Synthesis of Carbazoles and 1,2-Dihydrocarbazoles by Domino 'Twofold Heck–6π-Electrocyclization' Reactions of Di- and Tribromo-*N*-methylindoles

Munawar Hussain,^a Đăng Thanh Tùng,^a Peter Langer*^{a,b}

^a Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany

^b Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert Einstein Str. 29a, 18059 Rostock, Germany Fax +49(381)4986412; E-mail: peter.langer@uni-rostock.de

Received 19 February 2009

Abstract: The palladium(0)-catalyzed Heck cross-coupling reaction of 2,3-dibromo- and 2,3,6-tribromo-*N*-methylindole, using $Pd(OAc)_2$ as the catalyst and a novel biaryl monophosphine ligand developed by Buchwald and co-workers, afforded the corresponding di- and trialkenylindoles in high yields. The formation of 1,2-dihydrocarbazoles by a domino 'twofold Heck– 6π -electrocyclization' was observed when the reaction was carried out at 120 °C rather than 90 °C.

Key Words: cross-coupling, electrocyclic reactions, nitrogen heterocycles, Heck reaction, palladium

Carbazoles are of considerable pharmacological relevance (antifungal, antibiotic, and antitumor activity) and occur in a variety of natural products.^{1,2} Knölker and coworkers reported elegant syntheses of carbazoles based on (stoichiometric) iron-mediated cyclizations^{1d} and on Buchwald-Hartwig reaction of aryl halides with anilines and subsequent oxidative cyclization.³ Ackermann and co-workers have recently reported an efficient synthesis of indoles and carbazoles by a new palladium-catalyzed domino 'NH-CH activation' reaction of anilines with 1,2dihaloalkenes.⁴ Carbazoles have been prepared also by Diels-Alder reactions of 2- or 3-vinylindoles.⁵ Kano and co-workers were the first to report the synthesis of carbazoles by 6π -electrocyclization of 2,3-di(alkenyl)indoles.⁶ Later, this approach has been also studied by Pindur and Adam.⁷ However, the synthesis of the starting materials was not straightforward and required many steps which is a severe drawback of this method. 2,3-Di(alkenyl)indoles were prepared by Pd(II)-catalyzed reaction of carbon atom C-3 of 2-formylindoles with alkenes to give 2formyl-3-vinylindoles which were transformed into the desired products by Wittig reaction. However, this approach is not general. The alternative strategy, based on the double Wittig reaction of (unstable) 2,3-diformyl-Nmethylindole, has been reported to proceed in low yield.

In recent years, it has been shown that polyhalogenated heterocycles can undergo site-selective palladium(0)-catalyzed cross-coupling reactions by selective activation of a single halogen atom. The site selectivity is controlled by electronic and steric parameters.⁸ Recently, we have reported the synthesis of aryl-substituted thiophenes,⁹

SYNLETT 2009, No. 11, pp 1822–1826 Advanced online publication: 12.06.2009 DOI: 10.1055/s-0029-1217357; Art ID: G07209ST © Georg Thieme Verlag Stuttgart · New York pyrroles,¹⁰ and selenophenes,¹¹ by site-selective Suzuki reactions of tetrabromothiophene, tetrabromo-*N*-methylpyrrole, and tetrabromoselenophene, respectively. Gribble and Liu reported the synthesis of 2,3-diarylindoles by twofold Suzuki reactions of 2,3-dihalo-*N*-(phenylsulfonyl)indoles.¹² Other palladium(0)-catalyzed cross-coupling reactions of 2,3-dihaloindoles have, to the best of our knowledge, not been reported to date. De Meijere and co-workers reported twofold Heck reactions of 1,2-dibromocycloalk-1-enes and related substrates and subsequent 6π -electrocyclization.¹³ It occurred to us that domino 'twofold Heck- 6π -electrocyclization' might provide a useful method for the direct and convenient synthesis of dihydrocarbazoles and carbazoles. Herein, we report preliminary results of these studies.

2,3-Dibromo-*N*-methylindole (**2a**) has been recently prepared in 64% yield by reaction of *N*-methylindole (**1**) with copper(II) bromide.¹⁴ We have found that the reaction of *N*-methylindole (**1**) with NBS (2.1 equiv) in THF (–78 °C, 4 h) resulted in selective formation of 2,3-dibromo-*N*methylindole (**2a**) in 90% yield (Scheme 1).¹⁵ In addition, we have prepared 2,3,6-tribromo-*N*-methylindole (**2b**) in 94% yield by reaction of **1** with NBS (3.1 equiv) in THF (–78 °C, 4 h).

Scheme 1 Bromination of *N*-methylindole (1). *Reagents and conditions: i*, NBS (2.1 equiv), THF, -78 °C, 4 h; *ii*, NBS (3.1 equiv), THF, -78 °C, 4 h, then 20 °C, 14 h.

The Heck reaction of **2a** with acrylates **3c–g** afforded the 2,3-di(alkenyl)indoles **4c–g** in good yields (Scheme 2, Table 1). The best yields were obtained when the reactions were carried out using $Pd(OAc)_2$ (5 mol%) and the biaryl monophosphine ligand L (10 mol%, Figure 1) which has been recently developed by Buchwald and co-

workers.¹⁶ The reactions were carried out in DMF at 90 °C for 36 hours. The employment of $Pd(PPh_3)_4$ was less successful in terms of yield. Recently, Li and Wang reported¹⁷ that triethanolamine represents an efficient and reusable combined base, ligand, and solvent for palladium(0)-catalyzed Heck reactions. The application of these conditions to the reaction of **2a** with acrylate **3h** proved to be successful and resulted in the formation of **4h** in 74% yield.

The Pd(OAc)₂/L-catalyzed reaction of **2a** with acrylates **3a–c,e,f,i**, carried out at 120 °C rather than 90 °C, afforded the 1,2-dihydrocarbazoles **5a–c,e,f,i** in good yields.¹⁸ The formation of these products can be explained by a domino 'twofold Heck– 6π -electrocyclization' cyclization and subsequent double-bond migration. The initially formed 2,3-dihydrocarbazoles undergo a rearrangement into the more stable 1,2-dihydrocarbazoles. For the electrocyclization, a thermally induced process appears to be more likely as the product distribution (formation of **4** or **5**) depends on the temperature. In addition, heating of **4f** (120 °C) results in formation of **5f** in good yield.

Scheme 2 Synthesis of **4c–h** and **5a–c,e,f,i**. *Reagents and conditions: i*, for **4c–g**: Pd(OAc)₂ (5 mol%), **L** (10 mol%), Et₃N, DMF, 90 °C, 36 h; *ii*, for **4h**: Pd(OAc)₂ (5 mol%), N(CH₂CH₂OH)₃ (3 mL), 90 °C, 36 h; *iii*, Pd(OAc)₂ (5 mol%), **L** (10 mol%), Et₃N (8.0 equiv), DMF, 120 °C, 48 h.

Figure 1 Biaryl monophosphine ligand developed by Buchwald and co-workers (ref. 16)

Heating of a dioxane solution of 1,2-dihydrocarbazole **5c** in the presence of DDQ resulted in the formation of carbazole **6**, albeit in only 20% yield. Pindur reported the DDQ-mediated formation of 2,3-di(methoxycarbonyl)-*N*-phenylsulfonylcarbazole from the corresponding 1,2-di-hydrocarbazole in equally low yield (18%). We have found that a dramatic increase of the yield (100%) can be

Fable 1 Synthesis of 4c – h and	5a–c,e,	f,i
--	---------	-----

Compd 4 , 5	R	Yield of $4 (\%)^a$	Yield of $5 (\%)^a$
4a, 5a	Me	_b	77
4b, 5b	Et	b	93
4c, 5c	<i>n</i> -Bu	72	77
4d, 5d	<i>i</i> -Bu	69	_b
4e, 5e	<i>n</i> -Hex	77	81
4f, 5f	t-Bu	78	85
4g, 5g	<i>i</i> -Oct	76	_ ^b
4h, 5h	CH ₂ CH(Et)Bu	74	_ ^b
4i, 5i	(CH ₂) ₂ NMe ₂	b	79

^a Yields of isolated products based on **2a**.

^b Experiment was not carried out.

achieved when the reaction is carried out using Pd/C (10 mol%) in refluxing xylene (Scheme 3).¹⁹

Scheme 3 Synthesis of carbazole 6. *Reagents and conditions: i*, Pd/ C (10 mol%), xylene, reflux, 48 h.

The Pd(OAc)₂/L-catalyzed reaction of **2a** with acryl nitrile (120 °C, 48 h) afforded the unexpected carbazole **7** in 49% yield (Scheme 4). The formation of **7** can be explained by twofold Heck reaction of **2a** to give intermediate **A**, electrocyclization (intermediate **B**), base-mediated conjugate addition to give intermediate **C**, and subsequent aromatization by elimination of HCN. This process was not observed for the reaction of **2a** with acrylates. This might be explained by the assumption that the Michael reaction is reversible. In case of the reaction of **2a** with acryl nitrile the Michael reaction may become irreversible by the subsequent elimination of cyanide and aromatization.

The Pd(OAc)₂/L-catalyzed reaction of 2,3,6-tribromo-*N*-methylindole (**2b**) with acrylate **3f** (90 °C, 36 h) afforded the di(alkenyl)indole **8** in 75% yield (Scheme 5). The site-selective formation of **8** is worth to be noted because Ohta and co-workers reported²⁰ that the site selectivity of the Suzuki reaction of 3,6-dibromo-*N*-TBDS-indole was in favor of carbon atom C-6. Our result can be explained by the assumption that the first Heck reaction of **2b** occurs at carbon C-2, which is most electron deficient, to give intermediate **D** (Figure 2). Due to the electron-withdrawing character of the 2-(*tert*-butoxycarbonyl)alkenyl substitu-

Scheme 4 Possible mechanism of the formation of 7. *Reagents and conditions*: *i*, Pd(OAc)₂ (5 mol%), L (10 mol%), Et₃N, DMF, 120 °C, 48 h.

ent, carbon C-3 becomes more electron deficient and, thus, more reactive than C-6. Alternatively, the site selectivity might be due to a proximity effect, wherein a labile coordination between the newly installed alkene and Pd(0) favors the second oxidative addition on the neighboring bromine atom. This might also explain the observation that the reaction of 2,3-dibromoindole (**2a**) with only one equivalent of acrylate mainly results in the formation of 2,3-di[2-(alkoxycarbonyl)ethenyl]indole **4** and starting material. The Pd(OAc)₂/**L**-catalyzed reaction of **2b** with acrylate **3d**, carried out at 120 °C rather than 90 °C, afforded the 1,2-dihydrocarbazole **9** in 73% yield (Scheme 5).

Scheme 5 Synthesis of **8** and **9**. *Reagents and conditions: i*, $Pd(OAc)_2$ (5 mol%), **L** (10 mol%), Et_3N , DMF, 90 °C, 24 h; *ii*, $Pd(OAc)_2$ (5 mol%), **L** (10 mol%), Et_3N , DMF, 120 °C, 48 h.

Figure 2 Possible explanation for the site-selective formation of 8 and 9

The Pd(OAc)₂/L-catalyzed reaction of **2b** with an excess of acrylates **3a,e,f** (90 °C, 36 h) afforded the 2,3,6-tris(alkenyl)indoles **10a,e,f** in good yields (Scheme 6, Table 2). The cross-coupling reactions of **2b** with **3a–g**, carried out at 120 °C rather than 90 °C, gave the 7-alkenyl-1,2-dihydrocarbazoles **11a–g**.

Scheme 6 Synthesis of **10a,e,f** and **11a–g**. *Reagents and conditions: i*, Pd(OAc)₂ (5 mol%), **L** (10 mol%), Et₃N, DMF, 90 °C, 36 h; *ii*, Pd(OAc)₂ (5 mol%), **L** (10 mol%), Et₃N, DMF, 120 °C, 48 h.

Table 2Synthesis of 10a,e,f and 11a-g

Compd 10, 11	R	Yield of $10 (\%)^a$	Yield of 11 (%) ^a
10a, 11a	Me	69	79
10b, 11b	Et	_b	67
10c, 11c	<i>n</i> -Bu	_b	95
10d, 11d	<i>i</i> -Bu	_b	72
10e, 11e	<i>n</i> -Hex	74	74
10f, 11f	t-Bu	76	79
10g, 11g	<i>i</i> -Oct	b	74

^a Yields of isolated products based on 2b.

^b Experiment was not carried out.

In conclusion, we have reported the synthesis of di- and trialkenylindoles by palladium(0)-catalyzed Heck cross-

Synlett 2009, No. 11, 1822–1826 $\$ © Thieme Stuttgart \cdot New York

coupling reactions of di- and tribromo-*N*-methylindoles. The reactions were carried out at 90 °C using a novel biaryl monophosphine ligand developed by Buchwald and co-workers. 1,2-Dihydrocarbazoles were formed by a domino 'twofold Heck– 6π -electrocyclization' when the reaction was carried out at 120 °C rather than 90 °C. The site selectivity of the Heck reaction of 2,3,6-tribromo-*N*methylindoles was in favor of carbon atoms C-2 and C-3. Some of the 1,2-dihydrocarbazoles prepared were transformed, by Pd/C-catalyzed dehydrogenation, into the corresponding carbazoles in high yield.

Acknowledgment

Financial support by the State of Pakistan (HEC scholarship for M. H.) and from the State of Vietnam (MOET scholarship for T. T. D.) is gratefully acknowledged.

References and Notes

- (1) Reviews: (a) Brossi, A. In The Alkaloids, Vol. 26; Cordell, G. A., Ed.; Academic Press: New York, 1985, 1. (b) Bhattacharrya, P.; Chakraborthy, D. P. Prog. Chem. Org. Nat. Prod. 1987, 52, 160. (c) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863. (d) Knölker, H.-J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303. (e) Chakraborty, D. P.; Roy, S. Prog. Chem. Org. Nat. Prod. 1991, 57, 71. (f) Chakraborty, D. P. In The Alkaloids, Vol. 44; Cordell, G. A., Ed.; Academic Press: New York, 1993, 257. (g) Knölker, H.-J. Top. Curr. Chem. 2005, 244, 115. (h) Knölker, H.-J.; Reddy, K. R. In The Alkaloids, Vol. 65; Cordell, G. A., Ed.; Academic Press: Amsterdam, 2008, 1. (i) Pindur, U. Chimia 1990, 44, 406. (j) Bergman, J.; Pelcman, B. Pure Appl. Chem. 1990, 62, 1967. (k) Moody, C. J. Synlett 1994, 681. (1) Kirsch, G. H. Curr. Org. Chem. 2001, 5, 507. (m) Lemster, T.; Pindur, U. Recent Res. Dev. Org. Bioorg. Chem. 2002, 5, 99. (n) Knölker, H.-J. Curr. Org. Synth. 2004, 1, 309.
- (2) For some recent contributions, see: (a) Bedford, R. B.; Betham, M. J. Org. Chem. 2006, 71, 9403. (b) Lebold, T. P.; Kerr, M. A. Org. Lett. 2007, 9, 1883. (c) Watanabe, T.; Ueda, S.; Inuki, S.; Oishi, S.; Fujii, N.; Ohno, H. Chem. Commun. 2007, 4516. (d) Jean, D. J. Jr.; Poon, S. F.; Schwarzbach, J. L. Org. Lett. 2007, 9, 4893. (e) Liu, C.-Y.; Knochel, P. J. Org. Chem. 2007, 72, 7106. (f) Naffziger, M. R.; Ashburn, B. O.; Perkins, J. R.; Carter, R. G. J. Org. Chem. 2007, 72, 9857.
- (3) (a) Forke, R.; Krahl, M. P.; Däbritz, F.; Jäger, A.; Knölker, H.-J. *Synlett* 2008, 1870. (b) Forke, R.; Krahl, M. P.; Krause, T.; Schlechtingen, G.; Knölker, H.-J. *Synlett* 2007, 268.
- (4) Ackermann, L.; Althammer, A. Angew. Chem. Int. Ed. 2007, 46, 1627.
- (5) Pindur, U. Heterocycles 2008, 27, 1253.
- (6) Kano, S.; Sugino, E.; Shibuya, S.; Hibino, S. J. Org. Chem. 1981, 46, 3856.
- (7) Pindur, U.; Adam, R. Helv. Chim. Acta 1990, 73, 827.
- (8) Review: Schröter, S.; Stock, C.; Bach, T. *Tetrahedron* 2005, 61, 2245.
- (9) Dang, T. T.; Rasool, N.; Dang, T. T.; Reinke, H.; Langer, P. Tetrahedron Lett. 2007, 48, 845.
- (10) Dang, T. T.; Dang, T. T.; Ahmad, R.; Reinke, H.; Langer, P. *Tetrahedron Lett.* **2008**, *49*, 1698.
- (11) Dang, T. T.; Villinger, A.; Langer, P. Adv. Synth. Catal. 2008, 350, 2109.

- (12) Liu, Y.; Gribble, G. W. Tetrahedron Lett. 2000, 41, 8717.
- (13) Voigt, K.; von Zezschwitz, P.; Rosauer, K.; Lansky, A.; Adams, A.; Reiser, O.; de Meijere, A. *Eur. J. Org. Chem.* 1998, 1521; and references cited therein.
- (14) Tang, S.; Li, J.-H.; Xie, Y.-X.; Wang, N.-X. Synthesis 2007, 1535.
- (15) Synthesis of 2,3-Dibromo-N-methylindole (2a) To a THF solution (20 mL) of N-methylindole (1, 1.0 mL, 8.0 mmol) was added portionwise NBS (3.30 g, 18.4 mmol) at -78 °C, and the soln was stirred at this temperature for 4 h. To the soln was added water (25 mL). The organic and the aqueous layer were separated and the latter was extracted with CH₂Cl₂ (3 × 25 mL). The combined organic layers were washed with a saturated aqueous soln of NaHCO₃, dried (Na₂SO₄), filtered and concentrated in vacuo. The residue was purified by flash silica column chromatography (pure heptanes) to yield **2a** as a colorless solid (1.83 g, 90%).
- (16) Billingsley, K.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3358; and references cited therein..
- (17) Li, H. J.; Wang, L. Eur. J. Org. Chem. 2006, 5099.
- (18) General procedure for Heck cross-coupling reactions. In a pressure tube (glass bomb) a suspension of Pd(OAc)₂ (12 mg, 0.05 mmol, 1.25 mol% per Br) and dicyclohexyl (2',6'dimethoxybiphenyl-2-yl) phosphine (L) (41 mg, 0.10 mmol) in DMF (5 mL) was purged with argon and stirred at 20 °C to get a yellowish or brownish transparent soln. To the stirred soln were added the brominated indole 2a,b (1.0 mmol), Et₃N (1.1 mL, 8.0 mmol) and the acrylate (1.25 equiv. per Br). The reaction mixture was stirred at 120 °C for 48 h. The soln was cooled to 20 °C, poured into H₂O, and CH_2Cl_2 (25 mL each), and the organic and the aqueous layer were separated. The latter was extracted with CH_2Cl_2 (3 × 25 mL). The combined organic layers were washed with H₂O $(3 \times 20 \text{ mL})$, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by chromatography (flash silica gel, heptanes-EtOAc).

Diethyl 9-Methyl-2,9-dihydro-1*H*-carbazole-2,3dicarboxylate (5b)

Product **5b** was prepared starting with **2a** (367 mg, 1.0 mmol) as a yellow solid (297 mg, 93%), mp 100-103 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 1.10$ (s, 3 H, CH₃), 1.30 (s, 3 H,CH_3 , 2.90 (dd, 1 H_{α} , J = 8.8, 17.1 Hz, H-1), 3.50 (dd, 1 H_{B} , J = 2.6, 17.2 Hz, H-1), 3.60 (s, 3 H, NCH₃), 3.90–4.10 (m, 3 H, H_a and CH₂O), 4.20 (q, J = 7.1, 13.5 Hz, 2 H, CH2O), 7.10-7.20 (m, 3 H, ArH), 7.50-7.60 (m, 1 H, ArH), 7.90 (s, 1 H, H-4). ¹³C NMR (75 MHz, CDCl₃): δ = 13.0 (CH₃), 13.5 (CH₃), 22.8 (CH₂), 28.7 (CH, C-4), 37.7 (NCH₃), 59.3 (CH₂O), 60.1 (CH₂O), 108.3 (C), 108.6 (CH), 115.4 (C), 116.9, 120.0, 120.8 (CH), 124.1(C), 131.2 (CH), 137.0, 138.6 (C), 166.3, 172.3 (CO). IR (KBr): v = 2981, 2928, 2854(w), 1725(s), 1629, 1599(w), 1470 1454(m), 1372, 1261, 1238(s), 1109, 1079, 147(m), 787, 747, 723, 608, 561(w)cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 325(89) [M-2]⁺(carbazole), 280(13), 252(100), 208(07), 179(13). HRMS (ESI⁺): m/z calcd for C₁₉H₁₉NO₄ [M – 2]⁺(carbazole): 325.13141; found: 325.13161.

(19) **Dibutyl 9-Methyl-9***H***-carbazole-2,3-dicarboxylate (6)** To xylene (5 mL) were added **5c** (100 mg, 0.26 mmol) and Pd/C (10 mg, 10 mol%). The soln was stirred under reflux for 48 h under argon atmosphere. The reaction mixture was filtered, and the filtrate was concentrated in vacuo to give **6** as a light yellow solid (99 mg, 100%). ¹H NMR (250 MHz, CDCl₃): $\delta = 0.90$ (t, 3 H, J = 7.4 Hz, CH₃), 0.90 (t, 3 H, J = 7.3 Hz, CH₃), 1.30–1.50 (m, 4 H, 2 CH₂), 1.60–1.80 (m, 4 H, 2 CH₂), 3.80 (s, 3 H, NCH₃), 4.30 (t, 2 H, J = 6.8 Hz, CH₂O), 4.30 (t, 2 H, J = 6.7 Hz, CH₂O), 7.20–7.30 (m, 1 H, ArH), 7.30–7.40 (m, 1 H, ArH), 7.40–7.50 (m, 1 H, ArH),

Synlett 2009, No. 11, 1822–1826 © Thieme Stuttgart · New York

7.60 (s, 1 H, H-1), 8.00–8.10 (m, 1 H, ArH), 8.40 (s, 1 H, H-4). 13 C NMR (62 MHz, CDCl₃): δ = 13.7, 13.8 (CH₃), 19.2, 19.3 (CH₂), 29.4 (NCH₃), 30.6, 30.8 (CH₂), 65.3, 65.7 (CH₂O), 109.0, 109.1, 120.2, 121.0 (CH), 121.7, 122.2 (C), 122.4 (CH), 123.6 (C), 127.1 (CH), 131.1, 141.5, 142.1 (C), 167.9, 169.4 (CO). IR (KBr): v = 2956, 2931, 2871(w), 1709(s), 1464, 1387, 1362, 1340, 1325(m)1255, 1221(s), 1131, 1106, 1077, 1045(m), 950, 902, 843, 829(w), 784,

743, 721(m), 632, 608, 561(w)cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 381(56) [M⁺], 308(15), 280(100), 224(87), 212(27), 206(77), 180(10), 152(11). HRMS (EI, 70 eV): m/z calcd for C₂₃H₂₇NO₄ [M⁺]: 381.19401; found: 381.19422.

(20) Kawasaki, I.; Yamashita, M.; Ohta, S. Chem. Pharm. Bull. 1996, 44, 1831.