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Abstract: Vanadium-based catalysts have shown activity

and selectivity in ring-opening metathesis polymerization
of strained cyclic olefins comparable to those of Ru, Mo,

and W catalysts. However, the application of V alkylidenes
in routine organic synthesis is limited. Here, we present

the first example of ring-closing olefin metathesis cata-

lyzed by well-defined V chloride alkylidene phosphine
complexes. The developed catalysts exhibit tolerance to

various functional groups, such as an ether, an ester, a ter-
tiary amide, a tertiary amine, and a sulfonamide. The size

and electron-donating properties of the imido group and
the phosphine play a crucial role in the stability of active

intermediates. Reactions with ethylene and olefins suggest

that both b-hydride elimination of the metallacyclobutene
and bimolecular decomposition are responsible for cata-

lyst degradation.

Ring-closing metathesis (RCM) of dienes[1] is a widely applied

method for the synthesis of natural products and biologically
active compounds.[2] Nowadays, commonly used homogene-

ous catalysts for RCM are based on well-defined Ru,[3] Mo and
W[4] alkylidenes; some of them exhibit remarkably high activi-
ty[5] and enantioselectivity.[6] Examples of RCM catalyzed by

other well-defined transition metal complexes are rather limit-
ed. Thus, to the best of our knowledge, only two Os com-

plexes capable of performing RCM were reported.[7] However,
Os is among the rarest elements in the Earth’s crust,[8] which
narrows its use in catalysis. Although ill-defined complexes of
Nb,[9] and Re[10] have been shown to promote RCM, the nature

of the active species remains unknown. Tebbe’s reagent,
Cp2TiCH2AlClMe2 can promote RCM,[11] but reaction requires
stoichiometric amounts of the Ti complex.

In the last decade, high-oxidation-state vanadium alkylidene
complexes of the type V(NR)(CHSiMe3)(X)(L), where R is an

aryl[12–18] or 1-adamantyl group;[13, 15, 16, 19] X is an amide,[12, 15]

alkyl,[13] or alkoxide;[14, 16–19] and L is an NHC[13] or PMe3
[14–19]

have been extensively explored by the Nomura group for the

ring-opening metathesis polymerization (ROMP) of various
cyclic alkenes.[20] The critical step of the alkylidene formation,

the a-hydrogen abstraction in the presence of PMe3, is shown

in Scheme 1 along with examples of highly active V complexes
for ROMP of norbornene (NBE).[16, 17] Although those complexes

contain two PMe3 ligands, the dissociation of one of the phos-
phine ligands is required to access the 14-electron catalytically

active species,[16] as is the case for Ru-[21] and Mo-based[22] cata-
lysts. Important to mention, other phosphines have not been

applied for V alkylidene synthesis.[20]

Despite the successful application of V complexes for ROMP,
examples of V-catalyzed olefin metathesis of acyclic olefins are
surprisingly limited. Although a few examples of cross-meta-
thesis (CM) have been reported recently utilizing Nomura’s cat-

alysts,[23, 24] rapid V alkylidene decomposition precluded com-
plete conversion.

The use of abundant first-row metals, such as vanadium, to
make well-defined catalysts for RCM of olefins is highly desira-
ble to provide less expensive and greener alternatives for exist-

ing methods. V is the 20th most abundant element in the
Earth’s crust. The abundance of V is &102 times higher com-

pared to Mo and W and &105 times higher than for Ru.[25] As a
result, it is substantially less expensive than the rare metals
that are currently used. Additionally, purification, isolation, and

recycling of precious metals consume energy and generate a
significant amount of waste. Therefore, the use of V-based cat-

alysts will make valuable olefins more accessible to consumers
and decrease the human environmental footprint.

Recently, the Schrock group reported a method of promot-
ing a-hydrogen abstraction from Mo dialkyl complexes by

Scheme 1. Synthesis of V alkylidenes developed by Nomura. Bottom: turn-
over numbers (TON) for reaction with NBE are indicated.
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using phosphonium chlorides to obtain Mo chloride alkylidene
phosphine complexes in good yields.[22, 26] The resulting com-

plexes are versatile starting material for the synthesis of highly
active and E/Z selective catalysts.[27] Inspired by this work, we

have now prepared several V chloride alkylidene phosphine
complexes, a new class of compounds, and examined them in

RCM reactions. To our knowledge, we report the first examples
of RCM catalyzed by well-defined V alkylidene complexes.

Compounds 1 a–e (Scheme 2) were each synthesized in one

pot, starting from imido trialkyl V complexes in the presence
of HCl and phosphines in Et2O.

An X-ray diffraction study of 1 e (Figure 1) revealed a mixture

of two isomers: anti-1 e (&91 %) and syn-1 e (&9 %).[28] anti-1 e
has a distorted trigonal bipyramidal geometry with phosphines

in axial positions [V@P1 2.4708(4) a, V@P2 2.4935(4) a, P1-V-P2

170.12(2)8] , similar to the structure reported for anti-V(N-2,6-
(iPr)2C6H3)(CHSiMe3)(OC6F5)(PMe3)2 (anti-A) [V@P1 2.472 a, V@P2

2.480 a, P1-V-P2 168.928] .[24] The V@N and V@C bond lengths
and Si-C-V angles in anti-1 e (1.6873(14) a, 1.9153(14) a,

131.64(7)8) and anti-A (1.691 a, 1.917 a, 132.58) are also
similar. Notably, the differences in V@C bond distances and

Si-C-V angles between anti-1 e (1.9153(14) a, 131.64(7)8) and

the reported syn-V(N-2,6-Me2C6H3)(CHSiMe3)(OC6Cl5)(PMe3)2
[18]

(1.845(3) a, 167.538) are more pronounced due to the agostic

interaction (electron donation from C@H to V) in the syn-

isomer, which gives the V = C bond partial triple-bond charac-
ter; this has also been observed for Mo alkylidenes.[29]

X-ray crystal structures of anti-1 c and anti-1 d were also ob-
tained (see Supporting Information), though poor diffraction

and complex disorder in the structures preclude detailed dis-
cussion of the respective bond lengths and angles.

The NMR studies of 1 d further support the presence of an
agostic interaction in the syn-isomer. The resonance of the al-

kylidene hydrogen Ha of the anti-isomer appears downfield of

the syn Ha resonance (Figure 2), as it does in analogous Mo
complexes.[30] The anti Ha signal gives a sharp triplet at
16.01 ppm (3JHP = 8.0 Hz, 1JCH = 124 Hz, 22 8C), suggesting
strong binding of the two PMe3 ligands. Although the ob-

served 1JCH is relatively small compared to the CH-coupling of a
typical anti-alkylidene (for Mo and W),[31] the NOESY spectrum

revealed the cross peaks between the alkylidene and imido

methine protons, with no correlation between the methine
and TMS-group protons. In contrast, the syn-alkylidene (Ha at

13.48 ppm, 3JHP = 4.0 Hz at @40 8C) shows no correlation be-
tween the alkylidene and methine protons but does exhibit

cross peaks between the methine and TMS-group protons. The
agostic interaction makes the syn-isomer less Lewis acidic than

the anti-isomer, which leads to broadening of the syn Ha signal

since the PMe3 ligand is exchanging relatively rapidly with free
PMe3 at room temperature.[29] The syn-isomer is 5-coordinate;

thus, the addition of five equivalents of free phosphine does
not change the syn:anti ratio, which one might expect if there

Scheme 2. Prepared V chloride alkylidenes with isolated yields. Syn :anti ratio
determined in solution by 1H NMR at 22 8C (C6D6).

Figure 1. X-ray crystal structure of anti-1 e. Thermal ellipsoids shown at 50 %
probability. Hydrogen atoms, except alkylidene hydrogen H1, have been
omitted for clarity.

Figure 2. 1H NMR spectra of the alkylidene (Ha) and imido methine (H) re-
gions of 1 d at variable temperature (in [D8]toluene).
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was an equilibrium between a 5-coordinate anti-isomer and a
4-coordinate syn-isomer.

The imido methine resonances of the anti-isomer appear as
two broad signals at 22 8C and two sharp septets at @40 8C

(Figure 2), suggesting that rotation of the arylimido group is
restricted at reduced temperatures. The inequivalent methine

resonances coalesce when coordinated PMe3 begins to ex-
change rapidly with free PMe3 at 80 8C, which results in broad-
ening of the anti-alkylidene proton. In contrast, both methine

protons in the syn-isomer appear as one sharp septet at 22 8C,
which broadens at @40 8C. We conclude that rotation of the ar-
ylimido group occurs in a four-coordinate complex,[32] which is
more accessible for the less Lewis acidic syn-isomer due to the

agostic interaction mentioned above.
The catalyst 1 d is relatively stable in the solution. Thus, we

observed only 35 % decomposition of 1 d (0.023 m, C6D6) at

55 8C after 11 days, showing that 1 d is more thermally stable
compared to Ru(CHPh)(PCy3)2(Cl)2 (50 % decomposition after 8

days under the same conditions).[33]

The metathesis activity of complexes 1 a–e in the RCM reac-

tion with diallyl N-tosylamide 2 is summarized in Table 1.

Vanadium chloride alkylidene phosphine complexes are
active catalysts in the RCM reaction of 2. Variations in the

imido group have a significant effect on catalytic activity. Thus,

an increase in imido group size and electron-donating proper-
ties in the order 1 a-1 c-1 d leads to a corresponding increase

in the turnover number (TON, entries 1, 3, and 4, Table 1). An
increase in phosphine size has an even more pronounced

effect on the catalytic activity, as 1 b and 1 e are the most
active of the five synthesized catalysts (entries 2 and 5,
Table 1).

Following the catalytic reactions by 1H NMR (entry 9,
Table 1), we observed the formation of a new alkylidene spe-

cies (see Supporting Information). Both syn- and anti-alkylidene
signals of 1 d and the new alkylidene slowly disappeared over

a few hours, suggesting decomposition of the active species.
Catalytic reactions were conducted in open vials to allow

escape of ethylene gas from the reaction mixture.[34] Reactions
in closed vials exhibited a lower conversion of 2 to 3 in all

cases (entries 1–5, Table 1), confirming the catalyst’s limited
stability in the presence of ethylene. The slow addition of a

stock solution of 1 e to 2 over a period of 1.7 hours in an open
vial allowed ethylene to escape from the reaction mixture. As a

result, a 95 % conversion to 3 was achieved (entry 6, Table 1).
The reaction of 2 b with ethylene gas revealed slow decom-

position of the alkylidene with formation of free phosphine,

vinylTMS, propene, and a new paramagnetic complex
(Scheme 3). The formation of propene can be explained by b-

hydride elimination of the metallacyclobutane 6.[35]

Notably, the stability of the active species depends on the

catalyst concentration; thus, TON for 1 d increases with lower
catalyst loading (entries 4, 7–9, Table 1), suggesting that a bi-

molecular decomposition should be considered as a catalyst

degradation pathway. The methylidene 5 (Scheme 2) is argua-
bly the least sterically hindered complex and thus the most

prone to bimolecular decomposition.[36] However, a 15-fold in-
crease of the catalyst concentration did not lead to a signifi-

cant decrease of TON (9.0 vs. 5.3, entries 7 and 9, Table 1). We
conclude that b-hydride elimination of metallacyclobutane 6,

and not bimolecular decomposition, is the primary degrada-

tion pathway for our system, as is observed for V alkoxide com-
plexes.[23, 24]

We have also explored the RCM activity of 1 a–e toward sub-
strates containing crotyl groups (Scheme 4). The second prod-
uct of the reactions is but-2-ene (usually, with E:Z ratio &7:3),
which does not lead to catalyst decomposition. Thus, com-

pound 3 was obtained with high conversion in all cases. The
reaction proceeds slowly at room temperature (42 % conver-
sion to 3 in 24 h with catalyst 1 d).

Products containing a tosylate (3, 7), an ether (7, 8), a terti-
ary amide (9), a tertiary amine (10), or an ester (11) were also

accessed. However, an alkene capable of chelating to the V
center (11) reacted with low yield in all cases. The metathesis

activity depends on both catalyst and substrate. In particular,
1 a gives the highest conversion for 8 while 1 c exceeds other
catalysts in the reaction to produce 10. Although 1 b and 1 e
have a similar activity toward 2 ; 1 b outperforms 1 e in the re-
actions containing disubstituted olefins, presumably due to

the steric hindrance resulting from two isopropyl groups and a
large phosphine in 1 e. Thus, less sterically demanding 1 d ex-

Table 1. RCM of 2 catalyzed by 1 a–e.

Entry Cat. Cat. , mol % Conv., %[a] TON

1 1 a 5 10 (8)[b] 2.0
2 1 b 5 63 (42)[b] 12.6
3 1 c 5 32 (29)[b] 6.4
4 1 d 5 40 (22)[b] 8.0
5 1 e 5 59 (54)[b] 11.8
6 1 e 5 95[c] 19
7 1 d 1 9 9.0
8 1 d 10 72 7.2
9 1 d 15 80 5.3

[a] by 1H NMR. [b] closed vial. [c] slow addition of 1 e, 1.7 h.

Scheme 3. The reaction of 1 b with ethylene.
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hibits higher conversion than 1 e in all cases shown in

Scheme 3, except 8. Generally, catalyst 1 b displays the highest
(3, 7, 9, 11) or similar activity (8, 10) toward tested substrates.

We conclude that increasing the electrophilicity of the imido

group and the s-donating properties and size of the neutral
ligand is the strategy to develop reliable V-based catalysts for

olefin metathesis.
We have shown that V arylimido chloride alkylidene com-

plexes can be prepared in the reaction of arylimido V trialkyls
and HCl in the presence of phosphines. Our approach allows

for the synthesis of V chloride alkylidenes bearing NC5F6, N-2,6-

Me2C6H3, and N-2,6-(iPr)2C6H3 ; and PMe3, PEt3, and PPhMe2. All
prepared complexes are a mixture of syn- and anti-isomers in

solution. NMR studies show that syn-isomers do not strongly
bind phosphines, presumably due to an agostic interaction be-

tween H-alkylidene and V; this may result in the difference of
initiation, selectivity, and catalytic activity of two isomers.[32, 37]

The catalytic activity in RCM reactions strongly depends on the

size and electron-donating properties of the imido group, as
well as the size and s-donating properties of the phosphine.
The active intermediates have limited stability toward ethylene.
Although bimolecular decomposition contributes to catalyst

degradation, the primary decomposition pathway involves b-
hydride elimination of the metallacyclobutane. We are now

confident that V-based olefin metathesis catalysts for routine

organic synthesis can be prepared. We are looking forward to
exploring V chloride alkylidenes as versatile starting materials

to alternate anionic and neutral ligands around a metal center
to develop catalysts that are stable to ethylene and tolerant of

various functional groups and to examining their reactions
with olefins in detail.
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