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Abstract—Twenty-six new hydrophilic chiral 2-alkoxy-1,4-butanediamine platinum (II) complexes having a seven-membered ring
structure between a bidentate carrier ligand and a platinum atom have been synthesized and most of them were evaluated for their
in vitro cytotoxicity toward A549 human non-small cell lung carcinoma and HCT-116 human colon cancer cell lines. The cytotox-
icities of platinum complexes are related to the nature of the carrier ligand and leaving group. Complex 5 0b, viz. cis-dichloro[(2R)-
ethoxy-1,4-butanediamine] platinum (II), exhibits the greatest potency among those 21 tested platinum complexes in both cell lines.
� 2005 Elsevier Ltd. All rights reserved.
Cisplatin, cis-[Pt(NH3)2Cl2], is one of the most widely
used clinical agents in the treatment of a variety of solid
tumors.1,2 However, the clinical usefulness of cisplatin
has been frequently limited by its low aqueous solubility,
serious toxicity, narrow range of activity, and, especial-
ly, by inherent and acquired tumor resistance.3 In
attempt to overcome these drawbacks of cisplatin,
numerous analogues have been synthesized and evaluat-
ed in a search for alternative active agents.4–8 Among
them, carboplatin exhibited higher water solubility and
reduced nephrotoxicity but failed to expand antitumor
activity spectrum and overcome the tumor resistance,
probably due to the fact that they have the same dia-
mine carrier ligand.9–12

Platinum compounds are supposed to express their cyto-
toxic effects by loss of the leaving groups and subsequent
binding of the platinum-AA 0 moiety to DNA. The DNA
double helix is per se a chiral structure, therefore, plati-
num complexes carrying enantiomeric amines are
expected to produce different diastereoisomeric interac-
tions with this helical arrangement. This point of view
leads to the design of platinum antitumor drug focusing
mainly on the chirality of the carrier ligand and various
chiral diamine platinum complexes have been designed,
synthesized, and evaluated for antitumor activity.13–17

Among them, oxaliplatin, SKI-2053R, and lobaplatin
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have received limited approval for use in some countries.
Oxaliplatin, (trans-1R,2R-diaminocyclohexane)(oxala-
to)platinum (II), having a five-membered ring structure
between a bidentate carrier ligand and the metal atom,
is the first clinically approved platinum compound
which demonstrated lack of cross-resistance in some cis-
platin-resistant cell lines. The lack of cross-resistance
was attributed to the chiral 1,2-diaminocyclohexane
carrier ligand.18

Most of the platinum complexes reported to date have
five-membered or six-membered chelating rings between
a bidentate carrier ligand and a platinum atom.19 Recent-
ly, several research groups have reported the synthesis
and antitumor activity evaluation of the platinum com-
plexes with a seven-membered ring structure between a
bidentate carrier ligand and a platinum atom such
as ((R)-2-methyl-1,4-butanediamine) (1,1-cyclobutane
dicarboxylato)platinum(II)(NK-121), cis-[(4R,5R)-4,5-
bis(aminomethyl)-2-isopropyl-1,3-dioxolane](malonato)-
platinum(II) (SKI-2053R), and cis-[trans-1,2-cyclobu-
tanebis(methylamine)][(S)-lactato-O1,O2] platinum(II)
(lobaplatin).18 In addition, we have recently reported a
series of D- and DL-camphorate platinum complexes
which possess (4R,5R)-4,5-bis(aminomethyl)-2-isopro-
pyl-1,3-dioxolane carrier ligand.20a These studies indicate
that such a type of platinum complex displays desirable
antitumor activity and sufficient stability in aqueous solu-
tion.15,20–22

On the basis of these findings, we have designed and syn-
thesized a new series of chiral 2-alkoxy-1,4-butanedi-
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Figure 1. Structures of (2S)- and (2R)-2-alkoxyl-1,4-butanediamine

(DA1, DA2).
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amine compounds that are represented by the general
structural formulas given below (Fig. 1). Then, these
chiral 2-alkoxy-1,4-butanediamine compunds were
applied to prepare target platinum (II) complexes.

This article describes synthesis and in vitro cytotoxicity
evaluation together with their structure–activity rela-
tionships of a series of novel chiral 2-alkoxy-1, 4-butan-
ediamine platinum (II) complexes which have a
Figure 2. Structures of platinum (II) complexes 1a–5 0b.
seven-membered ring structure between a bidentate car-
rier ligand and a platinum atom. All the target platinum
compound structural formulas are represented in Figure
2. The result showed that the incorporation of oxygen in
the diamino moiety of the platinum complexes enhances
water solubility.

The procedure for synthesis of 2-alkoxy-1,4-butanedi-
amine is outlined in Scheme 1. Starting from malic acid,
malate (I) was prepared by refluxing with ethanol under
acidic condition. Alkoxy substituted malate, IIa and IIb,
were prepared according to the literature.23 Key inter-
mediate 1,4-diol, IIIa and IIIb, were conveniently ob-
tained by LiAlH4 reduction of IIa and IIb in THF24

and then directly transformed by standard methods
(tosylation and reaction with sodium azide in DMF)
into diazide (V).25,26 The diazide (V) was directly used
to undergo catalytical hydrogenation in the presence
of 10% Pd/C27 to get the corresponding diamine (VI)
without purification. Finally, VI was transformed to
the corresponding salt of hydrochloric acid.28 Recrystal-
lization of the salt with ethanol afforded pure white



Scheme 1. Synthesis of 2-methoxy-1,4-butanediamine (VIIa) and 2-ethoxy-1,4-butanediamine (VIIb) from R (or S)-malic acid. Reagents and

conditions: (i) 98% H2SO4, reflux 20 h, 80%; (ii) (a) Ag2O, MeI, reflux 6 h, 87%; (b) Ag2O, EtI, reflux 6 h, 83%; (iii) LiAlH4, THF; (iv) (a)

p-toluenesulfonyl, pyridine, 0 �C, 50%; (b) p-toluenesulfonyl, pyridine, 0 �C, 56%; (v) NaN3, DMF, reflux 8 h; (vi) 5% Pd/C, 76 atm H2, EtOH; (vii)

(a) HCl, acetone, 54%.
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crystalline powders. Transformation of IV to VII was
achieved in 54% (for VIIa) and 60% (for VIIb) overall
yields, without purification of intermediate V. All key
compounds were characterized by means of IR, 1H
NMR, and ESI mass spectra as well as elemental analy-
ses. As expected, all intermediates derived from the
starting material of (R)-malic acid have the same physi-
cal properties as those from (S)-malic acid, except for a
nearly opposite optical rotation.

The general procedure for preparation of chiral 2-alk-
oxy-1,4-butanediamine platinum (II) complexes is
shown in Scheme 2. First, potassium tetrachloroplati-
nate (II) was converted to potassium tetraiodoplatinate
Scheme 2. General method for the synthesis of the platinum (II) complexes.
(II), which was subsequently treated with diamine to
form a diamine–diiodoplatinum (II) complex[Pt(A)I2]
according to the literature method.29 Then, two kinds
of general methods have been applied to prepare the
target platinum complexes containing 2-alkoxy-1,4-
butanediamine, which are described in Scheme 2. One
is involved in the treatment of [Pt(A)(H2O)2](NO3)2
with sodium glycolate or sodium chloride,29 the other
is concerned with the reaction of [Pt(A) I2] with silver
carboxylate.30,31 Complexes 3a–b, 3 0a–b, 4a–b, 4 0a–b,
5a–b, and 5 0a–b with lower water solubility have been
prepared in better yield by using method 1.32 On the
other hand, complexes 1a–d, 1 0a–d, 2a–b, 2 0a–b, 3c,
and 3 0c with higher water solubility have been got in



Table 1. Analytical data of all platinum (II) complexes

Platinum (II) complexes Results and analytical data

cis-(Malonato)[(2S)-methoxy-1,4-butanediamine]

platinum (II) (1a)

1a: Yield 12.0%; white powder; IR (KBr) 3441 (m, br), 3219 (m), 3128 (m), 3155 (m), 2947 (w), 1627 (vs), 1387 (s), 1288 (w), 1240 (m), 1227

(m), 1094 (m) cm�1. 1H NMR (500 MHz, D2O): d 3.93 (m, 1H, 1H of CH of 1,4-diamines), 3.59 (m, 2H, 2H of CH2 of malonato), 3.26

(m, 3H, 3H of CH3 of 1,4-diamines), 2.85 (m, 2H, 2H of CH2CH2NH2 of 1,4-diamines), 2.73–2.67 (m, 2H, 2H of CHCH2NH2 of 1,

4-diamines), 2.15 (m, 2H, 2H of CH2CH2NH2 of 1,4-diamines). ESI-MS m/z [M+Na]+ = 438 (100%). Anal. Calcd for C8H16N2O5Pt: C,

23.14; H, 3.88; N, 6.75. Found: C, 23.32; H, 3.76; N, 6.68. 10a: Yield 24.1%; white powder; spectral data were identical with that of 1a.

cis-(Malonato)[(2R)-methoxy-1,4-butanediamine]

platinum (II) (1 0a)

cis-(Cyclobutane-1,1-dicarboxylato)[(2S)-methoxy-

1,4-butanediamine]platinum (II) (1 0b)
1b: Yield 32.5%; white powder; IR (KBr) 3445 (m, br), 3229 (s), 3138 (m), 2947 (w), 1627 (vs), 1459 (w), 1384 (vs), 1252 (w), 1221 (m),

1115 (m), 1096 (m) cm�1. 1H NMR (500 MHz, D2O): d 3.82 (m, 1H, 1H of CH of 1,4-diamines), 3.27 (m, 3H, 3H of CH3 of 1,4-diamines),

2.87 (m, 2H, 2H of CH2CH2NH2 of 1,4-diamines), 2.82–2.71 (m, 6H, 2H of CHCH2NH2 of 1,4-diamines overlapped with 4H of

CH2CH2CH2 of cyclobutane-1,1-dicarboxylato), 2.15 (m, 2H, 2H of CH2CH2NH2 of 1,4-diamines), 1.77 (m, 2H, 2H of CH2CH2CH2

of cyclobutane-1,1-dicarboxylato). ESI-MS m/z [M+Na]+ = 478 (100%). Anal. Calcd for C11H20N2O5Pt: C, 29.01; H, 4.43; N, 6.15.

Found: C, 29.35; H, 4.31; N, 6.04. 1 0b: Yield 28.6%; white powder; spectral data were identical with that of 1b.

cis-(Cyclobutane-1,1-dicarboxylato)[(2R)-methoxy-

1,4-butanediamine]platinum (II) (1 0b)

cis-(Malonato)[(2S)-ethoxy-1,4-butanediamine]

platinum (II) (1c)

1c: Yield 31.5%; white powder; IR (KBr) 3441 (m, br), 3219 (m), 3128 (m), 3155 (m), 2947 (w), 1627 (vs), 1387 (s), 1288 (w), 1240 (m), 1227

(m), 1094 (m) cm�1. 1H NMR (500 MHz, D2O): d 3.95 (m, 1H, 1H of CH of 1,4-diamines), 3.56–3.49 (m, 4H, 2H of CH2CH3 of 1,

4-diamines overlapped with 2H of CH2 of malonate), 2.85–2.68 (m, 4H, 4H of 2CH2NH2 of 1,4-diamines), 2.12 (m, 2H, 2H of CH2CH2NH2

of 1,4-diamines), 1.07 (m, 3H, 3H of CH2CH3 of 1,4-diamines). ESI-MS m/z [M+H]+ = 430 (100%). Anal. Calcd for C9H18N2O5Pt: C, 25.18;

H, 4.23; N, 6.52. Found: C, 25.37; H, 4.01; N, 6.39. 10c: Yield 24.5%; white powder; spectral data were identical with that of 1c.

cis-(Malonato)[(2R)-ethoxy-1,4-butanediamine]

platinum (II) (1 0c)

cis-(Cyclobutane-1,1-dicarboxylato)[(2S)-ethoxy-

1,4-butanediamine]platinum (II) (1d)

1d: Yield 23.4%; white powder; IR (KBr) 3454 (br), 3237 (sharp), 3109 (m), 2967 (w), 1654 (vs), 1614 (vs), 1374 (vs), 1225 (w), 1112 (m),

1098 (m) cm�1. 1H NMR (500 MHz, D2O): d 3.94 (m, 1H, 1H of CH of 1,4-diamines), 3.46 (m, 2H, 2H of CH2CH3 of 1,4-diamines),

2.86–2.66 (m, 8H, 4H of 2CH2NH2 of 1,4-diamines overlapped with 4H of CH2CH2CH2 of cyclobutane-1,1-dicarboxylato), 2.07–2.02

(m, 2H, 2H of CH2CH2NH2 of 1,4-diamines), 1.73 (m, 2H, 2H of CH2CH2CH2 of cyclobutane-1,1-dicarboxylato), 1.02 (m, 3H, 3H of

CH2CH3 of 1,4-diamines). ESI-MS m/z [M+Na]+ = 492 (100%). Anal. Calcd for C12H22N2O5Pt: C, 30.71; H, 4.72; N, 5.97. Found: C, 30.92;

H, 4.65; N, 5.91. 10d: Yield 23.4%; white powder; spectral data were identical with that of 1d.

cis-(Cyclobutane-1,1-dicarboxylato)[(2R)-ethoxy-

1,4-butanediamine]platinum(II) (1 0d)

cis-(Oxalato)[(2S)-methoxy-1,4-butanediamine]

platinum (II) (2a)

2a: Yield 24.9%; white powder; IR (KBr) 3451 (m, br), 3238 (m), 3193 (m), 3155 (m), 2977 (w), 1692 (s), 1668 (vs), 1388 (s), 1095 (m)

cm�1. 1H NMR (500 MHz, D2O): d 3.83 (m, 1H, 1H of CH of 1,4-diamines), 3.24 (m, 3H, 3H of CH3 of 1,4-diamines), 2.84 (m, 2H, 2H

of CH2CH2NH2 of 1,4-diamines), 2.75–2.67 (m, 2H, 2H of CHCH2NH2 of 1,4-diamines), 2.17–2.10 (m, 2H, 2H of CH2CH2NH2 of 1,

-diamines). ESI-MS m/z [M+Na]+ = 424 (100%). Anal. Calcd for C7H14N2O5Pt: C, 20.95; H, 3.52; N, 6.98. Found: C, 21.09; H, 3.48; N,

6.82. 2 0a: Yield 33.7%; white powder; spectral data were identical with that of 2a.

cis-(Oxalato)[(2R)-methoxy-1,4-butanediamine]

platinum (II) (2 0a)

cis-(Oxalato)[(2S)-ethoxy-1,4-butanediamine]

platinum (II) (2b)

2b: Yield 31.3%; white powder; IR (KBr) 3411 (m, br), 3208 (s), 3112 (m), 3155 (m), 2965 (w), 2921 (w), 1694 (s), 1672 (vs), 1398 (s),

1189 (m), 1098 (m) cm�1. 1H NMR (500 MHz, D2O): d 3.96 (m, 1H, 1H of CH of 1,4-diamines), 3.45 (m, 2H, 2H of CH2CH3 of 1,

4-diamines), 2.85–2.64 (m, 4H, 4H of 2CH2NH2 of 1,4-diamines), 2.17–2.03 (m, 2H, 2H of CH2CH2NH2 of 1,4-diamines), 1.03 (m, 3H,

3H of CH2CH3 of 1,4-diamines). ESI-MS m/z [M+Na]+ = 38 (100%). Anal. Calcd for C8H16N2O5Pt: C, 23.14; H, 3.88; N, 6.75. Found: C,

23.30; H, 3.79; N, 6.71. 20b: Yield 18.1%; white powder; spectral data were identical with that of 2b.

cis-(Oxalato)[(2R)-ethoxy-1,4-butanediamine]

platinum (II) (2 0b)

cis-di(Glycolato)[(2S)-methoxy-1,4-butanediamine]

platinum (II) (3a)

3a: Yield 38.9%. 1H NMR (500 MHz, D2O): d 4.00–3.94 (m, 4H, 4H of 2CH2 of glycolato), 3.88 (m, 1H, 1H of CH of 1,4-diamines), 3.28

(m, 3H, 3H of CH3 of 1,4-diamines), 2.88–2.86 (m, 2H, 2H of CH2CH2NH2 of 1,4-diamines), 2.78–2.66 (m, 2H, 2H of CHCH2NH2 of 1,

4-diamines), 2.26–2.18 (m, 2H, 2H of CH2CH2NH2 of 1,4-diamines). ESI-MS m/z [M+Na]+ = 486 (100%);[M�OCOCH2OH+H2O]+ = 406

(80%). Anal. Calcd for C9H20N2O7Pt: C, 23.33; H, 4.35; N, 6.05. Found: C, 23.47; H, 4.29; N, 5.98. 30a: Yield 34.6%; spectral data were

identical with that of 3a.

cis-di(Glycolato)[(2R)-methoxy-1,4-butanediamine]

platinum (II) (3 0a)

cis-di(Glycolato)[(2S)-ethoxy-1,4-butanediamine]

platinum (II) (3b)

3b: Yield 25.1%. 1H NMR (500 MHz, D2O): d 4.12–3.93 (m, 5H, 1H of CH of 1,4-diamines overlapped with 4H of 2CH2 of glycolato),

3.57–3.45 (m, 2H, 2H of CH2CH3 of 1,4-diamines), 2.89–2.81 (m, 2H, 2H of CH2CH2NH2 of 1,4-diamines), 2.72–2.68 (m, 2H, 2H of

CHCH2NH2 of 1,4-diamines), 2.25–2.15 (m, 2H, 2H of CH2CH2NH2 of 1,4-diamines), 1.11–1.08 (m, 3H, 3H of CH2CH3 of 1,4-diamines).

ESI-MS m/z [M�OCOCH2OH+H2O]+ = 420 (10%); [M+Na]+ = 500 (80%). Anal. Calcd for C10H22N2O7Pt: C, 25.16; H, 4.65; N, 5.87.

Found: C, 25.29; H, 4.60; N, 5.82. 3 0b: Yield 30.1%; spectral data were identical with that of 3b.

cis-di(Glycolato)[(2R)-ethoxy-1, 4-butanediamine]

platinum (II) (3 0b)

(continued on next page)
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Ta 1 (continued)

Pl m (II) complexes Results and analytical data

i(Chloroacetate)[(2S)-ethoxy-1,4-butanediamine]

inum (II) (3c)

3c: Yield 11.6%. 1H NMR (500 MHz, D2O): d 4.11–3.90 (m, 5H, 1H of CH of 1,4-diami overlapped with 4H of 2CH2 of chloroacetate),

3.51–3.44 (m, 2H, 2H of CH2CH3 of 1,4-diamines), 2.86–2.77 (m, 2H, 2H of CH2CH2NH f 1,4-diamines), 2.69–2.67 (m, 2H, 2H of

CHCH2NH2 of 1,4-diamines), 2.26–2.10 (m, 2H, 2H of CH2CH2NH2 of 1,4-diamines), 1 –1.04 (m, 3H, 3H of CH2CH3 of 1,4-diamines).

ESI-MS m/z [M�OCOCH2Cl+H2O]+ = 438 (100%). Anal. Calcd for C10H20Cl2N2O5Pt: C 3.36; H, 3.92; N, 5.45. Found: C, 23.50; H, 3.89;

N, 5.41. 3 0c: Yield 16.5%; spectral data were identical with that of 3c.

i(Chloroacetate)[(2R)-ethoxy-1,4-butanediamine]

inum (II) (3 0c)

Glycolato)[(2S)-methoxy-1,4-butanediamine]

inum (II) (4a)

4a: Yield 34.9%. 1H NMR (500 MHz, D2O): d 4.11–4.10 (m, 2H, 2H of CH2 of glycolato 3.94 (m, 1H, 1H of CH of 1,4-diamines),

3.39 (m, 3H, 3H of CH3 of 1,4-diamines), 3.02–2.95 (m, 2H, 2H of CH2CH2NH2 of 1,4-d ines), 2.91–2.79 (m, 2H, 2H of CHCH2NH2

of 1,4-diamines), 2.35–2.20 (m, 2H, 2H of CH2CH2NH2 of 1,4-diamines). ESI-MS m/z [M a]+ = 410 (100%). Anal. Calcd for

C7H16N2O4Pt: C, 21.71; H, 4.16; N, 7.23. Found: C, 21.87; H, 4.02; N, 7.12. 4 0a: Yield 2 %; spectral data were identical with that of 4a.

Glycolato)[(2R)-methoxy-1,4-butanediamine]

inum (II) (4 0a)

Glycolato)[(2S)-ethoxy-1,4-butanediamine]

inum (II) (4b)

4b: Yield 21.2%. 1H NMR (500 MHz, D2O): d 4.05–3.96 (m, 3H, 2H of CH2 of glycolato erlapped with 1H of CH of 1,4-diamines),

3.51–3.47 (m, 2H, 2H of CH2CH3 of 1,4-diamines), 2.83–2.76 (m, 2H, 2H of CH2CH2NH f 1,4-diamines), 2.67–2.66 (m, 2H, 2H of

CHCH2NH2 of 1,4-diamines), 2.18–2.17 (m, 2H, 2H of CH2CH2NH2 of 1,4-diamines), 1 –1.03 (m, 3H, 3H of CH2CH3 of 1,4-diamines).

ESI-MS m/z [M+H]+ = 402 (100%). Anal. Calcd for C8H18N2O4Pt: C, 23.94; H, 4.52; N, 8. Found: C, 24.11; H, 4.37; N, 6.85. 4 0b:
Yield 31.2%; spectral data were identical with that of 4b.

Glycolato)[(2R)-ethoxy-1, 4-butanediamine]

inum (II) (4 0b)

ichloro[(2S)-methoxy-1,4-butanediamine]

inum (II) (5a)

5a: Yield 26.0%; IR (KBr) 3448 (m, br), 3229 (s), 3202 (s), 3131 (m), 3061 (m), 2931 (m) 95 (m), 1561 (m), 1461 (w), 1330 (m), 1227 (s),

1212 (s), 1107 (s), 1095 (s) cm�1. 1H NMR (500 MHz, D2O): d 3.91 (m, 1H, 1H of CH o ,4-diamines), 3.25 (m, 3H, 3H of CH3 of 1,

-diamines), 2.85 (m, 2H, 2H of CH2CH2NH2 of 1,4-diamines), 2.77–2.68 (m, 2H, 2H of C CH2NH2 of 1,4-diamines), 2.25–2.22 (m, 2H,

2H of CH2CH2NH2 of 1,4-diamines). ESI-MS m/z [M�Cl�+H2O]+ = 366 (100%). Anal. cd for C5H14Cl2N2OPt: C, 15.63; H, 3.67; N,

7.29. Found: C, 15.78; H, 3.59; N, 7.21. 5 0a: Yield 27.3%; spectral data were identical wi hat of 5a.

ichloro[(2R)-methoxy-1, 4-butanediamine]

inum (II) (5 0a)

ichloro[(2S)-ethoxy-1,4-butanediamine]

inum (II) (5b)

5b: Yield 25.1%; IR (KBr) 3444 (m, br), 3255 (s), 3220 (s), 3177 (m), 2971 (w), 1601 (m), 49 (w), 1384 (vs), 1210 (m), 1184 (m), 1094 (m).
1H NMR (500 MHz, D2O): d 4.04 (m, 1H, 1H of CH of 1,4-diamines), 3.48 (m, 2H, 2H CH2CH3 of 1,4-diamines), 2.83 (m, 2H, 2H of

CH2CH2NH2 of 1,4-diamines), 2.76–2.64 (m, 2H, 2H of CHCH2NH2 of 1,4-diamines), 2 –2.06 (m, 2H, 2H of CH2CH2NH2 of 1,

4-diamines), 1.10 (m, 3H, 3H of CH2CH3 of 1,4-diamines). ESI-MS m/z [M�Cl�+H2O]+ 81 (100%). Anal. Calcd for C6H16Cl2N2OPt: C,

18.10; H, 4.05; N, 7.04. Found: C, 18.23; H, 3.98; N, 6.95. 50b: Yield 27.6%; spectral dat ere identical with that of 5b.

ichloro[(2R)-ethoxy-1,4-butanediamine]

inum (II) (5 0b)
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better crop by using method 2.33 Most of the complexes
described in our paper have good aqueous solubility,
except for 5a, 5b, 5 0a, and 5 0b. In particular, complexes
3a–3c, 3 0a–3 0c, 4a–4b, and 4 0a–4 0b were too hygroscopic
to be characterized by infrared spectra. All the resulting
complexes were confirmed by 1H NMR and ESI mass
spectra data listed in Table 1. It is noted that all the
mass spectra of the platinum complexes showed three
protonated molecular ion peaks because of the isotopes
194Pt(33%,), 195Pt(34%), and 196Pt(25%). All spectral
data are compatible to the chemical structures given in
Figure 2.

The in vitro cytotoxicities of 21 novel platinum com-
plexes such as 1a, 1 0a, 1b, 1 0b, 1c, 1 0c, 1d, 1 0d, 2a, 2 0a,
2b, 2 0b, 3a, 3 0a, 3 0b, 3 0c, 4b, 5a, 5 0a, 5b, and 5 0b toward
A549 human non-small cell lung carcinoma and HCT-
116 human colon cancer cell lines were performed by
the National Center for Drug Screening.34–36 Complexes
3a–c, 3 0a–3 0c, 4a–b, and 4 0a–4 0b were so strongly hygro-
scopic and unstable that only part of them was selected
to evaluate. The references were cisplatin and carboplat-
in in A549, and oxaliplatin in HCT-116, respectively.
The results are summarized in Tables 2 and 3.

The order of the cytotoxicities in A549 is cisplatin >
5 0b > 5b > 2b > 3 0c > 5a>4b > 5 0a > 2 0b > 3a > 2a > 1c
> 1 0a > 2 0a > carboplatin > 3 0b > 1a > 1 0c > 1 0b > 1d >
1 0d > 3 0a > 1b. The order of the cytotoxicities in
HCT116 is oxaliplatin > 5 0b > 5a > 5b > 2b > 5 0a >
2 0b > 3 0c > 4b > 1c > 2a > 2 0a > 3 0b > 1a > 1 0a > 1 0c >
3a > 1 0d > 1d > 1 0b > 3 0a > 1b.
Table 2. In vitro cytotoxicity against A549 human non-small cell lung carci

Complex Carrier ligand (diamino)

1a S-meob

1 0a R-meoc

1b S-meob

1 0b R-meoc

1c S-etod

1 0c R-etoe

1d S-etod

1 0d R-etoe

2a S-meob

2 0a R-meoc

2b S-etod

2 0b R-etoe

3a S-meob

3 0a R-meoc

3 0b R-etoe

3 0c R-etoe

4b S-etod

5a S-meob

5 0a R-meoc

5b S-etod

5 0b R-etoe

Cisplatin

Carboplatin

a All IC50 values calculated based on the Pt-content are means ± SD < ±3.0
b S-meo: (2S)-methoxy-1,4-butanediamine.
cR-meo: (2R)-methoxy-1,4-butanediamine.
d S-eto: (2S)-ethoxy-1,4-butanediamine.
eR-eto: (2R)-ethoxy-1,4-butanediamine.
In general, the complexes with diamines of R or RR
absolute configuration are slightly more active than
the complexes with the corresponding diamines owning
S, SS or RS configuration.37 But in this series, most
platinum complexes having a chiral (2S)-methoxy or
(2S)-ethoxy bidentate diamine moiety are more active
than those with (2R)-methoxy or (2R)-ethoxy diamine
counterparts, such as 1c > 1 0c, 1d > 1 0d, 2a > 2 0a,
2b > 2 0b, 3a > 3 0a, and 5a > 5 0a in A549, and 1a > 1 0a,
1c > 1 0c, 2a > 2 0a, 2b > 2 0b, 3a > 3 0a, and 5a > 5 0a in
HCT116. However, among these compounds, there are
some exceptions, for example 1a < 1 0a, 1b < 1 0b, and
5b < 5 0b in A549, and 1b < 1 0b, 1d < 1 0d, and 5b < 5 0b
in HCT116.

From the biological results, it is showed that most of
platinum complexes with (2S)-ethoxy or (2R)-ethoxy
diamine carrier ligand generally have higher cytotoxicity
than those with the corresponding (2S)-methoxy or
(2R)-methoxy carrier ligand, such as 1c > 1a, 1d > 1b,
2b > 2a, 5b > 5a, 2 0b > 2 0a, 3 0b > 3 0a, and 5 0b > 5 0a in
A549, and 1c > 1a, 1d > 1b, 2b > 2a, 1 0d > 1 0b, 2 0b > 2 0a,
3 0b > 3 0a, and 5 0b > 5 0a in HCT116. But there are some
exceptions, for example 1 0c < 1 0a, 1 0d < 1 0b in A549, and
1 0c < 1 0a, 5b < 5a in HCT116.

The cytotoxicities of platinum complexes are also
related to the nature of the leaving group. It is
showed that the same rule in HCT116 is dichlo-
ro > oxalato > malonato > cyclobutane-1,1-dicarboxy-
lato when the carrier ligand was the same. It is also
showed that the same rule in A549 is dichloro >
noma cell lines of selected platinum complexesa

Leaving group IC50 (lM)

Malonato 8.74

Malonato 5.59

Cyclobutane-1,1-dicarboxylato 64.12

Cyclobutane-1,1-dicarboxylato 12.87

Malonato 4.40

Malonato 9.76

Cyclobutane-1,1-dicarboxylato 24.18

Cyclobutane-1,1-dicarboxylato 26.42

Oxalato 3.79

Oxalato 5.81

Oxalato 1.71

Oxalato 3.08

Di(glycolato) 3.37

Di(glycolato) 34.32

Di(glycolato) 7.60

Di(chloroacetato) 1.73

Glycolato 2.14

Dichloro 1.80

Dichloro 2.63

Dichloro 0.90

Dichloro 0.83

0.30

6.95

�10 from at least three separate experiments.



Table 3. In vitro cytotoxicity against HCT-116 human colon cancer cell lines of selected platinum complexesa

Complex Carrier ligand (diamino) Leaving group IC50 (lM)

1a S-meob Malonato 25.04

1 0a R-meoc Malonato 28.00

1b S-meob Cyclobutane-1,1-dicarboxylato 219.61

1 0b R-meoc Cyclobutane-1,1-dicarboxylato 168.88

1c S-etod Malonato 12.65

1 0c R-etoe Malonato 30.75

1d S-etod Cyclobutane-1,1-dicarboxylato 115.26

1 0d R-etoe Cyclobutane-1,1-dicarboxylato 109.29

2a S-meob Oxalato 15.62

2 0a R-meoc Oxalato 15.90

2b S-etod Oxalato 6.33

2 0b R-etoe Oxalato 7.42

3a S-meob Di(glycolato) 55.90

3 0a R-meoc Di(glycolato) 215.82

3 0b R-etoe Di(glycolato) 23.67

3 0c R-etoe Di(chloroacetato) 8.69

4b S-etod Glycolato 11.04

5a S-meob Dichloro 2.03

5 0a R-meoc Dichloro 6.87

5b S-etod Dichloro 2.69

5 0b R-etoe Dichloro 1.78

Oxaliplatin 1.28

a All IC50 values calculated based on the Pt-content are means ± SD < ±3.0 �10 from at least three separate experiments.
b S-meo: (2S)-methoxy-1,4-butanediamine.
cR-meo: (2R)-methoxy-1,4-butanediamine.
d S-eto: (2S)-ethoxy-1,4-butanediamine.
eR-eto: (2R)-ethoxy-1,4-butanediamine.
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oxalato > malonato > cyclobutane-1,1-dicarboxylato when
the carrier ligand was the same such as (2S)-ethoxy, (2R)-
ethoxy, and (2S)-methoxy bidentate diamine. One excep-
tion in A549 was dichloro > malonato > oxalato > cyc-
lobutane-1,1-dicarboxylato for platinum complex with
(2R)-methoxy bidentate diamine.

Complex 5 0b exhibits the greatest potency among these
21 tested platinum complexes in both two cell lines.
Considering its good cytotoxicity and high stability in
aqueous solution, complex 5 0b will be selected as a
promising candidate for further development.
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