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ABSTRACT: Phosphine-catalyzed regiodivergent enantioselective C-2- and C-4-selective γ-additions of oxazolones to 2,3-
butadienoates have been developed. The C-4-selective γ-addition of oxazolones occurred in a highly enantioselective 
manner when 2-aryl-4-alkyl oxazol-5-(4H)-ones were employed as pronucleophiles. With the employment of 2-alkyl-4-
aryl oxazol-5-(4H)-ones as the donor, C-2-selective γ-addition of oxazolones took place in a highly enantioselective man-
ner. The C-4-selective adducts provided a rapid access to optically enriched α,α-disubstituted α-amino acid derivatives, 
and the C-2-selective products led to facile synthesis of chiral N,O-acetals and γ-lactols. Theoretical studies via DFT calcu-
lations suggested that the origin of the observed regioselectivity was due to the distortion energy resulted from the inter-
action between nucleophilic oxazolide and electrophilic phosphonium intermediate. 

INTRODUCTION 
The chemistry of oxazol-5-(4H)-ones (henceforth re-

ferred to as oxazolones) has been extensively explored 
over the past decades, owing to their importance in the 
synthesis of amino acid derivatives and various heterocy-
clic structures.1 Oxazolones have been widely used as a 
nucleophilic reaction partner due to the relatively high 
acidity of the α-proton. As shown in Scheme 1, the enolate 
intermediate generated upon deprotonation of oxa-
zolones may react with electrophiles at different sites, 
resulting in the formation of different regioisomers. At 
the outset, we were particularly interested in developing 
regiodivergent approaches to prepare both C-2-selective 
and C-4-selective addition products of oxazolones; since 
the former would allow easy access to disubstituted N,O-
acetals,2 and the latter serve as precursors for the synthe-
sis of α,α-disubstituted α-amino acids.3 A number of tran-
sition metal-mediated reactions of oxazolones were re-
ported, and C-4-selectivity was observed exclusively in all 
the cases.4 Recently, organocatalytic approaches employ-
ing oxazolones have also been developed. All the existing 
methods focused on conjugate additions of oxazolones to 
various activated alkenes, e.g. α,β-unsaturated carbonyl 
compounds,5   nitroolefins,6   and vinyl sulfones.7 It is 
noteworthy that almost all the above additions of oxa-
zolones took place at the C-4-position, except in two ex-
amples whereby C-2-selectivity dominating. While Ooi 
and co-workers demonstrated that chiral organic ion pair 
catalyst could effect a C-2-selective addition to α,β-

unsaturated acylbenzotriazole,5b Jørgensen et al. achieved 
C-2-selective addition by using acyl phosphonates and 
chiral thioureas.5d To the best of our knowledge, a versa-
tile strategy enabling highly enantioselective additions of 
oxazolones at both C-2- and C-4-positions is unknown. 
Given the importance of both classes of adducts, it is 
highly desirable to develop a regiodivergent approach for 
oxazolone addition reactions.   

 
Scheme 1. Regioselectivity in Oxazolone Reactions 
 

 
 
 
 
 
 
 
 
Asymmetric phosphine catalysis has been well estab-

lished as a powerful tool for the creation of chiral mole-
cules.8 Our group has been intensively investigating this 
research field in recent years. We designed a series of 
amino acid-based bifunctional phosphines and applied 
them to a wide range of reactions, including: (aza)-
Morita–Baylis–Hillman reactions,9 allylic alkylation,10 Mi-
chael addition11 and various [3+2]/4+2]/[4+1] annulation 
reactions.12 Phosphine-catalyzed γ-addition reac
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tions13 are valuable reactions in organic synthesis, and 
many excellent asymmetric examples emerged in the lit-
erature in the past few years.14  Very recently, we disclosed 
the utilization of 2,3-butadienoates and prochiral nucleo-
philes in phosphine-catalyzed γ-addition reactions.15 Giv-
en the acidity of the α-proton in oxazolone structures, we 
set out to examine whether it is feasible to utilize oxa-
zolones in phosphine-mediated γ-additions.16a We envi-
sioned that phosphonium enolate intermediate should be 
basic enough to activate oxazolones. The subsequently 
formed ionic pair between phosphonium and oxazolone-
derived enoloate, with the assistance of hydrogen bond-
ing network, is expected to have a defined structure. We 
hypothesize that by tuning the chiral bifunctional phos-
phines, varying oxazolone structures, and employing dif-
ferent allenoates, we may be able to achieve regiodiver-
gent additions of oxazolones to allenoates (Scheme 2). 
Herein, we document the first example of regiodivergent 
C-2-selective and C-4-selective γ-additions of oxazolones 
to allenoates, leading to highly enantioselective prepara-
tion of N,O-acetal derivatives and α,α-disubstituted α-
amino acids, respectively. Moreover, DFT calculations 
were performed to gain insights into the origin of ob-
served regioselectivity. 
 
Scheme 2. Bifuncitonal Phosphine-catalyzed Enanti-

oselective Regiodivergent γγγγ-Additions of Oxazolones 
to Allenoates 

 
 
 
 
 
 
 
 

 
RESULTS AND DISCUSSION 

Phosphine-Catalyzed C-4-selective and Enantiose-

lective γγγγ-Addition of Oxazolones. Initially, the γ-
addition of 2-(4-methoxyphenyl)-4-ethyloxazol-5(4H)-
one 7a to 2,3-butadienoate 6c was selected as a model 
reaction, and the catalytic effects of various bifunctional 
phosphines were evaluated (Table 1). To our delight, all 
the phosphines examined were effective in promoting the 
reaction, affording C-4 selective γ-addition adducts as the 
only product. Bifunctional phosphines with a carbamate, 
thiourea or amide were found to be ineffective in asym-
metric induction, affording the adducts with low ee val-
ues (entries 1−7). Bifunctional phosphines with a sulfon-
amide group were discovered excellent in stereochemical 
controls (entries 8−10), and dipeptide phosphine catalysts 
were less effective (entries 11−14). In the presence of O-
TBDPS-L-threonine-based phosphine sulfonamide 3c, C-4 
selective γ-addition product was obtained in high yield 
and with good enantioselectivity (entry 10).  

Having identified the best catalyst 3c, we continued 
with further optimizations (Table 2). Among all the allen-
oates examined, the tert-butyl ester (6b) proved to be the 
best reaction partner (entries 1−8), and toluene remained 
to be the solvent of choice (entries 9−12). When the reac-
tion was run with 6b in toluene at -20 oC, the desired γ-
addition adduct was isolated in 94 % yield and with 95 % 
ee (entry 14). 

Table 1. Enantioselective C-4 Selective γγγγ-Addition of 
Oxazolone 7a to Allenoate 6c Catalyzed by Different 
Phosphinesa 

 

 

 

 

 

 

 

entry catalyst t (h) C-4:C-2
b
 yield (%)

c
 ee (%)

d
 

1 1a 15 >20:1 84 11 

2 1b 12 >20:1 91 54 

3 1c 12 >20:1 93 35 

4 2a 12 >20:1 90 41 

5 2b 12 >20:1 87 53 

6 2c 12 >20:1 91 36 

7 2d 12 >20:1 91 38 

8 3a 12 >20:1 92 53 

9 3b 12 >20:1 95 77 

10 3c 12 >20:1 96 81 

11 4 18 >20:1 89 19 

12 5a 18 >20:1 91 -61 

13 5b 18 >20:1 90 -45 

14 5c 18 >20:1 89 -37 
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a Reactions were performed with 7a (0.1 mmol), 6c (0.12 
mmol) and the catalyst (0.01 mmol) in toluene (1.0 mL) at 
room temperature. b Determined by 1H NMR analysis of 
the crude mixture. c Isolated yield. d Determined by HPLC 
analysis on a chiral stationary phase. TBDPS = tert-
butyldiphenylsilyl, TBS = tert-butyldimethylsilyl, Ts = 4-
toluenesulfonyl, PMP = 4-methoxyphenyl. 
 
Table 2. Optimization of C-4-Selective γγγγ-Addition Re-
actiona 

 

•
O

O

•
O

O

•
O

O

6g6f6e

•
O

O

6d
 

entry R(6) solvent 8 yield (%)
b
 ee (%)

c
 

1 Et(6a) toluene 8a-1 94 83 

2 t-Bu(6b) toluene 8a-2 95 88 

3 Bn(6c) toluene 8a-3 96 78 

4 6d toluene 8a-4 93 75 

5 6e toluene 8a-5 94 72 

6 6f toluene 8a-6 94 77 

7 6g toluene 8a-7 90 70 

8 Ph(6h) toluene 8a-8 89 72 

9 t-Bu(6b) xylene 8a-1 95 81 

10 t-Bu(6b) Et2O 8a-1 96 78 

11 t-Bu(6b) CHCl3 8a-1 95 31 

12 t-Bu(6b) CH2Cl2 8a-1 93 63 

13
d,e
 t-Bu(6b) toluene 8a-1 96 93 

14
d,f
 t-Bu(6b) toluene 8a-1 94 95 

a Reactions were performed with 7a (0.10 mmol), 6 (0.12 
mmol) and 3c (0.01 mmol) in the solvent specified (1.0 
mL) at room temperature overnight. b Isolated yield. c 
Determined by HPLC analysis on a chiral stationary phase. 
d With 0.15 mmol allenoate. e The reaction was run at 0 oC 
for 20 h. f At -20 oC for 48 h. 
 

 

With the optimized reaction conditions for C-4-
selective addition of oxazolones in hand, we explored the 
scope of the reaction (Table 3). Oxazolones with various 
aliphatic substituents at the C-4 position could be em-
ployed, and the C-4-selective adducts were obtained in 
high yields and with excellent enantioselectivities (entries 
1−11). Both linear and branched alkyl groups at the C-4 
position were well-tolerated. Remarkably, when tert-butyl 
substituted oxazolone was used, enantiomerically en-
riched γ-addition product was isolated in 91% yield, de-
spite the fact that the newly formed stereogenic center 
was extremely sterically hindered (entry 7). Notably, the 
reaction was also well-tolerated for sulfur-containing oxa-
zolones (entries 8 and 9). The presence of phenyl group in 
the C-4-alkyl-substituted oxazolones slightly lowered the 
enantioselectivity of the reaction (entries 12 and 13). 
When the oxazolones with different aryl groups at the 2-
position were used, the excellent C-4-selectivity and en-
antioselectivity of the reaction were maintained (entries 
14 and 15). However, oxazolones with an aryl substitution 
at the 4-position were found to be unsuitable;17 although 
C-4-selective adduct was obtained in excellent yield, the 
ee value was very low (entry 16). The absolute configura-
tions of the γ-addition products (8) were assigned by 
comparing the optical rotation of derivative 14 with the 
value reported in the literature.18 

 
Table 3. Substrate Scope for 3c-Catalyzed C-4-

Selective Enantioselective γγγγ-Addition of Oxazolones 7 
to Allenoate 6ba 

 
 

 

entry R/Ar C-4:C-2
b
 prod./yield (%)

c
 ee (%)

d
 

1 Et/PMP >20:1 8a/94 95 

2 Me/PMP 19:1 8b/96 93 

3 n-Pr/PMP 14:1 8c/99 92 

4 i-Pr/PMP >20:1 8d/94 90 

5 n-Bu/PMP >20:1 8e/95 91 

6 iso-Bu/PMP >20:1 8f/94 90 

7
e
 t-Bu/PMP >20:1 8g/91 94 

8 CH2SCH3/PMP >20:1 8h/91 91 

9 (CH2)2SCH3/PMP >20:1 8i/88 93 

10 n-C6H13/PMP >20:1 8j/97 95 

11 CH(CH2)5/PMP >20:1 8k/96 91 
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12 (CH2)2Ph/PMP >20:1 8l/95 84 

13 Bn/PMP >20:1 8m/93 80 

14 Et/C6H5 19:1 8n/94 92 

15
f
 Et/4-F-C6H4 19:1 8o/89 91 

16 Ph/PMP (9) >20:1 10/89 30 

a Reactions were performed with 8 (0.1 mmol), 6b (0.15 
mmol) and 3c (0.01 mmol) in toluene (1.0 mL) at -20 oC 
for 48 h. b Determined by 1H NMR of the crude reaction 
mixture. c Isolated yield. d ee of major product and deter-
mined by HPLC analysis on a chiral stationary phase. e 
with 0.02 mmol catalyst 3c. f The reaction was stirred for 
60 h. PMP = 4-methoxyphenyl.  
 

Phosphine-Catalyzed C-2- Selective and Enanti-

oselective γγγγ-Addition of Oxazolones. Having estab-
lished the enantioselective pathway to derive C-4-
selective γ-addition products, we next focused on devel-
oping γ-addition of oxazolones to allenoates in a C-2-
selective fashion. We reasoned judicious selection of sub-
strates utilized and careful tuning the catalyst structures 
may lead to the discovery of an enantioselective C-2-
selective γ-addition. Consequently, different substituted 
oxazolones and benzyl 2,3-butadienoate were employed, 
and the results are summarized in Table 4. We were de-
lighted to uncover that replacement of 2-phenyl-4-
ethyloxazol-5(4H)-one 7a’ with 2-methyl-4-phenyloxazol-
5(4H)-one 11a completely reverted the regioselectivity, 
leading to excellent C-2-selective product formation (en-
tries 1 & 2). The above results suggested the nature of the 
substituents at C-2 and C-4 positions of oxazolones seems 
crucial for the regioselectivity of the γ-additions to al-
lenes. Various bifunctional phosphines were subsequently 
screened, aiming to improve enantioselectivity of the re-
action. While all the phosphines examined afforded C-2-
selective adducts, dipeptide phosphines were found to be 
more effective for asymmetric induction (entries 3−14). 
When 5c was used, the C-2-selective product, N,O-acetal 
12a was obtained in 92% yield and with 85% ee (entry 15). 
The substrate scope for C-2-selective γ-addition of oxa-
zolones to allenoates was next evaluated using the opti-
mal conditions identified (Table 5). The reaction worked 
well for various C-2-substituted oxazolones, although the 
C-2-selectivities for linear alkyl substituents were superior 
to those obtained with branched alkyl groups (entries 
1−7). Variation of the substituents at the C-4-positions of 
oxazolones could also be tolerated (entries 8−11). When 2-
benzyl-4-phenyl substituted oxazolone was used, the ee 
value for the C-2-selective product dropped (entry 12). 
 

 

 

Table 4. Enantioselective C-2-Selective γγγγ-Addition of 
Oxazolones: Initial Screenings a 

 

 

 

entry sub. cat. C-2:C-4
b
 prod./yield (%)

c
 ee (%)

d
 

1 7a’ 3c <1:20 8a’/91 74 

2 11a 3c >20:1 12a/92 67 

3 11a 1a 7:1 12a/83 16 

4 11a 1b 4:1 12a/76 19 

5 11a 1c 9:1 12a/86 32 

6 11a 2a 10:1 12a/88 46 

7 11a 2b 14:1 12a/89 50 

8 11a 2c 19:1 12a/90 65 

9 11a 2d >20:1 12a/91 73 

10 11a 3a 12:1 12a/90 43 

11 11a 3b 19:1 12a/94 51 

12 11a 4 >20:1 12a/92 60 

13 11a 5a >20:1 12a/91 -70 

14 11a 5b >20:1 12a/92 -62 

15 11a 5c >20:1 12a/92 -85 

a Reactions were performed with 11a or 7a’ (0.1 mmol), 6c 
(0.12 mmol) and the catalyst (0.01 mmol) in toluene (1.0 
mL) at RT for 12-18 h. b Determined by 1H NMR of the 
crude reaction mixture. c Isolated yield. d ee of the major 
product and determined by HPLC analysis on a chiral 
stationary phase. 

 
Table 5. Substrate Scope for the C-2-Selective γγγγ-
Addition a 
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entry R/Ar C-2:C-4
b
 12/yield (%)

c
 ee (%)

d
 

1 Me/Ph >20:1 12a/92 85 

2 Et/Ph >20:1 12b/90 85 

3
e
 n-Pr/Ph >20:1 12c/88 87 

4 i-Pr/Ph 9:1 12d/87 85 

5 n-Bu/Ph >20:1 12e/93 95 

6 n-C5H11/Ph 12:1 12f/88 91 

7
f
 C6H11/Ph 6:1(19:1) 12g/81(91) 96(80) 

8 Et/2-Nap >20:1 12h/95 92 

9
e
 n-C5H11/2-Nap 19:1 12i/94 88 

10 Et/1-Nap >20:1 12j/95 94 

11 n-Pr/1-Nap >20:1 12k/95 93 

12 Bn/Ph >20:1 12l/93 80 

a Reactions were performed with 11 (0.1 mmol), 6c (0.12 
mmol) and the catalyst 5c (0.01 mmol) in toluene (1.0 mL) 
at RT for 12 h. b Determined by 1H NMR analysis of the 
crude mixture. c Isolated yield. d The ee of the major 
product and determined by HPLC analysis on a chiral 
stationary phase. e With 0.02 mmol catalyst 5c at 0 oC for 
24 h. f With 0.02 mmol catalyst 5c at -20 oC for 48 h, and 
the data in parentheses were obtained at room tempera-
ture. 
 

Regioselective γ-additions of oxazolones to 2,3-
butadienoates offer straightforward synthetic methods to 
challenging yet valuable molecular architectures. The C-
4-selective adducts are not only precursors to α,α-
disubstituted α-amino acid derivatives, they are also syn-
thetically useful given the rich functionality in the struc-
ture.16 The C-2-selective adducts of this reaction, on the 
other hand, represent optically enriched N,O-acetals. As 
illustrated in Scheme 3, adduct 8b could be readily con-
verted to allyl-substituted oxazolone 13 in high yield.15 
Acidic hydrolysis led to ring opening of 13 and simultane-
ous cleavage of the 4-methoxybenzoyl group, affording 
α,α-disubstituted α-amino acid 14 in high yield. Alterna-
tively, ring opening of oxazolone under mild basic condi-
tions yielded the corresponding α,α-disubstituted α-
amino acid derivatives 15 and 16 in excellent yields. When 
C-2-selective γ-addition product 12j was treated with 
NaBH4, lactol 17 was readily obtained in good yield. 
 
 
 
 
 

Scheme 3. Elaboration of γγγγ-Addition Adducts 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
Mechanistic Studies to Understand the Origin of 

Observed Regioselectivity. The mechanism of the γ-
addition in this report is believed to follow the general 
mechanism described in the literature,14,15 and the de-
tailed mechanistic pathways are illustrated in Figure 1.  
Nucleophilic addition of 3c to 6c yields a zwitterionic 
intermediate A, which abstracts the C-4-proton of 2-
phenyl-4-methyloxazol-5(4H)-one 7a’ to form oxazolide 
C1 and phosphonium B. The subsequent nucleophilic 
addition takes place at C-4 position of C1 via transition 
state TS3-C4, leading to the formation of intermediate D1-
C4. A hydride shift then takes place and affords interme-
diate E1-C4, which generates addition product 8 upon 
elimination of 3c. On the other hand, when 2-methyl-4-
phenyloxazol-5(4H)-one 11a is employed, oxazolide C2 is 
generated. In this pathway, the C-2-selective addition is 
favoured, which eventually leads to the formation of C-2-
selective product 12a, via a key transition state TS5-C2.  

It was rather striking to discover in this study that the 
employment of different alkyl or aryl groups at C-2- or C-
4- position of oxazolones could result in highly re-
giodivergent γ-additions to allenoates, we thus probed the 
reaction mechanism19 by DFT calculations to understand 
the origin of the observed regioselectivity. The Gibbs free 
energy profiles of 3c-catalyzed γ-addition reaction of oxa-
zolones 7a’ or 11a to allenoate 6c were calculated,20 and 
we focused on the step of adding oxazolide (7a’-1/2 or 11a-
1/2) to phosphonium (A) to understand the observed re-
gioselectivity (Figure 2). When 2-phenyl-4-methyloxazol-
5(4H)-one 7a’ is used as a substrate, the above addition 
step can take place via transition state TS3-C2-re at C-2 
position or via transition state TS3-C4-re at C-4 position. 
The calculated activation energy for TS3-C4-re (C-4-
selective) is 2.4 kcal/mol lower than the value for TS3-C2-

re (C-2-selective), corresponding to a regioselectivity of 
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1:56 (C-2:C-4), which is consistent with our experimental 
observation. Examination of geometries of the two transi-
tion states revealed that the bond lengths are comparable, 
suggesting the steric repulsion is not accountable for the 
energy difference. To gain more insights, we then applied 
distortion/interaction model21 (ΔE≠ = ΔE≠dist + ΔE≠int) 
and utilized oxazolide and phosphonium as two frag-
ments to further analyze the reaction. The difference of 
interaction energy terms (ΔE≠int) between TS3-C2-re and 
TS3-C4-re is only 1.4 kcal/mol. However, the difference of 
distortion energy terms (ΔE≠dist) between the two path-
ways is 3.7 kcal/mol, suggesting distortion energy played a 
key role in observed regioselectivity. When 7a’-1 reacts at 
the C-2-position with phosphonium to form the new C−C 
bond, the hybridization state of C-2 changes from sp2 to 
sp3. In transition state TS3-C2-re, the presence of 2-
phenyl group reduces the reactivity of C-2 through conju-
gation, and it also makes the distortion of the reacting C-
2 carbon unfavorable. Furthermore, the dihedral angle of 
DC3-C2-N3-C4 in TS3-C2-re is 149.7, 2.8° smaller than that in 
TS3-C4-re, correlating well with the distortion energy 
difference between the two transition states. Similar anal-
ysis was applied to the γ-addition of 11a. The calculated 
free energy difference between the two transition states 
TS5-C2-re and TS5-C4-re is 2.5 kcal/mol, corresponding 
to a 1:66 (C-4:C-2) selectivity, which is consistent with the 
experimental observation. In the less-favored TS5-C4-re, 
the conjugation of the phenyl group leads to a higher dis-
tortion energy. On the other hand, the non-conjugated 
methyl group at C-2- position makes the distortion at C-2 
easier and accounts for the observed C-2-selectivity of the 
γ-addition. 

The Origin of Observed Enantioselectivity. We also 
performed DFT calculations to understand the enantiose-
lectivity of the above phosphine-catalyzed γ-addition re-
actions (Figure 3). The enantioselectivity of the reaction is 
determined at the nucleophilic attack step. When 7a’ is 
employed, the re-face attack occurs through transition 
state Ts3-C4-re with a barrier of 13.0 kcal/mol, affording 
intermediate E1-C4-R with an R-configuration. Alterna-
tively, the Si-face attack proceeds via transition state Ts3-
C4-si with a higher barrier of 16.1 kcal/mol. The B3LYP-D3 
calculations predict a value of 99% ee for R-isomer, which 
is consistent with the experimental observation. When 
substrate 11a is employed, a value of 87% ee predicted by 
the B3LYP-D3 method based on the energy difference of 
Ts5-C2-re and Ts5-C2-si is in good agreement with the 
experimental result. In the geometry of Ts2-C4-si, the 
H…O distance of 2.52 Å and H…H distance of 3.06 Å sug-
gests the repulsion between the phenyl group of reactant 
and the phosphine catalyst, resulting in a higher transi-
tion state barrier. Similarly, in the geometry Ts5-C2-si, 
the short H…H distance of 2.68 Å and H…C distance of 
3.14 Å lead to the repulsion between the phenyl group of 
reactant and the phosphine catalyst, accounting for favor-
able re-face attack. 

 

 

 

 

Figure 2. Optimized transition states for 3c-catalyzed 
nucleophilic attack with 7a’ and 11a.  

 
 
Figure 3. Geometries of the Ts3-C4-re, Ts3-C4-si, Ts5-C2-

re and Ts5-C2-si transition states with 3c as catalyst.  
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Figure 1. Proposed mechanism for the 3c-catalyzed γ-addition of oxazolones (7a’ or 11a) to allenoate 6c. 

 
CONCLUSIONS 

In conclusion, we have discovered the first regiodiver-
gent enantioselective γ-additions of oxazolones to 2,3-
butadienoates catalyzed by chiral phosphines. By employ-
ing 2-aryl-4-alkyl-substituted oxazolones as donors, the 
C-4-selective γ-addition occurred to furnish highly enan-
tiomerically enriched 4,4-disubstituted oxazolones, which 
are the valuable precursors to α,α-disubstituted α-amino 
acid derivatives. The employment of 2-alkyl-4-aryl- sub-
stituted oxazolones as pronucleophiles led to exclusive C-
2-selective γ-addition to 2,3-butadienoates, and the ad-
ducts are valuable for creation of chiral N,O-acetal and 
lactols. Disclosed herein is the first practical approach for 
controlling highly enantioselective C-2 and C-4-selective 
γ-additions of oxazolones to 2,3-butadienoates, leading to 
facile synthesis of optically enriched α,α-disubstituted α-
amino acid and γ-lactol derivatives. Our theoretical inves-
tigations revealed that the regioselectivity was deter-
mined by the distortion energy resulted from the interac-
tions between nucleophilic oxazolide and electrophilic 
phosphonium intermediate, and the mechanistic insights 
gained may open up new avenues for the design of regi-
oselective addition processes of oxazolones and other 
similar donors. Such efforts are currently on-going in our 
laboratory, and will be reported in due course. 
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