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Highlights 

A novel catalyst using Pd supported on bisindolyl functionalized Fe3O4 is synthesized. 

The catalyst was characterized using different analytical methods. 

The catalyst was applied for Sonogashira reactions of aryl halides (Cl, Br, I) under air. 

The Sonogashira reaction was performed under Copper and Phosphane free conditions. 

The catalyst was successfully recycled for seven consecutive runs by an external magnet. 

  



Abstract 

A novel heterogeneous catalyst based on palladium nanoparticles supported on 3,3’-bisindolyl(4-

hydroxyphenyl)methane functionalized magnetite (Fe3O4) nanoparticles was synthesized, 

characterized and used as catalyst for Sonogashira-Hagihara reaction. The alkynylation of a 

variety of aryl iodides and aryl bromides with terminal alkynes was carried out at 60 °C under 

copper and phosphane-free conditions using N,N-dimethyl acetamide as solvent, DABCO as 

base and low Pd loadings (0.18 mol%) under air. In the case of aryl chlorides, the reaction was 

carried out at 120 ºC in the presence of tetra-n-butylammonium bromide (TBAB) and 0.36 mol% 

of Pd catalyst. The heterogeneous palladium catalyst introduced in this study is recoverable by 

an external magnet and it can be used for seven consecutive runs without a significant loss in 

catalytic activity. 

Keywords: Magnetic, Palladium, Nanoparticles, Sonogashira, Copper-free 

1. Introduction 

The palladium catalyzed carbon-carbon bond forming reactions are of great importance in 

modern synthetic organic chemistry [1]. Among well-known carbon-carbon coupling 

reactions, the Sonogashira-Hagihara cross-coupling stands out as a unique method enabling 

the coupling between (sp) carbon and (sp
2
) carbon atoms [2-9]. The reaction products 

containing such bonds have found applications in a wide range of synthetic reactions such as 

biologically active compounds and pharmaceuticals [10-12]. Palladium catalyzed 

Sonogashira-Hagihara alkynylation reaction can be performed either in the presence of 

copper as co-catalyst or under copper-free conditions. The presence of copper increases the 

reactivity of the acetylene by the formation of a copper acetylide. However, the formation of 



undesired homo-coupling byproducts is usually observed (Glaser coupling reaction) [13-14]. 

Thus, the design and synthesis of active palladium catalysts for Sonogashira-Hagihara 

reaction under copper free and mild reaction conditions are highly desirable [15-24]. 

Due to difficulties in the removal of metal contaminants of coupling reaction products under 

homogeneous conditions, many heterogeneous palladium catalysts for Sonogashira-Hagihara 

reaction have also been developed in recent years [2, 25-29]. However, despite great 

developments in this field, heterogeneous catalysts are also difficult to separate from the 

reaction mixture by standard laboratory methods such as filtration and centrifugation. In this 

regard, magnetic nanoparticles with large ratio of surface area to volume, superparamagnetic 

behavior and low toxicity have proven to be an excellent supports for the stabilization of 

palladium nanoparticles (NPs) [30-36]. Variety of ligands such as those containing 

phosphane or nitrogen functional groups have been used for the modification of Fe3O4 

nanoparticles. However, phosphane-based ligands are air and/or moisture sensitive, 

poisonous, unrecoverable and degradable at elevated temperatures which limits their large 

scale application in industrial level chemistry [37-39]. We have recently introduced two 

novel and efficient phosphane-free magnetic nanoparticles which supported palladium 

catalysts for Suzuki-Miyaura coupling reaction in water [40-41]. However, to date, a few 

magnetite nanoparticles supported palladium catalysts have been prepared and successfully 

used in the Sonogashira-Hagihara coupling reaction [42-50]. 

We envisaged that supporting a 3,3’-bisindolyl(4-hydroxyphenyl)methane ligand to 

magnetite nanoparticles coated with silica gel would be an adequate and simple way to 

coordinate and stablize Pd nanoparticles. Herein, we report the synthesis of a new and highly 



active palladium catalyst supported on functionalized magnetite nanoparticles for 

Sonogashira-Hagihara reaction under copper and phosphane-free conditions. 

2. Experimental Section 

2.1. General 

All chemicals were purchased from Sigma-Aldrich, Acros and Merck companies and were 

used without further purification. Magnetite (Fe3O4) nanoparticles were prepared according to 

a previously reported method in the literature [51-52]. Synthesis of 3,3’-Bisindolyl(4-

hydroxyphenyl)methane was carried out by the modification of the published literature 

procedure [53]. 
1
H and 

13
C NMR spectra were recorded in DMSO-d6 and CDCl3 at room 

temperature on a Bruker 400 MHz spectrometer and referenced internally using TMS as 

internal standard. Thermogravimetric analysis (TGA) was conducted from room temperature 

to 700 °C in an oxygen, sure flow using a NETZSCH STA 409 PC/PG instrument. 

Transmission Electron Microscopy was carried out by JEOL model JEM-1400 Plus working 

at 120 kV with a LaB6 filament. Magnetic measurements were performed using vibration 

sample magnetometry (VSM, (MDK Co. Kashan, Iran) analysis. FT-IR spectra were recorded 

on a Bruker Vector 22 instrument. Energy dispersive X-ray analysis (EDX) results were 

obtained using Carl Zeiss Sigma instrument. Adsorption-desorption analyses were recorded 

using BELsSORP-max instrument. The content of copper and palladium in the catalyst was 

determined using Varian atomic absorption spectrometry. 

2.2. Synthesis of silica-coated Fe3O4 nanoparticles (SMNP): 

Fe3O4 (1.0 g) was sonicated in ethanol (200 mL) for 30 min. at room temperature. Then, to 

the resulting suspension were added tetraethyl orthosilicate (TEOS, 2.0 mL) and aqueous 

ammonia (25%) (6.0 mL) and the mixture was stirred for 24 h at room temperature. The 



obtained silica-coated Fe3O4 nanoparticles were separated by an external magnet and washed 

with distilled water (3×10 mL) and ethanol (3×10 mL) and dried under vacuum. 

2.3. Procedure for the preparation of Cl@SiO2@Fe3O4 (1): 

Dry SMNP powder (1.0 g) was mixed with dry toluene (50 mL) to produce a homogeneously 

mixed solution. This mixture was sonicated for 30 min. prior to the addition of (3-

chloropropyl) trimethoxysilane (7.0 mmol, 1.27 mL). The resulting mixture was refluxed for 

24 h under argon atmosphere. Then, the reaction mixture was subjected to magnetic 

separation and the resulting powder was washed sequentially with distilled water (3×10 mL) 

and ethanol (3×10 mL) and finally dried under vacuum. 

2.4. Procedure for the preparation of compound (2): 

Compound 1 (500 mg) was sonicated and dispersed separately in dry toluene (20 mL) for 30 

min. In a separate experiment, sodium hydride (1.2 mmol, 27 mg) was added to prepared 3,3’ 

bisindolyl(4-hydroxyphenyl)methane (1 mmol, 330 mg) under argon and the resulting 

mixture was added to the flask containing compound 1. The reaction mixture was stirred at 

100 °C for 24 h under argon atmosphere. Then, the reaction mixture was cooled to room 

temperature and bis indole functionalized magnetic nanoparticles (2) were subjected to 

magnetic separation. The isolated product was washed sequentially with ethanol (2×10 mL) 

and dried under vacuum for 24 h. 

2.5. Procedure for the preparation of Pd@bisindole@SiO2@Fe3O4: 

Compound 2 (400 mg) was sonicated in dichloromethane (10.0 mL) for 30 min. at room 

temperature. Then, Pd(OAc)2 (0.09 mmol, 20 mg) was added and the mixture was stirred for 



24 h at room temperature under argon atmosphere. Then, the reaction mixture was subjected 

to magnetic separation and the isolated material was washed sequentially with distilled water 

(3×10 mL) and ethanol (3×10 mL). Drying under vacuum for 24 h provided compound 

Pd@bisindole@SiO2@Fe3O4 as a black powder. 

2.6. General procedure for the Sonogashira-Hagihara reaction: 

Aryl halide and a terminal alkyne, with an equivalent molar ratio of 1.0 to 1.5, were added to 

a mixture of Pd@bisindole@SiO2@Fe3O4 (0.18 mmol, 20 mg) and DABCO (2.0 mmol, 224 

mg) in a flask and 2 mL DMA was added. The reaction mixture was stirred at 60 °C for aryl 

iodides and aryl bromides. The reaction temperature was set to 120 °C for aryl chlorides and 1 

mmol TBAB was also added. The progress of the reaction was monitored by gas 

chromatography. After completion of the reaction, distilled water (2 mL) was added to the 

reaction mixture and the crude product was extracted with ethyl acetate (3×5.0 mL). The 

crude product was further purified by column chromatography using n-hexane and ethyl 

acetate as eluents. 

3. Results and Discussion 

The catalyst preparation steps are summarized in Scheme 1. Briefly, Fe3O4 nanoparticles were 

prepared in a co-precipitation step based on the procedure of Massart et al. using FeCl3.6H2O 

and FeCl2.4H2O salts [51]. The obtained Fe3O4 NPs were coated with a thin layer of silica 

using tetraethyl orthosilicate to produce core/shell Fe3O4 NPs (SMNP) [52]. The presence of a 

sharp peak in the IR spectrum around 1091 cm
-1

 (Figure 1, supporting information) confirmed 

the formation of Si-O-Fe bonds. SiO2@Fe3O4 core/shell nanospheres were allowed to react 

with 3-chloropropyltrimethoxysilane to afford chloro-functionalized magnetic NPs 



(Cl@SiO2@Fe3O4). In the next step, NaH was used as base to deprotonate the hydroxyl group 

of the prepared 3,3’-bisindolyl(4-hydroxyphenyl)methane. Then, Cl@SiO2@Fe3O4 was added 

to afford 3,3’-bisindolyl(4-hydroxyphenyl)methane functionalized Fe3O4 NPs 

(bisindole@SiO2@Fe3O4NPs). In the final step, the desired palladium-supported catalyst (3) 

was obtained by treating bisindole@SiO2@Fe3O4 NPs with Pd(OAc)2 in dichloromethane at 

room temperature. The obtained material which is used as catalyst in this work is referred to 

as Pd@bisindole@SiO2@Fe3O4 throughout the text of this article. 

Our initial goal was to test the reactivity of the bisindole@SiO2@Fe3O4 NPs with Pd(OAc)2 

to examine whether the bisindole unit of the nanoparticle can bind to palladium as a 

monodentate or bidentate ligand via the elimination of one or two acetic acid (AcOH) 

molecules. However, we were surprised by the formation of palladium nanoparticles even in 

the absence of reducing agent such as NaBH4, which usually is a requirement for the 

reduction of Pd(II) species to Pd(0) prior to the formation of the metal nanoparticles. 

Therefore, understanding the mechanism of the formation of Pd@bisindole@SiO2@Fe3O4 

NPs (Scheme 1) in this study requires further analyses. We speculated that the presence of N-

H groups in the indole ring can stabilize palladium NPs, similar to ionic liquids with amide 

end-groups [54]. 
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Scheme 1. Pd@bisindole@SiO2@Fe3O4 preparation steps. 

Thermogravimetric analysis was confirmed the formation of compound 1 showing two-step 

weight loss (Figure 1). First weight loss is related to water and physically adsorbed solvents and 

the second one is related to the organic residues attached to the surface of the support. 

 

Figure 1. Thermogravimetric diagram of Cl@SiO2@Fe3O4. 



Moreover, thermogravimetric analysis of compound 2 showed an increase in loading 

which is probably related to the attaching of 3,3’-bisindolyl(4-hydroxyphenyl)methane  to 

surface of compound 1 (Figure 2). 

 

Figure 2. Thermogravimetric diagram of bisindole@SiO2@Fe3O4 nanoparticles. 

Scanning electron microscopy (SEM) image of final Pd@bisindole@SiO2@Fe3O4 shows highly 

uniform particles (Figure 3). Furthermore, energy-dispersive X-ray spectroscopy (EDX) obtained 

from SEM shows the presence of Pd atoms as well as N, Fe, and Si atoms in the structure of 

compound Pd@bisindole@SiO2@Fe3O4 (Figure 4). 

 



Figure 3. SEM image of Pd@bisindole@SiO2@Fe3O4 

 

Figure 4. EDX diagram of Pd@bisindole@SiO2@Fe3O4.  

X-ray photoelectron spectrum (XPS) of these palladium nanoparticles confirmed the presence of 

both Pd(0) and Pd(II) species in equal ratios by the appearance of two intensive doublets at 335 

eV and 340 eV related to Pd(0) and peaks at 337 eV and 342 eV related to Pd(II) corresponding 

to Pd 3d5/2 and Pd 3d3/2, respectively (Figure 5) [41,55]. 

 

Figure 5. XPS spectrum of the Pd@bisindole@SiO2@Fe3O4. 

 

High resolution transmission electron microscopy (HTEM) images show the presence of highly 

uniform and small size palladium nanoparticles in average size of 2 nm supported by 3,3’-



bisindolyl(4-hydroxyphenyl)methane functionalized Fe3O4 NPs (Figure 6). TEM images also 

show the average shell size of about 5 nm and Fe3O4 NPs with an average size of 15 nm. 

 

Figure 6. HTEM images of Pd@bisindole@SiO2@Fe3O4. 

We have also studied magnetization curves for Fe3O4 NPs, SiO2@Fe3O4 NPs, and 

Pd@bisindole@SiO2@Fe3O4 at room temperature (Figure 7). Results indicate that in all samples 

no hysteresis loop is observed, with both remanence and coercivity being zero, suggesting the 

superparamagnetic nature of the samples. It is worth mentioning that a decrease in the 

magnetization value of the SiO2@Fe3O4 (39 emug
-1

) in comparison with Fe3O4 NPs (61 emug
-1

) 

confirms the silica coating and formation of core/shell nanoparticles. Furthermore, a decreases in 

the magnetization value of the Pd@bisindole@SiO2@Fe3O4 (3) (33.3 emug
-1

), confirms the 

immobilization of organic groups on the surface. 



 

Figure 7. Magnetization curves of Fe3O4, SiO2@Fe3O4, and Pd@bisindole@SiO2@Fe3O4 

(catalyst). 

The N2 adsorption–desorption isotherms for bisindole@SiO2@Fe3O4 NPs and 

Pd@bisindole@SiO2@Fe3O4 are presented in Figure 8 and the physical parameters measured 

with N2 sorption are summarized in Table 1. The results indicated that both isotherms are of type 

IV according to IUPAC classification and exhibiting H3 hysteresis loop. The surface areas were 

calculated by Brunauer–Emmet–Teller (BET) method and are in the range of 31-39 m
2
/g. Also, 

the pore size and pore volume were calculated by Barrett–Joyner–Halenda (BJH) method, the 

pore diameter were in between 25 and 31.5 nm with total pore volume in the range of 7-9 cm
3
 /g. 

These results indicated that surface area and pore volume increased after introducing palladium 

nanoparticles (Table 1). This may be related to palladium complex formation which caused an 

increase in the surface area and porosity of the catalyst. 

Table 1. The BET surface area, BJH pore volume and pore size for bisindole@SiO2@Fe3O4NPs 

and Pd@bisindole@SiO2@Fe3O4 



DBJH (nm) Vt
 
(cm

3
g

-1
) SBET(m

2
g

-1
) Sample 

31.14 7.3 31 bisindole@SiO2@Fe3O4NPs 

25.75 9.0 39 Pd@bisindole@SiO2@Fe3O4 

 

 

Figure 8. N2 adsorption/desorption isotherms of bisindole@SiO2@Fe3O4 and 

Pd@bisindole@SiO2@Fe3O4 (catalyst). 

The catalytic activity of Pd@bisindole@SiO2@Fe3O4 was evaluated in Sonogashira-Hagihara 

reaction. Initial experiments with using iodobenzene and phenyl acetylene were performed to 

optimize the reaction conditions such as solvent type, temperature, and quantities of the base and 

catalyst (Table 2). As shown in Table 2, the reaction in distilled water in the presence of different 

bases resulted in low yields and only moderate yields were obtained using Et3N, 1,4-diazabicyclo 

[2.2.2] octane (DABCO), and 
i
Pr3N (Table 2, entries 2, 3 and 8). The use of inorganic salts as 

base did not improve reaction yields (Table 2, entries 1, 5-7). Reaction condition was also 

studied using organic bases in other solvents such as CH3CN, DMF, THF, EtOH, toluene, DMA, 



PEG 200, and H2O-CH3CN mixture.  The best yields were obtained using DABCO as base and 

DMA as solvent at 60 °C (Table 2, entry 19). It is noticeable that when the reaction was carried 

out at room temperature, 18% drop in reaction yield was observed (Table 2, entry 20). 

Table 2. Optimization of reaction condition for the coupling of iodobenzene and phenyl 

acetylene
a
 

I

+

Catalyst (0.18 mol %)

Base, solvent, 24 h

 

Entry Base Solvent Temperature (˚C) Yield (%)
b RSD

c 

1 K3PO4 H2O 60 2 0.41 

2 NEt3 H2O 60 52 0.03 

3 DABCO H2O 60 32 0.05 

4 Pipyridine H2O 60 17 0.06 

5 K2CO3 H2O 60 4 0.21 

6 t-BuOK H2O 60 7 0.26 

7 NaOAc H2O 60 2 0.52 

8 N(i-Pr)3 H2O 60 31 0.05 

9 NEt3 CH3CN 60 82 0.02 



10 NEt3 DMF 60 7 0.2 

11 NEt3 THF 60 26 0.06 

12 NEt3 EtOH 60 31 0.04 

13 NEt3 Toluene 60 4 0.21 

14 NEt3 DMA 60 5 0.35 

15 NEt3 CH3CN/H2O 60 53 0.02 

16 DABCO CH3CN 60 90 0.02 

17 DABCO PEG200 60 68 0.02 

18 NEt3 PEG200 60 42 0.04 

19 DABCO DMA 60 98 0.01 

20 DABCO DMA 30 80 0.01 

a
Reaction conditions: iodobenzene (1.0 mmol), phenylacetylene (1.5 mmol), base (2.0 mmol), 

solvent (1.5 mL), catalyst (4.0 mg, containing 0.18 mol % Pd). 
b
 Yield determined by GC 

analysis. 
c
 The relative standard deviation (error bars) was obtained from three independent 

reactions. 

With the optimized reaction conditions in hand, the substrate scope of the Sonogashira-Hagihara 

reaction was evaluated for the reaction of structurally diverse aryl halides and acetylenes in the 

presence of Pd@bisindole@SiO2@Fe3O4 (Table 3). The reaction of both electron-rich and 

electron-poor aryl iodides with phenylacetylene gave the corresponding products in high to 



excellent yields (Table 3, entries 1-8). The reaction of 2-iodothiophene as a heterocyclic aryl 

iodide with 4-ethynyltoluene afforded the desired product in 99% yield (Table 3, entry 3). The 

catalytic scope of Pd@bisindole@SiO2@Fe3O4 was also investigated for the reaction of various 

aryl bromides with terminal alkynes. As expected, aryl iodides were more reactive than aryl 

bromides, and the substituent effects in aryl iodides appeared to be less significant than in aryl 

bromides. Results showed that both activated aryl bromides such as 1-bromo-4-nitrobenzene, 4-

bromobenzaldehyde, 4-bromobenzonitrile, 4-bromoacetophenon, 1-bromo-, 4-fluorobenzene and 

unactivated aryl bromides such as bromobenzene, 4-bromoanisole, 1-bromonaphtalene reacted 

well and the corresponding internal alkynes were obtained in high yields. Reaction of 1-bromo-

4-chlorobenzene and 4-bromonitrobenzene with propargyl alcohol also provided desired 

coupling products in excellent yields (Table 3, entries 21 and 22). However, less reactive 4-

chloronitrobenzene under optimized reaction conditions resulted in 39% of the desired product. 

However, the same reaction as well as the reaction of 4-chlorobenzaldehyde, 4-

chlorobenzonitrile with phenylacetylene at elevated temperature (120 °C) in the presence of 

TBAB and 0.36 mol% of palladium catalyst gave corresponding products in high to excellent 

yields (Table 3, entries 23-26). Based on the coupling results represented in Table 3, the Pd 

catalyst developed in this study, efficiently catalyzed the reaction of different aryl halides with 

alkynes under air with reproducible, high turnover and frequency numbers, and copper-free 

conditions. It is worth mentioning that obtained standard deviation (error bars) from four 

independent replicate experiments were less than 0.4. 

 

Table 3. Copper-free and phosphane-free Sonogashira-Hagihara reactions of terminal alkynes 

with aryl halides 
a
 



ArX   + R
Catalys (0.18-0.36 mol%)

DABCO, 60-120 °C
DMA

RAr

 

Entry Ar R t(h) Product 

Yield 

(%)
b 

TON/TOF

(h
-1

)
c 

RSD
d 

1 

 

C6H5 24 

 

94 

522/74.1 0.012 

2 

 

4-

MeC6H4 

24 

Me

 

92 

511/72.2 0.015 

3 
 

4-

MeC6H4 

12 

S

Me

 

95 

550/77.7 0.01 

4 

 

C6H5 24 

Me  

93 

550/69.4 0.013 

5 

 

C6H5 12 

MeO  

100
e 

555/61.3 0.011 



6 

 

C6H5 12 

F  

98 

544/72.2 0.015 

7 

 

C6H5 12 

Cl  

98 

544/71.4 0.015 

8 

 

C6H5 6 

O2N  

95 

527/83.1 0.013 

9 

 

C6H5 24 

MeO  

71 

394/42.1 0.014 

10 

 

C6H5 24 

 

79 

438/53.8 0.38 

11 

 

C6H5 24 
N

N  

100
e 

555/61.1 0.011 



12 

 

C6H5 24 

N
 

100
e 

555/60.3 0.013 

13 

 

C6H5 24 

NC  

98 

544/40.6 0.021 

14 

 

C6H5 24 OHC

 

94 

522/64.8 0.3 

15 

 

C6H5 24 

OHC  

99
e 

550/66.7 0.012 

16 

 

4-

MeC6H4 

24 

OHC

Me

 

93 

516/67.9 0.039 

17 

 

C6H5 24 

O2N  

98 

544/75.9 0.013 



18 

 

C6H5 24 

F  

94 

522/72.3 0.017 

19 

 

C6H5 24 

C
O

Me  

95 

527/66.5 0.019 

20 

 

C6H5 24 

 

87 

483/50.4 0.021 

21 

 

HOCH2- 24 

Cl

OH

 

96 

533/57.4 0.02 

22 

 

HOCH2- 24 

O2N

OH

 

96 

533/62.3 0.018 

23 

 

C6H5 48 

 

62
e,f 

172.2/10.9 0.029 



24 

 

C6H5 48 

OHC  

91
f 

252/18.5 0.018 

25 

 

C6H5 48 

O2N  

89
f 

247/16.2 0.015 

26 

 

C6H5 48 

NC  

85
f 

236/14.4 0.013 

a
Reaction conditions: ArX (1 mmol), alkyne (1.5 mmol), DABCO (1.5 mmol), catalyst (0.18 

mol%), DMA (2 mL); 
b
Isolated yields; 

c
TOF are after 6 h from starting of the reactions;  

d
The 

relative standard deviation (error bars) was obtained from four independent reactions; 
e
GC 

yields; 
 f
Using 1.0 mmol TBAB. 

 

In order to demonstrate the practical application of Pd@bisindole@SiO2@Fe3O4, reaction of 

iodobenzene with phenylacetylene was scaled up to 10 mmol under optimized reaction 

conditions. Results showed that reaction proceed efficiently and produced desired product in 

89% isolated yield after 24 h. 

In order to assess the catalytic system changes, we made careful kinetic monitoring of the 

reaction of 5-bromopyrimidine with phenylacetylene under different reaction conditions. Under 

optimized reaction condition, it proceeded smoothly without induction period and was completed 



during 24 h period (Figure 9, a). Lower amounts of catalyst loading (0.02 and 0.01) caused a 

decrease in the reaction yield compared to standard reaction under optimized conditions (Figure 

9, b,c). However, an increase in the catalyst amount to 0.36 caused an increase in reaction rate 

and completion of the reaction faster (Figure 9, d).  

To confirm the heterogeneous nature of the active catalyst introduced in this study, some 

catalytic reactions were performed in the presence of excess Hg(0) as catalyst poison (molar ratio 

to [Pd] ~ 400). As shown in Figure (9, e), reaction rate was strongly suppressed. It is well known 

that Hg(0) can poison heterogeneous catalysts by amalgamating the metal or adsorbing on the 

metal surface. On the other hand, Hg(0) has no poisoning effect on molecular homogeneous 

(ligand-protected) Pd species. Poly(vinylpyridine)(PVPy) is another catalyst poising agent and 

scavenger for soluble molecular Pd and soluble Pd(0) nanoparticles. The catalytic reactions were 

conducted in the presence of an excess amount of PVPy (molar ratio to [Pd] ~ 400) and the 

results showed no change in reaction rate and it proceeded similar to standard optimized 

conditions, confirming heterogeneous nature of the catalyst (Figure 9, f) [56,57].  

 

Figure 9. Kinetic monitoring of the reaction of 5-bromopyrimidine with phenylacetylene under 

different reaction conditions: (a) reaction under optimized reaction conditions, (b) using 0.02 



mol% Pd catalyst, (c) using 0.01 mol% Pd catalyst, (d) using 0.36 mol% Pd catalyst, (e) reaction 

in the presence of an excess Hg(0), (f) reaction in the presence of an excess amount of PVPy 

Further information about homogeneous or heterogeneous nature of the catalyst was obtained by 

hot filtration test for the reaction of iodobenzene and phenylacetylene. After 5 h with 54% 

conversion to desired product, the reaction mixture was filtered and filtrate was allowed to react 

for 24 h. GC analysis after 24 h showed 65% conversion to desired coupling product. This result 

also confirms that using this catalyst reaction proceeds mostly under heterogeneous conditions.  

One of the main factors sought in designing any catalyst system, especially for practical 

industrial scale reactions is the recyclability of the catalyst. This factor was measured for our 

palladium catalyst, Pd@bisindole@SiO2@Fe3O4, in the Sonogashira-Hagihara reaction of 

iodobenzene and phenylacetylene. After completion of the reaction, the magnetic catalyst was 

easily recovered from the reaction mixture by an external magnet and after water/diethyl ether 

wash, it was reused in another coupling reaction. Results indicated that the catalyst can be 

effectively used at least during seven consecutive runs without a significant loss of activity, 

confirming reproducibility of results (Figure 10). It is notable that leaching of Pd into the 

reaction mixture after first run was determined to be 1% (ICP analysis), confirming the obtained 

results from poisoning and hot filtration tests. 



 

Figure 10. Successive reaction runs and GC yields for the reaction of iodobenzene with 

phenylacetylene with Pd@bisindole@SiO2@Fe3O4 (Error bars show standard deviation from 

four separate experiments). 

TEM image of the catalyst after three runs, shown in Figure 11, reveals that 

Pd@bisindole@SiO2@Fe3O4 preserves its original structure after each reaction. 

 

 



Figure 11. TEM image of the recovered Pd@bisindole@SiO2@Fe3O4 after three runs.  

Superparamagnetic property of the catalyst and recovered catalyst after 3
rd

 run was also 

measured and results indicate that magnetization of the catalyst is decreased slightly after each 

reaction run (Figure 12). 

 

Figure 12.  Magnetization curves for Pd@bisindole@SiO2@Fe3O4 and its recycled form after 3
rd

 

run. 

Furthermore, XPS analysis of Pd@bisindole@SiO2@Fe3O4 after three run showed the presence 

of the related peaks for both Pd(0) and Pd(II)  at 335-340 and 337-342 eV, respectively (Figure 

13). 

 

Figure 13. XPS spectrum of the recycled Pd@bisindole@SiO2@Fe3O4 after 3
rd

 run 



   

4. Conclusion 

In conclusion, palladium supported on Bis(indolyl)methane functionalized magnetite 

nanoparticles, a new magnetically separable catalyst, has been prepared, characterized and 

successfully applied as catalyst in Sonogashira-Hagihara reaction. Aryl iodides and bromides 

were reacted efficiently under air and copper-free conditions with different alkynes by using 0.18 

mol % of this catalyst at 60 °C. These reactions afforded desired products in high to excellent 

yields with high TON and the error bars were less than 0.4. Aryl chlorides were also reacted at 

120 °C using TBAB additive. Negiligilibe leaching of Pd and hot filteation tests showed the 

heterogeneous nature of the catalyst under reaction conditions. Kinetic monitoring of the reaction 

of 2-bromopipyridine with phenylacetylene under different reaction conditions showed important 

effects of catalyst quantity in reaction rate. Also, the application of two general poisoning agents 

(Hg(0), PVPy) confirmed heterogeneous nature of catalyst during catalytic reactions. Main 

advantages of this new catalyst system are its simple recoverability by use of an external magnet 

and its effecgtive recyclability. The results show that a four layer heterogenous system 

introduced in this work can be used as catalyst in seven consecutive catalytic reaction runs with 

negligible decrease in its activity. This was carried out through 4 times repetition of each of 

seven runs, emphasizing its reproducibility. Besides, TEM, XPS and VSM analyses of the 

recovered catalyst suggest that the catalyst’s originl shape is maintained during reaction. Results 

from coupling reaction of a series of selected aryl halides and alkynes show comparatively 

improved yields of Sonogashira-Hagihara cross-coupling in air and at lower temperatures in the 

presence of a recoverable catalyst system introduced in this study. 
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