Tetrahedron Letters 55 (2014) 5829-5831

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Nucleophilic addition of TMSCCl₃ to *N*-phosphinoyl benzaldimines: a route to *N*-phosphinoyl-α-(trichloromethyl)benzylamines

Benoit Wahl, Albert Cabré, Simon Woodward*, William Lewis

School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, UK

ARTICLE INFO

ABSTRACT

Article history: Received 16 July 2014 Revised 13 August 2014 Accepted 28 August 2014 Available online 6 September 2014

Keywords: Trichloromethylation Fluoride catalysis Imine 1,2-Addition

 α -Trichloromethylamines are interesting biologically active compounds used as: herbicides,¹ insecticides² or fungicides,³ and more recently have revealed dopaminergic neurotoxicity properties.⁴ They also represent a key intermediate in the synthesis of valuable organic molecules such as, α, α -dichloroimines⁵ and α -trichloromethyl imines,⁶ 2,2-dichlorovinylamines and (2-chloroethynyl)amines⁷ and 2,2-dichloroaziridines^{7,8} and enamino esters.⁹ α -Trichloromethylamines are directly synthesised by nucleophilic addition of a trichloromethyl anion equivalent to an imine. A few different sources of CCl₃ can be used: trichloroacetic acid,¹⁰ chloroform^{8,11} or trimethyl(trichloromethyl)silane.¹² Use of trichloroacetic acid is limited by harsh decarboxylation conditions while the use of CHCl₃ requires strong bases (t-BuOK and NaH-MDS). Conversely, TMSCCl₃ only requires activation by a silylphilic promoter, typically a fluoride ion. Following our recent improvements on the synthesis of $TMSCCl_3$ (70% isolated yield),¹³ we aimed to extend the use of this reagent to imines. Present nucleophilic reactions of TMSCCl₃ with imines are limited to very few examples: a low yielding (34%) 1,2-addition to a salicylaldimine, using an intramolecular activation of the imine through chelation of boron trifluoride etherate with the adjacent hydroxyl group,^{12a} and Li's diastereoselective addition of TMSCCl₃ to *N*-(*tert*-butylsulfinyl)aldimines.^{12b,c} We conceived that unprecedented nucleophilic addition of TMSCCl₃ to diphenylphosphinoyl benzaldimines would be an efficient route to useful *N*-phosphinoyl- α -(trichloromethyl)benzylamines.

We initially investigated the nucleophilic reaction of TMSCCl₃ with (*E*)-*N*-benzylidene-*P*,*P*-diphenylphosphinic amide (**1a**) (Table 1). Initial trials revealed that TMSCCl₃ requires activation by a silylphilic promoter; the fluoride ion from TBAT (tetrabutyl-ammonium difluorotriphenylsilicate) was most effective here (run 1 vs run 2). Further investigation showed that the reaction could be efficiently carried out in THF at room temperature within an hour, using only 1 mol % of TBAT (run 2 vs runs 3 and 4). Insoluble CsF was poorly effective (run 5). The diphenylphosphinoyl benzaldimine starting materials **1** are accessed by titanium(IV)

Table 1

Optimisation of TMSCCl3 addition to 1a^a

Nucleophilic addition of readily available TMSCCl₃ to *N*-phosphinoyl benzaldimines allows preparation of

N-phosphinoyl- α -(trichloromethyl)benzylamines. Typically, the reaction in THF at room temperature

using tetrabutylammonium difluorotriphenylsilicate (TBAT) as a catalytic promoter, afforded very good

yields (65–95% range) for most derivatives within 1 h at room temperature.

Run	Promoter	Temp (°C)	Time (h)	2a ^a (%)
1	None	rt	1–16	<5
2	TBAT (1 equiv)	-50	1	>95
3	TBAT (10 mol %)	-50	1	>90
4	TBAT (1 mol %)	rt	1	>90 (89)
5	CsF	rt	1-16	<10

^a Carried out on 1.0 mmol **1a** (0.25 M); conversions to **2a** determined by ¹H NMR spectroscopy; in run 4 the isolated yield of **2a** is in parentheses.

© 2014 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +44 (0)115 9513541; fax: +44 (0)115 9513564. *E-mail address:* simon.woodward@nottingham.ac.uk (S. Woodward).

ethoxide promoted condensation between ArCHO and diphenylphosphinic amide in refluxing THF in moderate to very good yields (see Supporting information). Titanium(IV) chloride can also be used as a Lewis acid but it is less convenient to handle (fuming in air) and often leads to lower yields.¹⁴

The spectroscopic properties of **2a** are in accord with the addition of the trichloromethyl group. In particular, a low-intensity quaternary signal at $\delta_{\rm C}$ 102.7 in the ¹³C NMR spectrum is assigned to CCl₃ and the molecular ion of **2a** shows the expected Cl₃ isotope

Table	2	
Scope	of the trichloromethylation	reaction ^a

 a Carried out on 1.0 mmol 1 (0.25 M), 1.5 mmol TMSCCl_3, 1 mol % TBAT, room temperature, 1 h. Isolated yields.^{15}

pattern. The α -CH group is diagnostically shifted to lower frequencies ($\delta_{\rm H}$ 4.95 in **2a**) compared to its N=CH precursor ($\delta_{\rm H}$ 9.33 in **1a**). A characteristic signal for the amine proton is seen at $\delta_{\rm H}$ 4.07 in the ¹H NMR spectrum, uncorrelated to any ¹³C NMR signal on HSQC. The conditions of Table 1 (run 4) could be applied to a range of diphenylphosphinoyl benzaldimine substrates, leading to various addition products in 18–95% isolated yields (Table 2).

The reaction is tolerant to electron-withdrawing substituents in *para* positions (runs 1–4: yields from 68% to 94%) and is also effective with electron-donating groups (runs 5–8: yields from 72% to 95%), only showing limitation with a *tert*-butyl group at the *para* position (run 8, 18% yield). Lower yields were associated with isolation issues under chromatography of these polar species rather than underperforming catalysis. However, in many cases, the products could be isolated in analytically pure form by crystallisation. For example, the connectivity of **2c** was confirmed by an X-ray crystallographic study (Fig. 1).

Figure 1. Molecular structure of **2c** (CCDC 1014093). Selected interatomic distances and angles: C(2)–C(10) 1.558, N(1)–C(2) 1.448, N(1)–P(14) 1.649 Å; C(10)–C(2)–N(1) 110.8, P(14)–N(1)–C(2) 124.1, N(1)–P(14)–C(16) 110.1°.

Scheme 1. Proposed catalytic cycle.

One proposed mechanism for the reaction is shown in Scheme 1. Based on our recent mechanistic studies made on 1,4-addition of $TMSCCl_3$ to nitroalkenes,¹³ we believe that $TMSCCl_3$ is initially bound to N-phosphinoyl benzaldimine 1a by means of an electron-rich Si-O contact providing 3. Attack of an external nucleophile, in this case fluoride ions, on **3** triggers CCl₃ transfer presumably through a chair-like transition state, leading to the N-phosphinimine anion 4 (1,4-addition mode) or its resonance analogue *N*-phosphinamide **5** (1,2-addition mode). The former (**4**) would itself be an excellent promoter of the reaction able to replace fluoride in further conversion of **3** into **4**. This would explain why only a catalytic amount of TBAT is needed to reach full completion in only one hour (with the concentration of **4** building up over time). N-phosphinimine anion 4 can act as a promoter itself or leave the promoter pool by reacting with TMSX ($X = CCl_3$ or Nu, if Nu is a suitable leaving group) and a final quenching of the reaction leads to *N*-phosphinovl- α -(trichloromethyl)benzylamine **2**.

In conclusion, the use of TMSCCl₃ as a trichloromethylating reagent has great potential in nucleophilic additions to electron-deficient imines. We have achieved, here, the unprecedented catalytic nucleophilic reaction of TMSCCl₃ with *N*-phosphinoyl benzaldimines for the synthesis of racemic *N*-phosphinoyl- α -(trichloromethyl)lbenzylamines **2**. Potential development of enantioselective processes will offer significant challenge since the kinetic N-phosphinimine anionic product 4 of the reaction is acting itself as a highly effective catalyst of the reaction, and finding a competitive chiral catalyst will be crucial for success.

Acknowledgment

We are grateful to the Engineering and Physical Sciences Research Council (EPSRC) for support of this work through Grant EP/K000578/1.

Supplementary data

Supplementary data (full experimental and spectroscopic data for the compounds 1i and 2) associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/ j.tetlet.2014.08.122.

References and notes

- 1. (a) Singer, M. S. US Patent 3,796,561, 1974; Chem. Abstr. 1974, 81, 10486; (b) Cox, J. M.; Clough, J. M.; Barnes, N. J.; Pearson, D. P. J.; Matthews, I. R.; Vohra, S. K.; Smith, S. C.; Mitchell, G.; Barber, R. A. PCT Int. Appl. WO 9,533,719, 1995; Chem. Abstr. 1996, 124, 261022.
- (a) Hirwe, A. S.; Metcalf, R. L.; Kapoor, I. P. J. Agric. Food Chem. 1972, 20, 818-824; (b) Weissmueller, J.; Naumann, K.; Stendel, W. DE Patent 3,828,543 A1 1990: Chem. Abstr. 1990, 113, 131715.
- Brown, D.; Woodcock, D. Pestic. Sci. 1975, 6, 347-362.
- (a) Bringmann, G.; God, R.; Feineis, D.; Wesemann, W.; Riederer, P.; Rausch, W. D.: Reichmann, H.: Sontag, K. H. I. Neural Transm, Suppl. **1995**, 46, 245–254; (b) Riederer, P.; Foley, P.; Bringmann, G.; Feineis, D.; Bruckner, R.; Manfred, G. Eur. I. Pharmacol. 2002, 442, 1–16.
- Abbaspour Tehrani, K.; Stas, S.; Lucas, B.; De Kimpe, N. Tetrahedron 2009, 65, 5 1957-1966.
- 6. Lee, L. F.; Dolson, M. G.; Howe, R. K.; Stults, B. R. J. Org. Chem. 1985, 50, 3216-3218.
- 7 Takamatsu, M.: Sekiva, M. Chem. Pharm. Bull, 1980, 28, 3098-3105.
- Shinkevich, E. Y.; Novikov, M. S.; Khlebnikov, A. F. Synthesis 2007, 225–230. 8
- Deshmuk, A. R. A. S.: Panse, D. G.: Bhawal, B. M. Synth, Commun. 1999, 29. 9. 1801-1809
- (a) Lukasiewicz, A. Tetrahedron 1965, 21, 193-202; (b) Wichert-Tur, Z. Pol. J. 10. Chem. 1997, 71, 739-746.
- 11 (a) Makosza, M.: Nizamov, S.: Kwast, A. Mendeleev Commun, 1996, 6, 43-44; (b) Makosza, M.; Ostrowski, S. Pol. J. Chem. 2000, 74, 1355-1361; (c) Li, Y.; Zheng, T.; Wang, W.; Xu, W.; Ma, Y.; Zhang, S.; Wang, H.; Sun, Z. Adv. Synth. Catal. 2012, 354, 308-312.
- (a) Dilman, A. D.; Arkhipov, D. E.; Levin, V. V.; Belyakov, P. A.; Korlyukov, A. A.; Struchkova, M. I.; Tartakovsky, V. A. J. Org. Chem. 2007, 72, 8604–8607, (b) 12 Fustero, S.; Herrera, L.; Lazaro, R.; Rodriguez, E.; Maestro, M. A.; Mateu, N.; Barrio, P. Chem. Eur. J. 2013, 19, 11776-11785; (c) Li, Y.; Cao, Y.; Gu, J.; Wang, W.; Wang, H.; Zheng, T.; Sun, Z. Eur. J. Org. Chem. 2011, 676–679.
 Wu, N.; Wahl, B.; Woodward, S.; Lewis, W. Chem. Eur. J. 2014, 20, 7718–7724.
- (a) Jennings, W. B.; Lovely, C. J. Tetrahedron 1991, 47, 5561-5568; (b) 14 Crampton, R. H.; El Hajjaji, S.; Fox, M. E.; Woodward, S. Tetrahedron: Asymmetry 2009, 20, 2497–2503.
- General procedure for the 1,2-addition reaction of TMSCCl₃ with N-phosphinoyl 15 benzaldimines: TBAT (1 mol %, 5.4 mg) in THF (1 mL) was added to a mixture of imine 1 (1 equiv, 1 mmol) and TMSCCl₃ (1.5 equiv, 1.5 mmol) in THF (3 mL) at room temperature. The mixture was stirred for 1 h. After the reaction was complete, a saturated solution of NH₄Cl (1 mL) was added and the quenched reaction mixture was extracted with EtOAc $(3 \times)$. The combined organic layers were dried over anhydrous MgSO4. Evaporation of the solvent afforded the crude product which was purified by flash chromatography (95:5 CH₂Cl₂/ MeOH) to give the corresponding N-phosphinoyl- α -(trichloromethyl)benzylamine. Full details of all transformations and associated spectroscopic data are given in Supporting information. N-Phosphinoyl benzaldimines 1a-d, 1f-h (Ref. 16) and 1e (Ref. 17) showed identical spectroscopic properties to previously reported samples. Compound 1i, previously unreported, was fully characterised (see Supporting information).
- 16. El Hajjaji, S. Ph.D. Thesis, University of Nottingham, 2010.
- 17. Huang, M.-T.; Wu, H.-Y.; Chein, R.-J. Chem. Commun. 2014, 1101-1103.