Extra Dry over Molecular Sieves, Acroseal®) was purchased 

from ACROS Organics and degassed by three cycles of “freeze-pump-thaw” using argon as inert 

gas when required.  

Palladium hydroxide on carbon (20 wt% Pd, moisture ca 60%) was purchased from ACROS 

Organics and used as supplied. Tetrabutylammonium bromide (98% purity) was purchased from 

Combi-Blocks and used as supplied. Copper(I) iodide (99,999% purity) used for copper-mediated 

coupling reactions was purchased from ACROS Organics and used as supplied. Carbon monoxide 

(N47, 99.997%+ purity) was purchased from Air Liquide and used as supplied. Deuterium oxide 

(99.9% D) was purchased from Eurisotop and used as supplied. Sulfuric acid (96%, VLSI 

Selectipur®) and formic acid (99%+ purity) were respectively purchased from BASF and ACROS 

Organics and used as supplied. All other reagents were used as supplied. 

Carboxylation reactions were performed using a HEL ltd. CAT 7 autoclave 

(https://www.helgroup.com) equipped with B19 PTFE-capped 10 mL glass vials and linked to a 

CO cylinder. The 20 mL two-chamber COware reactor was purchased from Sigma-Aldrich. 
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Reactions were magnetically stirred and monitored by thin layer chromatography using 

Merck-Kiesegel 60F254 plates. Flash chromatography was performed with silica gel 60 (particle 

size 35-70 µm) supplied by Merck. Yields refer to chromatographically and spectroscopically pure 

compounds unless otherwise stated.  

Proton NMR spectra were recorded using an internal deuterium lock at ambient 

temperature on Bruker 300 MHz, Varian 400 MHz and JEOL 400 MHz spectrometers. Internal 

reference of H 7.26 was used for CDCl3, and H 2.05 was used for acetone-d6. Carbon-13 NMR 

spectra were recorded at 100 MHz using CDCl3 (C 77.16) or acetone-d6 (C 29.84) as internal 

reference. 19F NMR spectra were recorded at 376 MHz. 

Carboxylation with Deuterated Water. Synthesis and Isolation of p-tert-Butyl-toluene 12aD 

and p-tert-Butyl-benzyl Alcohol 13a. Six glass vials containing a PTFE-coated magnetic stirrer were 

each charged with p-tert-butyl-benzyl bromide 10a (115 mg, 0.52 mmol), palladium hydroxide on 

carbon 20 wt% (3 mg, 2.5 wt%) and tetrabutylammonium bromide (19 mg, 0.06 mmol). 

Tetrahydrofuran (2.3 mL, 20 vol.) and deuterium oxide (38 µL, 2.08 mmol) were then added, the 

vials were sealed with a PTFE cap and placed in the autoclave. The system was first purged with 

5 bar of CO, then pressurized with 10 bar of CO and stirred at 110 °C for 12 hours. The autoclave 

was cooled down to room temperature and then gently depressurized. The content of the six 

vials was combined and filtered over a short pad of Celite®, which was thoroughly washed with 

ethyl acetate (ca 20 mL). The volatiles were removed under reduced pressure. The crude residue 

was dissolved in a 1M aqueous solution of sodium hydroxide (10 mL) and washed with pentane 

(3 x 5 mL). The combined organic layers were dried over MgSO4, filtered and concentrated under 

reduced pressure. The crude residue was purified by flash column chromatography on silica gel 
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(pentane to pentane/diethyl ether: 75/25) to afford the reduced product 12aD (64%D, 24 mg, 

0.16 mmol, 5%) as a colorless liquid and the hydrolyzed compound 13a (15 mg, 0.09 mmol, 3%) 

as a colorless liquid. These compounds have been previously reported.28 

Carboxylation of Benzylic Bromides. General Procedure. Three glass vials containing a 

PTFE-coated magnetic stirrer were each charged with the desired benzylic bromide 10 (57 mg, 

1.0 equiv.), palladium hydroxide on carbon 20 wt% (1.5 mg, 2.5 wt%) and tetrabutylammonium 

bromide (0.1 equiv.). Tetrahydrofuran (2.3 mL, 40 vol.) and distilled water (4 equiv.) were then 

added, the vials were sealed with a PTFE cap and placed in the autoclave. The system was first 

purged with 5 bar of CO, then pressurized with 10 bar of CO and stirred at 110 °C for 4 hours. The 

autoclave was cooled down to room temperature and then gently depressurized. The content of 

the three vials was combined and filtered over a short pad of Celite®, which was thoroughly 

washed with ethyl acetate (ca 10 mL). The volatiles were removed under reduced pressure. The 

crude residue was dissolved in a 1M aqueous solution of sodium hydroxide (5 mL) and washed 

with pentane (3 x 5 mL). The aqueous layer was then acidified to pH 1-2 with a 10% aqueous 

solution of hydrochloric acid and extracted with diethyl ether (3 x 10 mL). The combined organic 

layers were washed with brine, dried over MgSO4, filtered and concentrated under reduced 

pressure to afford the desired carboxylic acid 11 as a solid. The product thus obtained did not 

require further purification. 

p-tert-Butyl-phenylacetic Acid 11a. Yield: 77% (113 mg, 0.59 mmol). White solid. This 

compound has been previously reported.7a 
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p-Tolylacetic Acid 11b. Yield: 80% (90 mg, 0.60 mmol). White solid. This compound has been 

previously reported.29 

m-Tolylacetic Acid 11c. Yield: 69% (81 mg, 0.54 mmol). White solid. This compound has 

been previously reported.29 

o-Tolylacetic Acid 11d. Yield: 65% (91 mg, 0.61 mmol). Off-white solid. This compound has 

been previously reported.30 

p-Methoxy-phenylacetic Acid 11e. Yield: 76% (108 mg, 0.65 mmol). White solid. This 

compound has been previously reported.7a 

p-Benzyloxy-phenylacetic Acid 11f. Yield: 45% (92 mg, 0.38 mmol). White solid. This 

compound has been previously reported.31 

p-Cyano-phenylacetic Acid 11g. Yield: 76% (106 mg, 0.66 mmol). White solid. This 

compound has been previously reported.32 

p-Carboxy-phenylacetic Acid 11h. Prepared according to the general procedure starting 

from ethyl p-(bromomethyl)benzoate 10h. Yield: 43% (51 mg, 0.28 mmol). White solid. This 

compound has been previously reported.33 

p-tert-Butoxycarbonyl-phenylacetic Acid 11i. Yield: 58% (86 mg, 0.36 mmol). White solid. 

This compound has been previously reported.34 

p-Nitro-phenylacetic Acid 11j. Yield: 38% (55 mg, 0.30 mmol). Yellow solid. This compound 

has been previously reported.35 

p-Trifluoromethyl-phenylacetic Acid 11k. Yield: 77% (147 mg, 0.62 mmol). Off-white solid. 

This compound has been previously reported.7a 
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p-Fluoro-phenylacetic Acid 11l. Yield: 68% (96 mg, 0.62 mmol). White solid. This compound 

has been previously reported.7a 

p-Chloro-phenylacetic Acid 11m. Yield: 79% (113 mg, 0.66 mmol). White solid. This 

compound has been previously reported.29 

p-Bromo-phenylacetic Acid 11n. Yield: 82% (121 mg, 0.56 mmol). White solid. This 

compound has been previously reported.29 

Naphthalen-2-ylacetic Acid 11o. Yield: 81% (117 mg, 0.63 mmol). White solid. This 

compound has been previously reported.7a 

o-Chloro-phenylacetic Acid 11p. Yield: 70% (101 mg, 0.59 mmol). White solid. This 

compound has been previously reported.7a 

Benzofuran-3-ylacetic Acid 15a. Yield: 63% (90 mg, 0.51 mmol). White solid. This compound 

has been previously reported.36 

Benzo[b]thiophen-3-ylacetic Acid 15b. Yield: 54% (78 mg, 0.41 mmol). White solid. This 

compound has been previously reported.37 

N-Tosyl-indol-3-ylacetic Acid 15c. Yield: 58% (93 mg, 0.28 mmol). Brownish solid. This 

compound has been previously reported.38 

Pyridin-3-ylacetic Acid 15d. This compound was prepared starting from  

3-(bromomethyl)pyridine hydrobromide. The hydrobromide (253 mg, 1.0 mmol) was dissolved 

in a saturated aqueous solution of sodium hydrogen carbonate (10 mL) and the resulting free 

base was extracted with diethyl ether (2 x 5 mL). The combined organic layers were dried over 

MgSO4, filtered and concentrated under reduced pressure to afford 3-(bromomethyl)pyridine 
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14d which was used quickly following the general carboxylation procedure. Instead of an acid-

base wash, trituration of the crude residue in chloroform (5 mL) and filtration delivered the 

desired acid 15d. Yield: 37% (46 mg, 0.34 mmol). White solid. This compound has been previously 

reported.39 

Multigram Scale Procedure. Carboxylation of p-Bromo-benzyl Bromide 10n. A 1L autoclave 

was charged with p-bromo-benzyl bromide 10n (20 g, 80.0 mmol), tetrabutylammonium bromide 

(2.58 g, 8.0 mmol), distilled water (5.8 mL, 320 mmol), palladium hydroxide on carbon 20 wt% 

(0.5 g, 2.5 wt%) and tetrahydrofuran (industrial grade: KF  0.1%, 800 mL). The resulting 

suspension was purged with 3 bar of CO and heated to 110 °C before being pressurized with 10 

bar of CO. The reaction mixture was stirred at 110 °C under 10 bar of CO for 6 hours (In-process 

control (LCAP): 71% targeted product 11n, 10% starting material 10n, 11% reduced product 12n). 

The resulting mixture was cooled down to room temperature and filtered through filter cloth to 

provide a clear solution which was concentrated under atmospheric pressure. A 30% aqueous 

solution of sodium hydroxyde (80 mL), water (100 mL) and dichloromethane (100 mL) were then 

added to the residue and the organic and aqueous phases were separated. The aqueous layer 

was treated with charcoal and a 34% aqueous solution of hydrochloric acid was added to reach 

pH 1-2. The resulting white slurry was then stirred at 20-25 °C for 1 hour and held at 0-5 °C for an 

additional hour before being collected as a solid by filtration. The cake was washed with cold 

water (2 x 10 mL) and the resulting solid was oven-dried overnight (40 °C) to yield p-bromo-

phenylacetic acid 11n as a white solid (10.8 g, 50.2 mmol, 60%, 99.3% LCAP). This compound has 

been previously reported.29 
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COware Two-Chamber Reactor Procedure. Carboxylation of p-tert-Butyl-benzyl Bromide 

10a. p-tert-Butyl-benzyl bromide 10a (57 mg, 0.26 mmol), palladium hydroxide on carbon 20 wt% 

(12 mg, 20 wt%), tetrabutylammonium bromide (10 mg, 0.03 mmol), distilled water (19 L, 1.04 

mmol) and tetrahydrofuran (2.3 mL, 40 vol.) were charged in the carboxylation chamber of a 20 

mL two-chamber COware reactor. Sulfuric acid (140 L, 2.6 mmol) was added in the CO-

generation chamber. The COware reactor was tightly closed, heated at 80 °C and formic acid (100 

L, 2.6 mmol) was then added dropwise in the CO-generation chamber. The mixture was stirred 

at 80 °C for 24 hours. The two-chamber reactor was cooled down to room temperature and then 

gently depressurized. The content of the carboxylation chamber was filtered over a short pad of 

Celite®, which was thoroughly washed with ethyl acetate (ca 5 mL). The volatiles were removed 

under reduced pressure. The crude residue was dissolved in a 1M aqueous solution of sodium 

hydroxide (5 mL) and washed with pentane (3 x 5 mL). The aqueous layer was then acidified to 

pH 1-2 with a 10% aqueous solution of hydrochloric acid and extracted with diethyl ether (3 x 10 

mL). The combined organic layers were washed with brine, dried over MgSO4, filtered and 

concentrated under reduced pressure to yield p-tert-butyl-phenylacetic acid 11a as a white solid 

(27 mg, 0.14 mmol, 54%). This compound has been previously reported.7a 

Diclofenac Synthesis. Ullmann Coupling on p-Chloro-phenylacetic Acid 11m. A 50 mL 

pressure tube fitted with a rubber septum was charged with p-chloro-phenylacetic acid 11m (512 

mg, 3.0 mmol), 2,6-dichloroaniline (2.43 g, 15.0 mmol), copper(I) iodide (457 mg, 2.4 mmol), 

potassium iodide (498 mg, 3.0 mmol) and potassium carbonate (829 mg, 6.0 mmol). The pressure 

tube was evacuated under high vacuum, backfilled with argon and then degassed N,N-

dimethylformamide (6 mL) was added. The pressure tube was then sealed with a Teflon-coated 
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screw cap and stirred 12 hours at 165 °C. The resulting dark mixture was cooled down to room 

temperature and transferred into a 250 mL round bottom flask. Ethyl acetate (120 mL), water (60 

mL), concentrated hydrochloric acid (4.0 mL) as well as charcoal (12 g) and Celite® (12 g) were 

added and the resulting slurry was vigorously stirred for 1 hour. The mixture was filtered, the 

biphasic filtrate was separated, and the organic layer was dried with MgSO4, filtered, and 

concentrated under reduced pressure. The crude residue was purified by flash column 

chromatography on silica gel (petroleum ether/EtOAc: 80/20 to 60/40) to give the desired acid 3 

(293 mg, 0.99 mmol, 34%) as a white solid. This compound has been previously reported.10,25c 
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