Inorganic Chemistry Cite This: Inorg. Chem. XXXX, XXX, XXX-XXX

Article

Amido Ca and Yb(II) Complexes Coordinated by Amidine-Amidopyridinate Ligands for Catalytic Intermolecular Olefin Hydrophosphination

Ivan V. Lapshin,[†] Olga S. Yurova,[†] Ivan V. Basalov,[†] Vasily Yu. Rad'kov,[†] Elvira I. Musina,[‡] Anton V. Cherkasov,[†] Georgy K. Fukin,[†] Andrei A. Karasik,[‡] and Alexander A. Trifonov^{*,†,§}

[†]G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., 603137 Nizhny Novgorod, GSP-445, Russia

[‡]A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Academician Arbuzov str., 420088 Kazan, Russia

[§]A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119991, Moscow, GSP-1, Russia

Supporting Information

ABSTRACT: A series of amido Ca and Yb(II) complexes LM[N(SiMe₃)₂](THF) (**1Yb**, **1**–4Ca) coordinated by amidine-amidopyridinate ligands L^{1-4} were synthesized via a transamination reaction between proligands L^{1-4} H and bisamido complexes M[N(SiMe₃)₂]₂(THF)₂ (M = Yb, Ca). The reactions of Yb[N-(SiMe₃)₂]₂(THF)₂ with proligands L^{2} H-L⁴H containing CF₃ and C₆H₄F fragments do not allow for preparing the target Yb(II) complexes, while the Ca analogues were synthesized in good yields. Complexes **1Yb** and **1**–4Ca were evaluated as precatalysts for hydrophosphination of styrene, *p*-substituted styrenes, *α*-Me-styrene, and 2,3-dimethylbutadiene with various primary and secondary phosphines

(PhPH₂, 2,4,6-Me₃C₆H₂PH₂, 2-C₅NH₄PH₂, Ph₂PH, Cy₂PH). Complexes **1Yb**, **1–4Ca** performed high catalytic activities in styrene hydrophosphination with PhPH₂ and Ph₂PH and demonstrated high regioselectivity affording exclusively the anti-Markovnikov addition products. For primary PhPH₂ the reactions (1:1 molar ratio of substrates) catalyzed by **1Yb**, **1Ca**, and **2Ca** proved to be highly chemoselective affording the secondary phosphine Ph(PhCH₂CH₂)PH; however, complexes 3Ca and 4Ca led to the formation of both secondary and tertiary phosphines in 80:20 and 86:14 ratios. Styrene hydrophosphinations with 2,4,6-Me₃C₆H₂PH₂ and 2-pyridylphosphine for all complexes 1Yb and 1–4Ca proceeded much more slowly compared to PhPH₂. Addition of 2-C₅NH₄PH₂ to styrene catalyzed by complex 1Yb turned out to be non-regioselective and led to the formation of a mixture of Markovnikov and anti-Markovnikov addition products, while all Ca complexes enabled regioselective anti-Markovnikov addition. Complexes 1Ca and 1Yb containing catalytic centers featuring similar ionic radii performed different catalytic activity: the ytterbium analogue proved to be a more active catalyst for intermolecular hydrophosphination of styrene with Cy2PH, 2-C5NH4PH2, and PhPH2, but less active with sterically demanding 2,4,6-Me3C6H2PH2. Styrenes containing in pposition electron-donating groups (Me, tBu, OMe) performed with noticeably lower rates in the reactions with PhPH₂ compared to styrene. Complexes 1Yb, 1Ca, 2Ca, 3Ca, and 4Ca enabled addition of PhPH₂ toward the double C=C bond of α -Me-styrene, and the reaction rate for this substrate is noticeably lower; however quantitative conversions were reached in ~40 h. Complexes 1Ca and 2Ca promoted 1,2-addition of PhPH₂ to 2,3-dimethyl butadiene with excellent regio- and chemoselectivity to afford linear secondary phosphines. Hydrophosphination of inert 1-nonene with Ph₂PH with 40% conversion becomes possible due to the application of complex 2Ca (40 h, 70 °C). The rate law for the hydrophosphination of styrene with Ph₂PH catalyzed by 1Ca was found to agree with the idealized equation: $v = k[\text{styrene}]^1[\mathbf{1Ca}]^1$.

INTRODUCTION

Unlike transition metals catalytic properties of complexes of main group metals have not attracted considerable attention until very recently, and the examples of their application have been mainly limited to Lewis-acidic catalysis.¹ Calcium combines a number of very important advantages which makes this metal an extremely attractive candidate for investigation of its catalytic potential. Wide abundance of this element in the Earth's crust (~5 wt %)² with nearly endless resources and low production price ensures its availability.

Moreover, being a biogenic, environmentally friendly element, calcium fits the current trend to develop new synthetic approaches promoted by nontoxic metals and perfectly meets all the requirements of the concept of "green" chemistry.³

However, the development of organocalcium chemistry for a long time was constrained by limited accessibility of this compound due to synthetic difficulties caused by enhanced

Received: January 15, 2018

Scheme 1. Synthesis of Complexes 1Yb,1-4Ca

reactivity and low kinetic stability.⁴ The high electropositive character and large ionic radii⁵ of the heavy alkaline earth metals result in a chemistry that is mostly governed by electrostatic and steric requirements and make it related to that of rare earth metals. Indeed, the heavy alkaline earth and rare earth Ln²⁺ (Ln = Eu, Sm, Yb) ions due to hard Lewis acidity, oxophilicity, low polarizability^{4a,c,6} and close values of ionic radii⁵ exhibit strong similarities in their structures and reactivity (besides the redox reactions typical for Ln²⁺ complexes). Importantly, both families of complexes feature a typical reaction behavior, such as the ability to add to multiple C–C bonds and facile σ -bond metathesis, which makes them promising candidates for catalysis of hydroelementation of unsaturated substrates.⁷

During the past two decades, enormous progress has been reached in the synthesis and characterization of well-defined calcium complexes and their application in homogeneous catalysis.⁸ They have been successfully used for olefin polymerization,⁹ hydroamination,¹⁰ and hydrosilylation.¹¹ The report of Hill and co-workers in 2007 on hydrophosphination of unhindered activated alkenes and diphenylacetylene^{8c} enabled by Ca compounds gave a strong impetus to the development of the sphere of catalytic application of alkaline earth metals.^{8b,d,9c,10b,12}

Moreover organocalcium mediated reactions present special interest from an academic point of view since they allow deeper insight into different ways of activation of C–C multiple bonds in coordination spheres of transition and main group metals.¹³

Herein we report on the synthesis of a series of new heteroleptic amido complexes of Ca(II) and Yb(II) supported by multidentate amidine-amidopyridinate ligands and their application in catalytic intermolecular hydrophosphination of various olefins and dienes. The influence of electronic and steric properties of both olefin and phosphine substrates will be considered. The detailed kinetic studies of addition of Ph₂PH to styrene catalyzed by **1Ca** will be described.

RESULTS AND DISCUSSION

As it was mentioned above due to the large ionic radii and predominantly ionic nature of metal–ligand bonding Ca(II) and Ln(II) complexes easily undergo ligand redistribution reactions (Schlenk equilibrium).^{8a,14} Since application of bulky and multidentate ligands can circumvent this kinetic instability issue,¹⁵ we focused our attention on recently designed amidine-amidopyridinate ligands.¹⁶

The heteroleptic amido complexes $LM[N(SiMe_3)_2](THF)$ (M = Yb, Ca) coordinated by polydentate nitrogen-based donor amidine-amidopyridinate ligands L were synthesized via a one-step transamination reaction between proligands LH^{16} and bisamido complexes $M[N(SiMe_3)_2]_2(THF)_2$ (M = Yb, Ca) (Scheme 1).

In the case of Yb, the reactions smoothly proceed at room temperature, while for Ca high product yields can be achieved when the reaction mixtures are heated at 50 °C for 50 h. Complexes 1Yb and 1Ca were isolated after recrystallization from toluene and THF/hexane solutions in high yields as black and yellow crystals, respectively. Complex 2Ca was obtained from toluene as orange crystals. Crystallization of complexes 3Ca and 4Ca from hexane afforded orange microcrystalline powders. It is noteworthy that unlike L¹H the reactions of $Yb[N(SiMe_3)_2]_2(THF)_2$ with proligands L^2H-L^4H containing CF₃ and C₆H₄F fragments did not allow for preparing the target Yb(II) complexes. The NMR-tube reactions monitored by ¹H NMR spectroscopy detected evolution of HN(SiMe₃)₂ and formation of paramagnetic Yb(III) species featuring low solubility in C₆D₆ and common organic solvents. All the attempts of isolation of tractable reaction products failed. Most likely such a difference of reactivity of proligands L²H-L⁴H with $Yb[N(SiMe_3)_2]_2(THF)_2$ and $Ca[N(SiMe_3)_2]_2(THF)_2$ is due to the redox character of the Yb(II) center which makes possible C–F bond activation.

Complexes 1Yb, 2Ca, 3Ca, and 4Ca are stable both in the solid state and in hexane or toluene solutions under conditions excluding contact with oxygen and moisture, whereas complex 1Ca is stable in solid state in solution undergoes ligand redistribution reaction affording in 1 week an equimolar mixture of homoligand compounds $[(L^1)_2Ca]$ and Ca[N- $(SiMe_3)_2]_2(THF)_2$ which were isolated from the reaction mixture in 31 and 33% yields, respectively. The ¹H and ¹³C{¹H} NMR spectra of all complexes display single sets of resonances in the -20 to +70 °C temperature range, consistent with the presence of a single C_1 -symmetric species in solution. The ${}^{19}F{}^{1}H{}$ NMR spectrum of **3Ca** displayed two resonances due to CF₃ and C₆H₄F groups, and spectrum of complexes 2Ca and 4Ca displayed only one resonances due to the CF₃ group. In the ¹⁹F{¹H} NMR spectrum of $L^{3}H$ (C₇D₈, 20 °C), the singlet due to the F atoms of the C_6H_4F ring appears at -58.8 ppm, while in the spectrum of 3Ca these F atoms give rise to a strong field shifted signal (-127.2 ppm), thus giving evidence for Ca-F interaction. Compound 3Ca turned out to be thermally stable in toluene solution at 70 °C: no decomposition was observed within 5 days. No fluxional behavior was detected by ¹⁹F{¹H} NMR spectroscopy in the temperature region -50-70 °C.

The single crystals of **1Yb** and **1Ca** suitable for X-ray study were obtained by slow concentration of toluene and THF/

hexane solutions respectively at room temperature. The molecular structure of complexes **1Yb** and **1Ca** are depicted in Figure 1, and the crystal and structural refinement data are

Figure 1. Molecular structure of 1 (M = Yb (1Yb), Ca (1Ca)). Hydrogen atoms, methylene fragments of the THF molecule, and methyl substituents of iPr groups are omitted for clarity; thermal ellipsoids drawn at the 30% probability level. Bond lengths (Å) and angles (deg):1Yb: Yb(1)-N(5) 2.365(3), Yb(1)-N(2) 2.422(3), Yb(1)-O(1) 2.436(3), Yb(1)-N(1) 2.444(3), Yb(1)-N(4)2.499(3), N(1)-C(1) 1.415(5), N(2)-C(13) 1.331(5), N(2)-C(9) 1.375(5), N(3)-C(22) 1.390(5), N(4)-C(22) 1.296(5), N(2)-Yb(1)-N(1) 55.3(2), N(1)-C(9)-N(2) 112.7(3), N(1)-Yb(1)-N(4) 120.8(2), N(4)-C(22)-N(3) 122.2(3), N(5)-Yb(1)-N(4)111.0(2); 1Ca: Ca(1)-N(5) 2.330(3), Ca(1)-O(1) 2.353(2), Ca(1)-N(2) 2.371(3), Ca(1)-N(1) 2.394(3), Ca(1)-N(4)2.557(3), N(1)-C(9) 1.332(4), N(2)-C(9) 1.382(4), N(2)-C(13) 1.319(4), N(3)-C(22) 1.391(4), N(4)-C(22) 1.298(4), N(2)-Ca(1)-N(1) 56.65(9), N(1)-C(9)-N(2) 112.8(3), N(4)-C(22)-N(3) 123.6(3), N(1)-Ca(1)-N(4) 118.8(2).

listed in Table S1 (Supporting Information). Complex 1Yb crystallizes as a solvate $1Yb \cdot 1/2C_7H_8$, while 1Ca forms a solvate with one toluene molecule $1Ca \cdot C_7H_8$. According to the X-ray data, complexes 1Yb and 1Ca have similar structures but they are not isomorphous. They crystallize in the monoclinic crystal system but in different space groups $P2_1/n$ and $P2_1/c$. The fivecoordinate metal center in 1Yb and 1Ca adopts a distorted square-pyramidal geometry with three of the nitrogen atoms of the amidine-amidopyridinate ligand and one oxygen atom of THF molecule in the base and the nitrogen atom of amido group in the axial vertex. The X-ray diffraction studies revealed a rather unusual geometric situation within the M-amidineamidopyridinate fragment: surprisingly the covalent bonds Yb- $N(1)_{amido}$ (2.444(3) Å) and Ca-N(1)_{amido} (2.394(3) Å) turned out slightly longer than the coordination bonds Yb- $N(2)_{pyridinato}$ (2.422(3) Å) and Ca-N(2)_{pyridinato} (2.371(3) Å). Similar bonding situation has been described previously for aminopyridinato Ln(III) complexes.¹⁸ The M-N(5)_{silylamido} bond lengths in 1Yb and 1Ca (2.365(3) and 2.330(3) Å, respectively) fall into the range of values normally measured in five-coordinate Yb(II) and Ca complexes with terminal $N(SiMe_3)_2$ ligands.^{8d,10b,19} Among the M–N bonds in **1Yb**

and 1Ca, those involving the amidinate nitrogen N(4) are the longest (Yb(1)–N(4) 2.499(3) Å; Ca(1)–N(4) 2.557(3) Å). No delocalization of negative charge was detected in the amidinate units of the ligands: the length of N(3)–C(22) bond (1Yb:1.390(5); 1Ca:1.391(4) Å) corresponds to a single one, while the length of the second bond N(4)–C(22) is indicative of its double character (1Yb: 1.296(5); 1Ca: N(4)–C(6) 1.298(4) Å).

The crystals of 2Ca suitable for X-ray study were obtained by slow concentration of the toluene solution at room temperature. Complex 2Ca crystallizes as a solvate with one toluene molecule $2Ca \cdot C_7H_8$. The molecular structure of complex 2Ca is depicted in Figure 2. Complex 2Ca crystallizes in

Figure 2. Molecular structure of 2Ca. Hydrogen atoms, methylene fragments of the THF molecule and methyl substituents of iPr groups are omitted for clarity; thermal ellipsoids drawn at the 30% probability level. Bond lengths (Å) and angles (deg): Ca(1)–N(1) 2.415(2), Ca(1)–N(2) 2.391(2), Ca(1)–N(4) 2.665(2), Ca(1)–N(5) 2.320(2), Ca(1)–O(1) 2.463(2), Ca(1)–O(2) 2.375(2), N(3)–C(22) 1.374(2), N(4)–C(22) 1.284(2), N(2)–C(13) 1.323(2), N(2)–C(9) 1.371(2), N(2)–Ca(1)–N(1) 55.98(2), N(5)–Ca(1)–N(4) 128.59(6), N(2)–Ca(1)–N(4) 65.45(5), N(1)–Ca(1)–N(4) 116.38(5).

orthorhombic crystal system in the Pna21 space group. Unlike 1Yb and 1Ca complex 2Ca contains tetradentate amidineamidopyridinate ligand bearing a pendant methoxy group in the amidinate phenyl ring. The six-coordinate metal center in 2Ca adopts a distorted octahedral geometry with three of the nitrogen and one oxygen atoms of the amidine-amidopyridinate ligand in the base and the nitrogen atom of amido group and one oxygen atom of THF molecule in the axial vertex. However, the difference of the formal coordination numbers of the metal centers in 1Ca, 1Yb, and 2Ca does not affect the bonding situation within the M-amidine-amidopyridinate fragment: the covalent bond $Ca-N(1)_{amido}$ (2.415(2) Å) is longer than the coordination bond distance $Ca-N(2)_{pyridinato}$ (2.391(2) Å). Despite the different coordination numbers of the metal centers the M-N(5)_{silvlamido} bond lengths in 1Yb (2.365(3) Å), 1Ca (2.330(3) Å) and 2Ca (2.320(2) Å) have rather similar values and fall into the region typical for five- and six-coordinate Yb(II) and Ca(II) heteroleptic amido complex-

Table 1	. Hydrophosphination	n of Styrene wi	th Phosphines	Catalyzed by	Complexes	1Yb, 1Ca, 2Ca, 3C	a, and 4Ca"
---------	----------------------	-----------------	---------------	--------------	-----------	-------------------	-------------

no.	precatalyst [mM]	phosphine	time, h	conversion ^b	sec-P/tert-P ^c	regioselectivity Markovnikov/anti- Markovnikov d
1	1Yb	Ph ₂ PH	3	100		0/100
2		Cy ₂ PH	40	40		0/100
3		PhPH ₂	3	100	95/5	0/100
4		2,4,6-Me ₃ C ₆ H ₂ PH ₂	16	30	100/0	0/100
5		2,4,6-Me ₃ C ₆ H ₂ PH ₂	70	43	100/0	0/100
6		$2-C_5NH_4PH_2$	70	100	100/0	44/56
7	1Ca	Ph ₂ PH	3	100		0/100
8		Cy ₂ PH	72	25		0/100
9		PhPH ₂	3	33	99/1	0/100
10		PhPH ₂	10	100	97/3	0/100
11		2,4,6-Me ₃ C ₆ H ₂ PH ₂	72	84	100/0	0/100
12		$2-C_5NH_4PH_2$	72	12	100/0	0/100
13	2Ca	Ph ₂ PH	3	100		0/100
14		Cy ₂ PH	72	31		0/100
15		PhPH ₂	3	55	95/5	0/100
16		2,4,6-Me ₃ C ₆ H ₂ PH ₂	72	93	100/0	0/100
17		2-C ₅ NH ₄ PH ₂	72	47	76/24 ^d	0/100
18	3Ca	Ph ₂ PH	3	100		0/100
19		Cy ₂ PH	72	30		0/100
20		PhPH ₂	3	100	80/20	0/100
21		2,4,6-Me ₃ C ₆ H ₂ PH ₂	72	99	100/0	0/100
22		$2-C_5NH_4PH_2$	72	24	$100/0^{d}$	0/100
23	4Ca	Ph ₂ PH	3	100		0/100
24		Cy ₂ PH	72	30		0/100
25		PhPH ₂	3	76	86/14	0/100
26		2,4,6-Me ₃ C ₆ H ₂ PH ₂	72	100	100/0	0/100
27		2-C ₅ NH ₄ PH ₂	72	100	84/16 ^d	0/100

^{*a*}Reaction in neat substrates [phosphine]₀:[styrene]₀:[precat]₀ = 50:50:1, [precat]₀ = 87.0 mM, T [°C] = 70. ^{*b*}Conversion of styrene, determined by NMR spectroscopy. ^{*c*}Chemoselectivity was determined by ³¹P NMR spectroscopy. ^{*d*}Regioselectivity was determined by ¹H, ³¹P NMR spectroscopy.

es.^{8d,10b,12c,19,20} The geometric parameters of the amidinate fragment in **2Ca** are similar to those in **1Ca** and **1Yb**. The noticeable difference in the C(22)-N(3) and C(22)-N(4) bond lengths (1.374(2) vs 1.284(2) Å) is indicative of the absence of negative charge delocalization within the amidinate fragment.²¹

Hydrophosphination Catalysis. Complexes 1Yb, 1Ca, 2Ca, 3Ca, and 4Ca were evaluated as precatalysts for styrene hydrophosphination with various phosphines. The catalytic tests were performed in the presence of 2 mol % of the catalyst in neat substrates at 70 °C. The representative data are collected in Table 1.

All complexes performed high catalytic activity in styrene hydrophosphination with PhPH₂ and Ph₂PH: quantitative conversions were reached in 3-10 h. The reactions were found to be highly regioselective affording exclusively the anti-Markovnikov addition products for both PhPH₂ and Ph₂PH with no indication for the formation of other regioisomers. Moreover, for primary PhPH₂ the reactions catalyzed by 1Yb, 1Ca, and 2Ca proved to be highly chemoselective, leading to the formation of the secondary phosphine (sec-P) in >95% selectivity; that is, less than 5% of tertiary phosphine formed upon double (stepwise) hydrophosphination. However, complexes 3Ca and 4Ca turned out to be less chemoselective; the formation of both secondary and tertiary phosphines was detected in 80/20 (3Ca) and 86/14 (4Ca) ratios. The results of styrene hydrophosphination with PhPH₂ catalyzed by a series of heteroleptic amido complexes 1Ca-4Ca unambiguously imply a dramatic effect of the ancillary ligand on both catalytic activity and selectivity of metal promoted reactions. It is noteworthy that the transition from L⁴ to L³ featuring a similar structure and steric demand but bearing in the orthoposition of amidinate phenyl substituent a fluorine atom capable of weak coordination to metal ions¹⁷ leads to a noticeable increase of catalytic activity (**4Ca**: 3 h, 76% vs **3Ca**: 3 h, 100%); however it does not affect the chemoselectivity. Complex **1Ca** which does not contain CF₃ or C₆H₄F groups in the ancillary ligand framework but bears sterically demanding iPr₂C₆H₃ substituent at the amidinate nitrogen proved to be the least active but the most chemoselective in this series of complexes.

Addition of more sterically demanding and more donor primary phosphine MesPH₂ to styrene proceeds much more slowly compared to PhPH₂. For the reactions catalyzed by 1-4Ca complete conversion requires >72 h at 70 °C, while complex 1Yb demonstrated the lowest activity: even after 70 h the conversion did not exceed 43%. However, all precatalysts provided excellent regio- and chemoselectivities. The nature of phosphine was found to affect the hydrophosphination rate dramatically. Thus, Cy₂PH proved to be much less reactive than Ph₂PH in all catalytic tests. The reactions with styrene proceed slower; the highest conversion was provided by ytterbium compound 1Yb and reached 40% in 40 h. Ca complexes displayed lower catalytic activity, in 72 h conversion did not exceed 31%. Lower reactivity of Cy₂PH vs Ph₂PH can be rationalized by both greater steric demand of the former (compare the Tolman cone angles: Cy₂PH, θ = 143°; Ph₂PH, θ = 128° ²² and its lower acidity (compare: Cy₂PH, pK_a = 34.6 (35.7); Ph₂PH, pK_a = 22.9 (21.7),)²³ which affects phospine deprotonation and σ -bond metathesis steps of the catalytic

cycle of intermolecular olefin hydrophosphination.^{8d} Styrene hydrophosphination with 2-C_cNH₄PH₂ for all complexes 1Yb and 1-4Ca proceeds much more slowly compared to PhPH₂. Surprisingly hydrophosphination of styrene with 2-C₅NH₄PH₂ catalyzed by complex 1Yb turned out to be non-regioselective and led to the formation of a mixture of Markovnikov and anti-Markovnikov addition products in a 44:56 ratio (entry 7). In contrast all Ca complexes enable regioselective reaction affording exclusively anti-Markovnikov addition products. However, complexes 2Ca and 4Ca demonstrate lower chemoselectivity, and the formation of both secondary and tertiary phosphines was detected in 76:24 and 84:16 ratios. respectively. It is noteworthy that complexes 1Ca and 1Yb containing catalytic centers with very similar ionic radii performed different catalytic activity: the ytterbium analogue proved to be a more active catalyst for intermolecular hydrophosphination of styrene with Cy₂PH, 2-C₅NH₄PH₂, and PhPH₂, but less active with sterically demanding MesPH₂. To elucidate the possibility of double sequential alkylation of PhPH₂ catalyzed by complexes 1Yb and 1-4Ca hydrophospination reactions were carried out at a molar substrates ratio $[styrene]_0: [PhPH_2]_0 = 2:1$. Complexes 1Ca and 2Ca enable the formation of the tertiary phosphine PhP-(CH₂CH₂Ph)₂ in quantitative yields and excellent chemoselectivity (Table 2, entry 2 and 4); however 2Ca shows

Table 2. Double Sequential Hydrophosphination of Styrene with PhPH₂ ([PhPH₂]₀:[styrene]₀ = 1:2) Catalyzed by Complexes 1Yb, 1Ca, 2Ca, 3Ca, $4Ca^{a}$

no.	precatalyst	substrates	time, h	conversion ^b	sec-P/tert-P ^c
1	1Yb	styrene	70	75	50/50
2	1Ca		70	100	0/100
3	2Ca		16	67	67/33
4	2Ca	PhPH ₂	48	100	0/100
5	3Ca		70	75	50/50
6	4Ca		70	74	52/48

"Reaction in neat substrates $[PhPH_2]_0:[styrene]_0:[precat]_0 = 50:100:1, [precat]_0 = 87.0 mM, T [°C] = 70. ^bConversion of styrene, determined by NMR spectroscopy. ^cChemoselectivity was determined by ³¹P NMR spectroscopy.$

noticeably higher catalytic activity. Quantitative conversion was reached in 48 h vs 70 h for 1Ca. Complexes 1Yb, 3Ca, and 4Ca proved to be somewhat less active: in 70 h the conversion did not exceed 75%. Surprisingly the reactions catalyzed by complexes 1Yb, 3Ca, and 4Ca under the same reaction conditions were nonselective and led to the formation of mixtures of the secondary and tertiary phosphines. It is noteworthy that heteroleptic amido complexes 1Yb, 1–4Ca coordinated by amidine-amidopyridinate ligands provide lower chemoselectivity compared to the related amido complexes supported by amidinate²⁴ and phenolate^{8d,25} ligands.

To assess the influence of the electronic properties of styrenic substrate on reaction rate, a series of catalytic tests of hydrophosphination of styrenes bearing various substituents in the para position of the aromatic ring with PhPH₂ was carried out. The catalytic tests were performed in the presence of 2 mol % of **1Yb**, **1Ca**, **2Ca**, **3Ca**, and **4Ca** as the precatalyst. The representative results are listed in Table 3. A number of functional groups were found to be tolerated for the hydrphosphination of styrene. Similar to our previous observations^{8d} for styrenes containing in *p*-position electron-

donating groups (Me, tBu, OMe), a noticeable decrease of the reaction rate was detected compared to that for unsubstituted styrene (entry 11-25). Addition of PhPH₂ to p-MeO-styrene proceeded at the lowest rate, most likely due to blocking the oxophilic catalytic center and competition between MeO, C= C, and phosphine for coordination site. For p-Cl-styrene no strong deviation from the reaction rate measured for styrene was observed (entry 6-10) with the exception of complex 1Ca which performs noticeably higher catalytic activity in the case of the former substrate. In the case of p-F-styrene an essential drop of activity took place when 1Yb was used as a precatalyst (entry 1), whereas activities of other complexes did not differ much from those measured for styrene. Such a decrease of activity can be rationalized either by competing coordination between fluoride^{24,25} and olefinic units on catalytic center or by C-F bond activation mediated by Yb(II) complex²⁶ leading to partial deactivation of the catalyst. All of the above-mentioned complexes proved to be unable to mediate addition of PhPH₂ and Ph₂PH to internal double C=C bonds of cyclohexene and *trans*-stilbene. As it was exemplified by α -Me-styrene complexes 1Yb, 1Ca, 2Ca, 3Ca, and 4Ca enable addition of PhPH₂ toward double C=C bond of 1,1-disubstituted terminal olefin. The reaction rate for this substrate is noticeably lower; however quantitative conversions can be reached in ~ 40 h. It is noteworthy that regio- and chemoselectivities remain excellent for this substrate (entry 26–30). Catalytic addition of $PhPH_2$ to conjugated 2,3-dimethyl butadiene was tested as a prospective synthetic approach to the formation of the phosphole ring; however no formation of a heterocyclic product was detected. Complexes **1–4Ca** allow for the transformation of 2.3-dimethyl butadiene into the linear phosphorus containing 1,2-addition products in good yields and excellent regioselectivity, albeit only 1Ca and 2Ca provide a high degree of chemoselectivity control and afford secondary phosphines. For complexes 3Ca and 4Ca the reactions lead to the formation of mixtures of secondary and tertiary phosphines (entries 34 and 35).

Hydroelementation of inert 1-alkenes still remains a challenging and hardly realizable transformation.^{7b,27} Nevertheless, complexes **3Ca** and **4Ca** enable addition of PhPH₂ to 1-nonene and provide ~25% conversion in 40 h at 70 °C. For Ph₂PH within the same reaction time even higher conversions were measured and reached maximum 40% in the case of **2Ca**. Unexpectedly complex **1Yb** appeared completely inert in hydrophosphination of 1-nonene with both Ph₂Ph and PhPH₂.

Interestingly complexes **1Ca** and **1Yb**, although having similar structures and containing catalytic centers with very similar ionic radii, performed different catalytic activity. Ytterbium analogue proved to be more active catalyst for intermolecular hydrophosphination of styrene with Cy_2PH , 2- $C_5NH_4PH_2$, and PhPH₂. This fact is in line with the previous observation of higher catalytic activity of (o-Me₂NC₆H₄-CHSiMe₃)₂Yb(THF)₂ in styrene polymerization vs that of Ca congener.^{9d} A higher insertion rate was explained by the authors as a result of a weaker Yb-ligand bond caused by electron–electron repulsion of the completely filled f shell. At this stage it is unclear which factors are responsible for the different selectivity in styrene hydrophosphination with PhPH₂ promoted by Yb and Ca complexes.

Kinetic Analysis. In order to get a deeper insight into the mechanism of intermolecular olefin hydrophosphination catalyzed by Ca compounds, more detailed kinetic studies were performed for reaction of styrene with Ph_2PH in the presence of **1Ca**. The reactions were carried out in C_6D_{62} and

Table 3. Olefin Hydrophosphination with PhPH₂ and Ph₂PH Catalyzed by Complexes 1Yb, 1-4Ca^a

no.	precatalyst	substrates	time, h	conversion ^b	selectivity ^c		no.	precatalyst	substrates	time, h	conversion ^b	selectivity
1	1Yb	styrene	3	100	94/6		35	3Ca	PhPH ₂	40	100	100/0
2	1Ca		3	33	91/9		36	4Ca		40	88	100/0
3	1Ca	$PhPH_2$	10	100	97/3		37	1Yb	2,3-dimethyl-1,3-	40	40	100/0
4	2Ca		3	55	95/5				butadiene			
5	3Ca		3	100	80/20		38	1Ca		40	100	100/0
6	4Ca		3	76	86/14		39	2Ca		40	100	100/0
7	1Yb		16	72	94/6		40	3Ca	PhPH ₂	40	90	40/60
8	1Ca	p-F-styrene	3	82	91/9		41	4Ca		40	95	82/18
9	2Ca		3	61	92/8		42	1Yb		96	0	
10	3Ca	PhPH ₂	3	100	85/15		43	1Ca	nonene-1	72	12	100/0
11	4Ca		3	67	86/14		44	1Ca		96	28	100/0
12	1Yb		3	80	90/10		45	2Ca	PhPH ₂	40	3	100/0
13	1Ca	p-Cl-styrene	3	86	96/4		46	3Ca		40	23	100/0
14	2Ca		3	71	88/12		47	4Ca		40	25	100/0
15	3Ca	PhPH ₂	3	79	90/10		48	1Yb		96	0	
16	4Ca		3	80	91/9		49	1Ca	nonene-1	40	4	100/0
17	1Yb		16	96	98/2		50	2Ca		40	40	100/0
18	1Ca	p-Me-styrene	16	96	90/10		51	3Ca	Ph ₂ PH	40	34	100/0
19	2Ca		16	100	68/32		52	4Ca		40	13	100/0
20	3Ca	PhPH ₂	16	100	83/17		53	1Yb	cyclohexene	40	0	
21	4Ca		16	88	84/16		54	1Ca		40	0	
22	1Yb		16	28	100/0		55	2Ca	PhPH ₂	40	0	
23	1Ca	p-tBu-styrene	16	96	91/9		56	3Ca		40	0	
24	2Ca		16	100	83/17		57	4Ca		40	0	
25	3Ca	PhPH ₂	16	100	83/17		58	1Yb		40	0	
26	4Ca		16	85	87/13		59	1Ca	trans-stilbene	40	0	
27	1Yb	p-OMe-styrene	70	55	95/5		60	2Ca		40	0	
28	1Ca		40	100	89/11		61	3Ca	PhPH ₂	40	0	
29	2Ca	PhPH ₂	40	100	77/23		62	4Ca		40	0	
30	3Ca		40	100	83/17	а	Read	tion in n	eat substrates [pl	nosphine] ₀	:[styrene] ₀ :[]	precat] ₀ =
31	4Ca		40	100	90/10	5	0:50	:1, [precat]	$_{0} = 87.0 \text{ mM}, T [^{\circ}]$	$[C] = 70.^{7}$	Conversion	of styrene
32	1Yb		40	62	100/0	d	eteri	nined by N	JMR spectroscopy	. ^c Product	chemoselec	tivity"Anti
33	1Ca	α -Me-styrene	40	82	100/0	N	/lark	ovnikov m	onoaddition/doubl	e addition	a" determine	ed by ³¹ F
34	2Ca	,	40	90	100/0	N	JMR	spectrosco	py.			

kinetic monitoring was performed by ¹H NMR spectroscopy. The plot of conversion of Ph₂PH vs reaction time at 25 °C in the presence of an 8-fold molar excess of styrene proved to be linear (Figure 3), indicating a zeroth-order dependence of the reaction rate in concentration of Ph₂PH. Conversion of Ph₂PH over time was studied at two different [phosphine]/[**1Ca**] ratios (see the Supporting Information, Figure S11). In both cases, similar values of k_{app} were calculated (23.21 and 25.53 h⁻¹).

Figure 3. Plot of Ph₂PH conversion vs time for styrene hydrophosphination with Ph₂PH, catalyzed by **1Ca**. Reaction conditions: 25 °C, $[1Ca]_0 = 28$ mM, $[PPh_2H]_0:[styrene]_0:[1Ca]_0 = 26:220:1$, total volume 0.575 mL.

A series of experiments was conducted to determine the partial order in styrene, using a constant concentration of the catalyst and the phosphine and varying the concentration of styrene in the reaction mixture (0.96–1.67 mol/L). The plot of $\ln(k_{\rm app})$ vs $\ln([\text{styrene}]_0)$ gave a straight line ($R^2 = 0.974$) with a slope of 0.9 corresponding to the apparent kinetic order for styrene (Figure 4; see also Figure S12).

Figure 4. Plot of $lg(k_{app})$ vs $lg([styrene]_0)$ for hydrophosphination of styrene with Ph₂PH, catalyzed by **1Ca** at different styrene concentrations (0.96; 1.28; 1.58; 1.67 mol/L). Reaction conditions: 25 °C, $[\mathbf{1Ca}]_0 = 48$ mM, $[\mathbf{1Ca}]_0/[Ph_2PH]_0 = 1:77$, total volume 0.6 mL.

In order to determine the partial order in the catalyst, the conversion of phosphine was monitored at constant molar ratio of substrates and at different catalyst concentrations (54.1–161.9 mmol/L) while maintaining the total volume of reactants and solvent constant (Figure 5).

Figure 5. Kinetic curves of accumulation of tertiary phosphine at different concentrations of **1Ca** (54.1; 80.9; 107.9; 161.9 mmol/L). Reaction conditions: 25 °C, [styrene]₀ = $[Ph_2PH]_0$ = 2.9 mol/L, total volume 0.6 mL.

The initial reaction rates (k_{app}) are determined for various initial concentrations of the catalyst below 70%. A plot of $lg(k_{app})$ vs $lg([1Ca]_0)$ gave a straight line with a slope indicating a first order in the precatalyst (Figure 6, see also Figure S13).

Figure 6. Plot of $lg(k_{app})$ vs $lg([1Ca]_0)$ for hydrophosphination of styrene with Ph₂PH, catalyzed by 1Ca at the different catalyst concentrations (54.1; 80.9; 107.9; 161.9 mmol/L). Reaction conditions: 25 °C, [styrene]_0 = [Ph_2PH]_0 = 2.9 mol/L, [styrene]_0/ [Ph_2PH]_0 = 1:1, total volume 0.6 mL.

Thereby the rate law for the hydrophosphination of styrene with Ph₂PH catalyzed by **1Ca** agrees with the idealized equation: $v = k[\text{styrene}]^1[\mathbf{1Ca}]^1$ and is consistent with the previously reported observations.^{7b,8d,12d,e,28}

CONCLUSION

The reactions of bisamido complexes $M[N(SiMe_3)_2]_2(THF)_2$ (M = Yb, Ca) and amidine-aminopyridines LH was used as a synthetic approach to the synthesis of the heteroleptic amido complexes $LM[N(SiMe_3)_2](THF)$. The reactions of Yb[N-(SiMe_3)_2]_2(THF)_2 with proligands L^2H-L^4H bearing CF₃ and C_6H_4F groups did not result in the formation of the target Yb(II) complexes, while in the case of Ca[N(SiMe_3)_2]_2(THF)_2 under the similar conditions afforded analogues 2–4Ca in good yields. Taking into account the fact that in the case of L¹H which does not contain C–F bonds the transamination reaction allows for preparing the heteroleptic amido complexes of both Ca and Yb it is logical to assume that in the reactions of L²H- L^4H due to redox character of Yb(II) center C–F bond activation occurs and hampers the formation of LYb[N-(SiMe₃)₂](THF) complexes. The X-ray analysis revealed that in **IYb** and **ICa** the metal centers are five-coordinate, while in **2Ca** it adopts a coordination number of six because of the additional coordination of a pendant methoxy group in the amidinate phenyl ring.

The systematic study of styrene hydrophosphination with PhPH₂ catalyzed by a series of amido complexes 1Ca-4Ca coordinated by amidine-amidopyridinate ligands unambiguously imply a dramatic effect of the steric and electronic properties of the ancillary ligand on both catalytic activity and selectivity of metal promoted reactions. It is noteworthy, that the transition from L⁴ to L³ featuring similar structure and steric demand but bearing in ortho-position of amidinate phenyl substituent a fluorine atom capable to weak coordination to metal ions¹⁷ leads to a noticeable increase of catalytic activity (4Ca: 3h, 76% vs 3Ca: 3h, 100%) however does not affect chemoselectivity. Complex 1Ca which does not contain CF₃ or C₆H₄F groups in the ancillary ligand framework but bears sterically demanding iPr2C6H3 substituent at the amidinate nitrogen proved to be the least active but the most chemoselective in this series of complexes.

Complexes 1Yb. 1-4Ca demonstrated high catalytic activity and regioselectivity in styrene hydrophosphination with PhPH₂ and Ph₂PH. For primary PhPH₂ the addition to styrene catalyzed by 1Yb, 1Ca, and 2Ca is chemoselective and affords the secondary phosphine Ph(PhCH₂CH₂)PH, while when **3Ca** and 4Ca were used as precatalysts mixtures of secondary and tertiary phosphines were formed. Complexes 1Yb and 1-4Ca enable styrene hydrophosphination with 2,4,6-Me₃C₆H₂PH₂ and 2-pyridylphosphine. Surprisingly despite the similar ionic radii of the catalytic centers the reaction of 2-C₅NH₄PH₂ with styrene catalyzed by 1Yb proceeds non-regioselectively, while all Ca complexes enable regioselective anti-Markovnikov addition. Complexes 1Ca and 1Yb containing catalytic centers featuring similar ionic radii performed different catalytic activity: ytterbium analogue proved to be more active catalyst for intermolecular hydrophosphination of styrene with Cy₂PH, 2-C5NH4PH2 and PhPH2, but less active with sterically demanding 2,4,6-Me₃C₆H₂PH₂. Complexes 1Yb and 1-4Ca provide quantitative conversion in the addition of PhPH₂ toward 1,1-disubstituted C=C bond of α -Me-styrene. Cacatalyzed hydrophosphination of inert 1-nonene with Ph2PH achieving 40% conversion is the most impressive result reported in this paper.

EXPERIMENTAL SECTION

General Considerations. All experiments were performed in evacuated tubes or in inert atmosphere, using standard Schlenk-flask or glovebox techniques, with rigorous exclusion of traces of moisture and air. After being dried over KOH, THF and DME were purified by distillation from sodium/benzophenone ketyl, hexane, and toluene by distillation from sodium/triglyme benzophenone ketyl prior to use. Benzene- d_6 , toluene- d_8 , and THF- d_8 were dried with sodium/benzophenone ketyl and condensed in a vacuum prior to use. $[(Me_3Si)_2N]_2M(THF)_2$ (M = Yb,²⁹ Ca,³⁰ L¹⁻⁴H^{16b} were prepared according to literature procedures. Diphenylphosphine, dicyclohexylphosphine, and phenylphosphine were donated by Synor Ltd. and were vacuum-distilled over CaH₂ and then were degassed by freeze–pump–thaw methods.

Instruments and Measurements. NMR spectra were recorded on a Bruker DPX 200 or Bruker Avance DRX-400 spectrometer. Chemical shifts for ¹H and ¹³C spectra were referenced internally using the residual solvent resonances and are reported relative to TMS. Lanthanide metal analysis was carried out by complexometric titration.³¹ C, H, N elemental combustion analysis was performed in the microanalytical laboratory of IOMC.

Synthesis of [L¹YbN(SiMe₃)₂(THF)] (1Yb). A solution of L¹H (0.165 g, 0.317 mmol) in toluene (10 mL) was added to a solution of Yb[N(SiMe₃)₂](THF)₂ (0.202 g, 0.317 mmol) in toluene (10 mL) at room temperature. The color of the reaction mixture changed immediately from red to brownish-black. Reaction mixture was stirred for 1 h at room temperature. The volatiles were then removed under reduced pressure, and the solid residue was dissolved in a toluene/ hexane mixture (1:1). Slow concentration of the solution at -20 °C resulted in the formation of 1Yb as black crystals. The mother liquid was decanted, and the crystals were washed with cold hexane and dried in a vacuum for 30 min. Complex 1Yb was isolated in 60% yield (0.180 g).¹H NMR (400 MHz, C_6D_6) δ = 0.08, 0.36 (s, together 18H, SiMe₂), 1.38 (compl. m, 12H, CH₂CH and 4H, β-CH₂ THF), 2.10 (s, 6H, CH₃), 2.14 (s, 3H, CH₃ toluene), 2.55 (s, 6H, CH₃), 3.44 (m, 2H, CH*i*Pr), 3.50 (m, 4H, α -CH₂ THF), 4.82 (d, ${}^{3}J_{HH}$ = 7.8 Hz, 1H, m-Py), 5.53 (d, ${}^{3}J_{HH} = 8.5$ Hz,1H, m-Py), 6.66 (m, 1H, p-Py), 6.77 (d, ${}^{3}J_{HH} = 7.2$ Hz, 1H, p-CH, NC₆H₃iPr₂), 6.83 (d, ${}^{3}J_{HH}$ Hz, 1H, p-CH, NC₆H₃Me₂), 7.00–7.16 (m, 5H, toluene+7H, NC₆H₃Me₂ and NC₆H₃iPr₂). ¹³CNMR (101 MHz, C₆D₆) δ = 2.3, 5.9 (SiCH₃), 18.0 (CH₃), 19.6 (CH₃), 21.0 (CH₃), 21.05 (β-CH₂ THF), 25.4 (CHCH₃), 28.0 (CHCH₃), 67.5 (α-CH₂ THF), 91.9 (m-Py), 101.8(m-Py), 124.6, 125.3, 128.9, 129.3 (C toluene), 128.0 (p-C, NC₆H₃iPr₂), 137.5 (m-C, C₆H₃Me₂ and NC₆H₃iPr₂), 139.9 (p-Py), 149.2(i-C, C₆H₃Me₂), 151.5 (C, o-Py), 159.2 (o-C, py), 165.3 (N=C). IR (Nujol, KBr, ν/cm^{-1}): 1938 (w), 1784 (w), 1653 (w), 1614 (s), 1580 (m), 1459 (s), 1377 (s), 1285 (s), 1253 (m), 1221 (s), 1176 (s), 1159 (s), 1128 (s), 971 (m), 928 (m), 837 (m), 826 (m), 767 (s), 747 (s), 721 (s), 671 (w), 656 (w), 608 (w), 580 (w), 560 (w), 491 (w). Elem. Anal. Calc. for C₄₅H₆₇N₅OSi₂Yb•1/2C₇H₈ (969.32 g/mol): C 60.04; H 7.32; N 7.22; Yb 17.84. Found: C 60.45; H 7.40; N 7.34; Yb 17.95.

Synthesis of $[L^1CaN(SiMe_3)_2(THF)]$ (1Ca). A solution of L^1H (0.300 g, 0.579 mmol) in toluene (10 mL) was added to a solution of $Ca[N(SiMe_3)_2]_2(THF)_2$ (0.292 g, 0.579 mmol) in toluene (10 mL). The reaction mixture was stirred for 50 h at 50 °C. The volatiles were then removed under reduced pressure, and the solid residue was dissolved in mixture of solvents THF/hexane (1:3). Slow concentration of THF/hexane solution at room temperature resulted in the formation of yellowish-green crystals of 1Ca. The mother liquid was decanted and the crystals were washed with cold hexane and dried in a vacuum for 30 min. Complex 1Ca was isolated in 83% yield (0.345 g). ¹H NMR (400 MHz, C_6D_6) δ = 0.09, 0.28 (s,18H, SiMe₃), 1.26 (d, ${}^{3}J_{\rm HH}$ = 7.0 Hz, 12H, CHCH₃), 1.40 (m, 4H, β -CH₂ THF), 1.93 (s, 3H, CH3), 1.99 (s, 6H, CH3), 2.14 (s, 3H, CH3 toluene), 2.29 (s, 6H, CH₃), 3.15 (sept, ${}^{3}J_{HH}$ = 6.9 Hz, 2H, CHCH₃), 3.56 (m, 4H, α -CH₂ THF), 5.56 (d, ${}^{3}J_{HH}$ = 7.9 Hz, 1H, m-Py), 6.38 (d, ${}^{3}J_{HH}$ = 7.6 Hz,1H, m-Py), 6.92 (complex m, 4H, NC₆H₃), 7.02 (complex m, 5H, toluene +4H, NC₆H₃), 7.10 (m, 2H, NC₆H₃). ¹³C NMR (101 MHz, C_6D_6) δ = 2.3, (CH₃, SiMe₃), 17.9 (CH₃), 18.0 (CH₃), 19.0 (CH₃), 23.1 (CH₃ *i*Pr), 23.4 (CH₃ *i*Pr), 25.8 (CH₃, *i*Pr), 25.5 (β-CH₂ THF), 28.1 (CH, *i*Pr), 67.5 (*a* –CH₂ THF), 99.5 (m-Py), 104.5 (m-Py), 122.9, 126.4, 127.3, 128.2, 128.4, 136.5,137.2, 137.3, 137.4, 138.8 (C, C₆H₃Me₂ and NC₆H₃iPr₂), 142.4 (C, p-Py), 145.8 (i-C, C₆H₃Me₂), 155.1 (o-C, py), 156.0 (o-C, py), 156.4 (N=C). IR (Nujol, KBr, ν/cm^{-1}): 1940 (w), 1782 (w), 1649 (w), 1614 (s), 1580 (m), 1455 (s), 1377 (s), 1282 (s), 1259 (m), 1221 (s), 1171(s), 1155 (s), 1108 (s), 971 (m), 926 (m), 837 (m), 825 (m), 767 (s), 747 (s), 721 (s), 671 (w), 653 (w), 610 (w), 580 (w), 560 (w), 490 (w). Elem. Anal. Calc. for C45H67CaN5OSi2·C7H8 (882.43 g/mol): C 70.07; H 8.49; Ca 4.53; N 7.93. Found: C 69.79; H 8.61; Ca 4.57; N 8.02.

Synthesis of $[L^2Ca(N(SiMe_3)_2)(THF)]$ (2Ca). A solution of L^2H (0.182 g, 0.360 mmol) in toluene (10 mL) was added to a solution of $Ca[N(SiMe_3)_2]_2(THF)_2$ (0.185 g, 0.360 mmol) in toluene (10 mL). The color of the reaction mixture changed immediately from paleyellow to bright-red. Reaction mixture was stirred for 1 h at room temperature. The volatiles were then removed under reduced pressure, and the solid residue was redissolved in fresh toluene. Slow

concentration of the toluene solution at room temperature resulted in the formation of red crystals. The mother liquid was decanted, and the crystals were washed with cold hexane and dried in a vacuum for 30 min. Complex 2Ca was isolated in 95% yield (0.299 g).¹H NMR (400 MHz, C_6D_6) $\delta = 0.09$ (s, 18H, SiMe₃), 1.40 (m, 4H, β -CH₂ THF), 1.71 (s, 3H, CH₃), 2.10 (s, 3H, CH₃ toluene), 2.27 (s, 3H, CH₃), 2.38 (s, 3H, CH₃), 2.59 (s, 3H, CH₃), 3.38 (s, 3H, OMe), 3.56 (m, 4H, α -CH₂ THF), 4.74 (d, ³J_{HH} = 7.5 Hz, 1H m-Py), 5.58 (d, ³J_{HH} = 8.5 Hz, 1H m-Py), 5.75 (d, ³J_{HH} = 8.2 Hz, 1H p-Py), 6.53 (dd, ³J_{HH} = 16.9, 8.4 Hz, 2H Ar), 6.61 (s, 2H Ar), 6.64 (t, ${}^{3}J_{HH}$ = 6.7 Hz, 2H Ar), 6.81 (d, ${}^{3}J_{HH}$ = 7.4 Hz, 1H Ar), 6.87 (d, ${}^{3}J_{HH}$ = 7.0 Hz, 1H Ar), 7.03– 6.97 (complex m, 5H Ar), 7.05 (d, ${}^{3}J_{HH} = 7.2$ Hz, 2H). ${}^{13}C$ NMR (101 MHz, $C_6 D_6$) $\delta = 2.2$ (CH₃, SiMe₃), 17.7 (CH₃), 18.0 (CH₃), 18.1 (CH₃), 20.4 (CH₃), 21.1 (CH₃ toluene), 25.5 (β-CH₂ THF), 56.8 (OMe), 67.5 (α –CH₂ THF), 92.9 (m-Py), 103.0 (m-Py), 111.2 (p-Py), 121.4, 121.5, 124.5, 125.3, 128.2, 128.6, 128.9, (C Ar), 132.2 (o-C C₆H₃Me₂), 133.6 (o-C C₆H₃Me₂), 137.3 (o-C C₆H₃Me₂), 138.2 (o-C Py), 138.9 (o-C Py), 140.8 (o-C C₆H₃Me₂), 149.9 (o-C, C₆H₄OMe), 150.5 (i-C, C₆H₃Me₂), 150.8 (i-C, C₆H₃Me₂), 165.1 (o-C, Py). 19 F{ 1 H} NMR δ = -58.2. IR (Nujol, KBr, ν/cm^{-1}): 1927 (w), 1783(w), 1660 (m), 1616 (s), 1603 (s), 1587 (s), 1574 (s), 1530 (s), 1495 (s), 1460 (s), 1377 (s), 1350 (s), 1288 (s), 1250 (s),1225 (s), 1188 (s), 1148 (s), 1113 (s), 1095 (s), 1049 (s), 1030 (s), 1005 (s), 977 (s), 926 (s), 881 (s), 821 (s), 772 (s), 746 (s), 716 (s), 692 (w), 662 (w), 619 (w), 608 (w), 590 (w), 565 (w), 510(w). Elem. Anal. Calc. for C47H62CaF3N5O2Si2 (882,27 g/mol): C 63.98; H 7.08; Ca 4.54; N 7.94. Found: C 63.88; H 7.13; Ca 4.50; N 7.99.

Synthesis of [L³Ca(N(SiMe₃)₂)(THF)] (3Ca). A solution of L³H (0.164 g, 0.324 mmol) in toluene (10 mL) was added to a solution of $Ca(N(SiMe_3)_2)(THF)_2$ (0.164 g, 0.324 mmol) in toluene. The color of the reaction mixture changed immediately from pale-yellow to bright-red. Reaction mixture was stirred for 1 h at room temperature. The solvent was then removed under reduced pressure, and residue was dissolved in fresh toluene. Slow concentration of the toluene solution at room temperature resulted in the formation of red powder. The mother liquid was decanted and the powder was washed with cold hexane and dried in a vacuum for 30 min. Complex L3Ca(N- $(SiMe_3)_2)$ (THF) was isolated in 90% yield (0.270 g, 0.275 mmol). ¹H NMR (400 MHz, C₆D₆) 0.09 (s, 18H, SiMe₃), 1.83 (s, 3H, CH₃), 2.10 (s, 9H, CH₃ toluene), 2.19 (s, 3H, CH₃), 2.30 (s, 3H, CH₃), 2.59 (s, 3H, CH₃), 4.83 (d, ${}^{3}J_{HH}$ = 7.5 Hz, 1H m-Py), 5.64 (d, ${}^{3}J_{HH}$ = 8.5 Hz, 1H m-Py), 5.75 (d, J = 8.2 Hz, 1H m-Py), 6.53 (dd, ${}^{3}J_{HH} = 16.9$, 8.4 Hz, 2H Ar), 6.54-7.14 (complex m, 23H Ar). ¹³C NMR (101 MHz, C_6D_6) $\delta = 1.1$, 2.3 (CH₃, SiMe₃), 17.9 (CH₃), 21.1 (CH₃ toluene), 25.4 (β-CH₂ THF), 67.7 (α-CH₂ THF), 94.9 (C, p-Py), 103.6 (C, m-Py), 114.8, 115.0, 125.1, 125.3, 128.2, 128.4, 128.8, 128.9, 137.5, 138.1, 139.0, 139.5, 140.1(C Ar), 150.7 (i-C, Py), 165.1 (o-C, Py). ¹⁹F{¹H} NMR δ = 57.8, 127.2. IR (Nujol, KBr, ν/cm^{-1}): 1956 (w), 1786 (w), 1655 (w), 1613 (s), 1530 (m), 1460 (s), 1377 (s), 1287 (s), 1250 (m), 1221 (s), 1188 (s), 1163 (s), 1144 (s), 1095 (s), 1032 (m), 977 (m), 932 (m), 923 (m), 862 (m), 850 (m), 837 (m), 825 (m), 778 (m), 768 (s), 748 (s), 732 (s), 721 (s), 696 (m), 671 (w), 651 (w), 620 (w), 606 (w), 586 (w), 560 (w), 497 (w), 465(m). Elem. Anal. Calc. for C₅₆H₆₇CaF₄N₅Si₂ (982,41 g/mol): C 68.46; H 6.87; Ca 4.08; N 7.13; Found: C 68.50; H 6.90; Ca 4.03; N 7.08.

Synthesis of $[L^4Ca(N(SiMe_3)_2)(THF)]$ (4Ca). A solution of $L^4(0.115g, 0.236 \text{ mmol})$ in toluene (10 mL) was added to a solution of $Ca(N(SiMe_3)_2)(THF)_2$ (0.119 g, 0.236 mmol) in toluene. The color of the reaction mixture changed immediately from pale-yellow to bright-red. Reaction mixture was stirred for 1 h at room temperature. The solvent was then removed under reduced pressure, and residue was dissolved in fresh hexane. Slow concentration of the hexane solution at room temperature resulted in the formation of red powder. The mother liquid was decanted and the powder was washed with cold hexane and dried in a vacuum for 30 min. Complex $L^4Ca(N-(SiMe_3)_2)(THF)$ was isolated in 84% yield (0.168g, 0.198 mmol).¹H NMR (400 MHz, C_6D_6) 0.09 (s, 18H, SiMe_3), 2.03 (m, 4H, β -CH₂ THF), 1.95 (s, 3H, CH₃), 2.10 (s, 3H, CH₃ toluene), 2.31 (s, 6H, CH₃), 2.40 (s, 3H, CH₃), 3.82 (m, 4H, α -CH₂ THF), 4.76 (d, ³J_{HH} = 7.5 Hz, 1H, m-Py), 5.50 (d, ³J_{HH} = 8.5 Hz, 1H, m-Py), 5.69 (d, ³J_{HH} =

8.2 Hz, 1H, m-Py), 6.56–7.15 (complex m, 16H,Ar).¹³C NMR (101 MHz, C₆D₆) δ = 2.3 (CH₃, SiMe₃), 18.8 (CH₃), 21.1 (CH₃ toluene), 25.2 (β-CH₂ THF), 68.2 (α-CH₂ THF), 96.6 (p-Py), 103.2 (m-Py), 119.3, 120.3, 120.4, 121.0, 126.4, 128.7, 129.6, 132.0, 134.2, 137.8, 138.3, 141.1, 141.2, 146.1(CAr), 151.2 (i-C, Py), 164.75 (o-C, Py). ¹⁹F{¹H} NMR δ = 56.8. IR (Nujol, KBr, ν /cm⁻¹): 1934(w) 1788(w) 1650 (s), 1606 (s), 1591 (s), 1573 (s), 1506 (s), 1451 (s), 1377 (s), 1343 (s), 1291 (s), 1262 (s), 1232 (s), 1217 (s), 1186 (s), 1148 (s), 1120 (s), 1097 (s), 1084 (s), 1027 (s), 977 (s), 948(m), 928 (s), 910 (s), 880(m), 823(m), 788 (s), 768 (s), 760 (s), 735 (s), 719 (s), 692 (s), 669(w), 625(w), 581(w), 564(w), 532(w), 508(w). Elem. Anal. Calc. for C₄₆H₆₀CaF₃N₅OSi₂ (852.25,41 g/mol): C 64.83; H 7.10; Ca 4.70; N 8.22. Found: C 64.50; H 6.95; Ca 4.63; N 8.08.

Disproportionation Reaction of Complex 1Ca. A solution of 1Ca (0.100 g, 0.115 mmol) in 10 mL of hexane was stirred at room temperature for 1 week. Freezing of the resulting solution to -15 °C led to the formation of two types of crystals: [{L¹}₂Ca] as brightyellow crystals and Ca(N(SiMe₃)₂)(THF)₂ as white crystals. The mother liquid was decanted and the crystals were obtained by drop crystallization from hexane at room temperature then washed with cold hexane $(3 \times 2 \text{ mL})$ and dried in a vacuum for 30 min. Complex $[{L_2^1Ca}]$ was isolated in 31% yield (0.039 g, 0.036 mmol). ¹HNMR (400 MHz, C_6D_6) δ = 1.09 (d, ${}^3J_{\rm HH}$ = 7.0 Hz,12H, CH₃,iPr), 1.27 (d, ${}^{3}J_{\text{HH}} = 7.0 \text{ Hz}, 12\text{H}, \text{CH}_{3}, \text{iPr}), 1.95(s, 6\text{H}, \text{CH}_{3}), 2.00 (s, 12\text{H}, \text{CH}_{3}),$ 2.25 (s, 12H, CH₃), 3.16 (sept, ${}^{3}J_{HH} = 6.9$ Hz,4H, CH,iPr), 5.07 (d, ${}^{3}J_{HH} = 7.6$ Hz, 2H, m-Py), 5.61 (d, ${}^{3}J_{HH} = 7.9$ Hz, 2H, m-Py), 6.94– 7.11 (complex m, 20H, Ar). ¹³CNMR (101 MHz, C₆D₆) δ = 13.9 (s, CH₃),17.9 (s, CH₃, C₆H₃(CH₃)), 19.6 (s, CH₃), 23.2 (s,CH₃, iPr), 31.6 (s, 4C, CH, *i*Pr), 155.4; 156.0; 155.1 (s, i-C, C₆H₃(iPr)), 122.9, 125.3, 126.4, 127.5, 128.0, 136.0, 137.3, 138.8, 142.4, 151.6(s, Ar). IR (Nujol, KBr, ν/cm^{-1}): 1938 (w), 1784 (w), 1654 (w), 1614 (s), 1580 (m), 1459 (s), 1377 (s), 1285 (s), 1253 (m), 1221 (s), 1176 (s), 1159 (s), 1128 (s). Elem. Anal. Calc. for C₇₂H₈₇CaN₈O_{0.5} (1112.57 g/mol): C 77.65; H 7.82; Ca 3.60; N 10.07. Found: C 77.79; H 7.71; Ca 3.67; N 10.02. Complex Ca(N(SiMe₃)₂)(THF)₂ was isolated in 33% yield (0,019g, 0,038 mmol). ¹H NMR (400 MHz, C₆D₆) 0.40 (s, 36H, SiMe₃), 1.26 (m, 8H, β -CH₂ THF), 3.51(m, 8H, α -CH₂ THF). ¹³C NMR (101 MHz, C_6D_6) $\delta = 4.1$ (CH₃, SiMe₃), 25.8 (β -CH₂ THF), 67.5 (α -CH₂ THF). Elem. Anal. Calc. for C₂₀H₅₂CaN₂O₂Si₄ (505.07g/ mol): C 47.56; H 10.38; Ca 7.94; N 5.55. Found: C 47.77; H 10.41; Ca 8.00; N 5.52.

Typical Hydrophosphinationation Experiments. In a typical reaction with neat substrates the catalyst ($X \mu$ mol) was loaded into NMR tube, and then substrates (olefin (50*X mmol) and phosphine (50*X mmol)) were added to the NMR tube using microsyringes in the glovebox. The NMR tube was sealed and shaken vigorously, and the reaction time was started after quickly placing the NMR tube in an oil bath preheated at the desired temperature. After the desired reaction time, the NMR tube was removed from the oil bath, benzene- d_6 (0.5 mL) was added, and the ¹H, ³¹P NMR spectra of the reaction mixture were recorded. Conversion was determined by integrating the remaining styrene and phosphine and the newly formed addition product. Reactions in dry benzene- d_6 were carried out in a similar manner, but with the solvent added at the same time as the substrates to the NMR tube.

X-ray Crystallography. The X-ray data for **1Yb**, **1Ca**, and **2Ca** were collected on Bruker Smart Apex (**1Yb**) and Bruker D8 Quest (**1Ca**, **2Ca**) diffractometers (MoK_{ar}-radiation, ω -scans technique, $\lambda = 0.71073$ Å, T = 100(2) K) using *SMART* and *APEX3*³² software packages. The structures were solved by direct and dual-space³³ methods and were refined by full-matrix least-squares on F^2 for all data using *SHELX*.³³ *SADABS*³⁴ was used to perform area-detector scaling and absorption corrections. All non-hydrogen atoms were found from Fourier syntheses of electron density and were refined anisotropically. Hydrogen atoms were placed in calculated positions and were refined in the "riding" model with $U(H)_{iso} = 1.2U_{eq}$ of their parent atoms $(U(H)_{iso} = 1.5U_{eq}$ for methyl groups). CCDC-1584253 (**1Yb**), 1584252 (**1Ca**), and 1584254 (**2Ca**) contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre: ccd.cam.a-

c.uk/structures. The crystallographic data and structure refinement details for **1Yb**, **1Ca**, and **2Ca** are given in Table S1 (See Supporting Information).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorg-chem.8b00088.

Representative ¹H, ¹³C, and ¹⁹F NMR spectra of ytterbium and calcium complexes (PDF)

Accession Codes

CCDC 1584252–1584254 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

*Phone: 007 831 4623532. Fax: 007 831 4627497. E-mail: trif@iomc.ras.ru.

ORCID 🔍

Elvira I. Musina: 0000-0003-3187-8652 Alexander A. Trifonov: 0000-0002-9072-4517

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank Russian Science Foundation (Grant No. 17-73-20262) for financial support and Synor Ltd for donation of diphenylphosphine, dicyclohexylphosphine, and phenylphosphine.

REFERENCES

(1) Yamamoto, H. New reaction and new catalyst—a personal perspective. *Tetrahedron* **2007**, *63* (35), 8377–8412.

(2) (a) Shriver, D. F.; Atkins, P. W. *Inorganic Chemistry*; Oxford University Press: Oxford, 1999. (b) Greenwood, N. N.; Earnshaw, A. *Chemistry of the Elements*, 2nd ed; Elsevier, 1997.

(3) Anastas, P. T.; Crabtree, R. H. Handbook of Green Chemistry; Wiley-VCH: Weinheim, Germany, 2009.

(4) (a) Lindsell, W. E. Comprehensive Organometallic Chemistry; Pergamon, Oxford, 1982. (b) Hanusa, T. P. New developments in the organometallic chemistry of calcium, strontium and barium. *Polyhedron* **1990**, *9*, 1345–1362. (c) Hanusa, T. P. Ligand influences on structure and reactivity in organoalkaline earth chemistry. *Chem. Rev.* **1993**, *93*, 1023–1036.

(5) Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.* **1976**, *32*, 751–767.

(6) Evans, W. J. The organometallic Chemistry of the lanthanide elements in low oxidation states. *Polyhedron* **1987**, *6*, 803–835.

(7) (a) Molander, G. A.; Romero, J.-A. C. Lanthanocene Catalysts in Selective Organic Synthesis. *Chem. Rev.* 2002, 102, 2161–2186.
(b) Trifonov, A. A.; Basalov, I. V.; Kissel, A. A. Use of organolanthanides in the catalytic intermolecular hydrophosphination and hydroamination of multiple C–C bonds. *Dalton Trans.* 2016, 45, 19172–19193. (c) Reznichenko, A. L.; Hultzsch, K. C. *Hydroamination of Alkenes*; John Wiley & Sons, Inc, 2016;. (d) Muller, T. E.; Beller, M. Metal-Initiated Amination of Alkenes and Alkynes. *Chem. Rev.* 1998, 98, 675–704.

(8) (a) Harder, S. From Limestone to Catalysis: Application of Calcium Compounds as Homogeneous Catalysts. Chem. Rev. 2010, 110, 3852-3876. (b) Barrett, A. G. M.; Crimmin, M. R.; Hill, M. S.; Procopiou, P. A. Heterofunctionalization catalysis with organometallic complexes of calcium, strontium and barium. Proc. R. Soc. London, Ser. A 2010, 466, 927-963. (c) Crimmin, M. R.; Barrett, A. G. M.; Hill, M. S.; Hitchcock, P. B.; Procopiou, P. A. Calcium-Catalyzed Intermolecular Hydrophosphination. Organometallics 2007, 26, 2953-2956. (d) Basalov, I. V.; Liu, B.; Roisnel, T.; Cherkasov, A. V.; Fukin, G. K.; Carpentier, J.-F.; Sarazin, Y.; Trifonov, A. A. Amino Ether-Phenolato Precatalysts of Divalent Rare Earths and Alkaline Earths for the Single and Double Hydrophosphination of Activated Alkenes. Organometallics 2016, 35, 3261-3271. (e) Crimmin, M. R.; Barrett, A. G. M.; Hill, M. S.; MacDougall, D. J.; Mahon, M. F.; Procopiou, P. A. β -Diketiminate C-H activation with heavier group 2 alkyls. Dalton Trans. 2009, 9715-9717.

(9) (a) Harder, S.; Feil, F.; Knoll, K. Novel Calcium Half-Sandwich Complexes for the Living and Stereoselective Polymerization of Styrene. *Angew. Chem., Int. Ed.* **2001**, *40*, 4261–4264. (b) Inoue, S.; Tsuruta, T.; Furukawa, J. Catalytic reactivity of organometallic compounds for olefin polymerization. IV. Vinyl polymerization by organocalcium compound. *Makromol. Chem.* **1959**, *32*, 97–111. (c) Ward, B. J.; Hunt, P. A. Hydrophosphination of Styrene and Polymerization of Vinylpyridine: A Computational Investigation of Calcium-Catalyzed Reactions and the Role of Fluxional Noncovalent Interactions. *ACS Catal.* **2017**, *7*, 459–468. (d) Harder, S. The Chemistry of CaII and YbII: Astoundingly Similar But Not Equal! *Angew. Chem., Int. Ed.* **2004**, *43*, 2714–2718.

(10) (a) Crimmin, M. R.; Casely, I. J.; Hill, M. S. Calcium-Mediated Intramolecular Hydroamination Catalysis. J. Am. Chem. Soc. 2005, 127, 2042–2043. (b) Datta, S.; Roesky, P. W.; Blechert, S. Aminotroponate and Aminotroponiminate Calcium Amides as Catalysts for the Hydroamination/Cyclization Catalysis. Organometallics 2007, 26, 4392–4394. (c) Buch, F.; Harder, S. A Study on Chiral Organocalcium Complexes: Attempts in Enantioselective Catalytic Hydrosilylation and Intramolecular Hydroamination of Alkenes. Z. Naturforsch. 2008, 63b, 169–178.

(11) (a) Buch, F.; Brettar, J.; Harder, S. Hydrosilylation of Alkenes with Early Main-Group Metal Catalysts. *Angew. Chem., Int. Ed.* **2006**, 45, 2741–2745. (b) Spielmann, J.; Harder, S. Reduction of Ketones with Hydrocarbon-Soluble Calcium Hydride: Stoichiometric Reactions and Catalytic Hydrosilylation. *Eur. J. Inorg. Chem.* **2008**, 2008, 1480–1486.

(12) (a) Al-Shboul, T. M. A.; Görls, H.; Westerhausen, M. Calciummediated hydrophosphination of diphenylethyne and diphenylbutadiyne as well as crystal structure of 1,4-diphenyl-1,4-bis-(diphenylphosphanyl)buta-1,3-diene. Inorg. Chem. Commun. 2008, 11, 1419-1421. (b) Crimmin, M. R.; Barrett, A. G. M.; Hill, M. S.; Hitchcock, P. B.; Procopiou, P. A. Heavier Group 2 Element Catalyzed Hydrophosphination of Carbodiimides. Organometallics 2008, 27, 497-499. (c) Hu, H.; Cui, C. Synthesis of Calcium and Ytterbium Complexes Supported by a Tridentate Imino-Amidinate Ligand and Their Application in the Intermolecular Hydrophosphination of Alkenes and Alkynes. Organometallics 2012, 31, 1208-1211. (d) Liu, B.; Roisnel, T.; Carpentier, J.-F.; Sarazin, Y. When Bigger Is Better: Intermolecular Hydrofunctionalizations of Activated Alkenes Catalyzed by Heteroleptic Alkaline Earth Complexes. Angew. Chem., Int. Ed. 2012, 51, 4943-4947. (e) Liu, B.; Roisnel, T.; Carpentier, J.-F.; Sarazin, Y. Heteroleptic Alkyl and Amide Iminoanilide Alkaline Earth and Divalent Rare Earth Complexes for the Catalysis of Hydrophosphination and (Cyclo)Hydroamination Reactions. Chem. - Eur. J. 2013, 19, 13445-13462.

(13) Penafiel, J.; Maron, L.; Harder, S. Early Main Group Metal Catalysis: How Important is the Metal? *Angew. Chem., Int. Ed.* 2015, *54*, 201–206.

(14) (a) McCormick, M. J.; Sockwell, S. C.; Davies, C. E. H.; Huffman, J. C.; Hanusa, T. P. Synthesis of a monopentamethylcyclopentadienyl halide complex of calcium. The X-ray crystal structure of $[(Me_5C_5)Ca(\mu-I)(THF)_2]_2$. Organometallics **1989**, 8, 2044–2049.

(b) Sockwell, S. C.; Hanusa, T. P.; Huffman, J. C. Formation and reactions of mono- and bis(peralkylcyclopentadienyl) complexes of calcium and barium. The x-ray crystal structure of [cyclic]-[(Me4EtC5)Ca(.mu.-NSiMe2CH2CH2SiMe2)]2. J. Am. Chem. Soc. 1992, 114, 3393-3394. (c) Burkey, D. J.; Alexander, E. K.; Hanusa, T. P. Encapsulated Alkaline-Earth Metallocenes. 5. Kinetic Stabilization of Mono[Tetraisopropylcyclopentadienyl]calcium Complexes. Organometallics 1994, 13, 2773-2786. (d) Burkey, D. J.; Hanusa, T. P. Synthesis and Solution Behavior of (Tetraisopropylcyclopentadienyl) calcium Acetylide Complexes. Molecular Structure of {[(C3H7)-4C5H]Ca(µ-C:CPh)(thf)}2. Organometallics 1996, 15, 4971-4976. (e) Heckmann, G.; Niemeyer, M. Synthesis and First Structural Characterization of Lanthanide(II) Arvls: Observation of a Schlenk Equilibrium in Europium(II) and Ytterbium(II) Chemistry. J. Am. Chem. Soc. 2000, 122, 4227-4228. (f) Harvey, M. J.; Hanusa, T. P.; Pink, M. Unusual stability of the coordinated triethylborohydride anion in an alkaline-earth metal complex: crystallographic characterization of [Ca(HBEt3){1,2,4-C5(SiMe3)3 H2}(thf)2]. Chem. Commun. 2000, 489-490. (g) Harvey, M. J.; Hanusa, T. P. Mono-(cyclopentadienyl) Complexes of Calcium, Strontium, and Barium, {[C5(SiMe3)3H2](Ca,Sr,Ba)I(thf)n}x. Influence of Alkali-Metal Cations on Ligand Exchange Reactions. Organometallics 2000, 19, 1556-1566.

(15) Chisholm, M. H.; Gallucci, J.; Phomphrai, K. Lactide polymerization by well-defined calcium coordination complexes: comparisons with related magnesium and zinc chemistry. *Chem. Commun.* **2003**, 48–49.

(16) (a) Radkov, V.; Dorcet, V.; Carpentier, J.-F.; Trifonov, A.; Kirillov, E. Alkylyttrium Complexes of Amidine–Amidopyridinate Ligands. Intramolecular C(sp3)–H Activation and Reactivity Studies. *Organometallics* **2013**, *32*, 1517–1527. (b) Radkov, V.; Roisnel, T.; Trifonov, A.; Carpentier, J.-F.; Kirillov, E. Neutral and Cationic Alkyl and Amido Group 3 Metal Complexes of Amidine-Amidopyridinate Ligands: Synthesis, Structure, and Polymerization Catalytic Activity. *Eur. J. Inorg. Chem.* **2014**, *2014*, 4168–4178. (c) Radkov, V.; Roisnel, T.; Trifonov, A.; Carpentier, J.-F.; Kirillov, E. Tandem C(sp2)–OMe Activation/C(sp2)–C(sp2) Coupling in Early Transition-Metal Complexes: Aromatic C–O Activation beyond Late Transition Metals. *J. Am. Chem. Soc.* **2016**, *138*, 4350–4353.

(17) (a) Huang, W.; Diaconescu, P. L. Aromatic C-F Bond Activation by Rare-Earth-Metal Complexes. Organometallics 2017, 36 (1), 89–96. (b) Hayes, P. G.; Piers, W. E.; Parvez, M. Synthesis, Structure, and Ion Pair Dynamics of β -Diketiminato-Supported Organoscandium Contact Ion Pairs. Organometallics 2005, 24, 1173–1183. (c) Hayes, P. G.; Piers, W. E.; McDonald, R. Cationic Scandium Methyl Complexes Supported by a β -Diketiminato ("Nacnac") Ligand Framework. J. Am. Chem. Soc. 2002, 124, 2132– 2133.

(18) (a) Deeken, S.; Motz, G.; Kempe, R. How Common Are True Aminopyridinato Complexes? Z. Anorg. Allg. Chem. 2007, 633, 320– 325. (b) Qayyum, S.; Skvortsov, G. G.; Fukin, G. K.; Trifonov, A. A.; Kretschmer, W. P.; Döring, C.; Kempe, R. Intramolecular C–H Bond Activation by Lanthanoid Complexes Bearing a Bulky Aminopyridinato Ligand. *Eur. J. Inorg. Chem.* 2010, 2010, 248–257.

(19) (a) Barrett, A. G. M.; Crimmin, M. R.; Hill, M. S.; Hitchcock, P. B.; Kociok-Kohn, G.; Procopiou, P. A. Triazenide Complexes of the Heavier Alkaline Earths: Synthesis, Characterization, And Suitability for Hydroamination Catalysis. *Inorg. Chem.* 2008, *47*, 7366–7376.
(b) Datta, S.; Gamer, M. T.; Roesky, P. W. Aminotroponiminate Complexes of the Heavy Alkaline Earth and the Divalent Lanthanide Metals as Catalysts for the Hydroamination/Cyclization Reaction. *Organometallics* 2008, *27*, 1207–1213.

(20) (a) Zou, J.; Berg, D. J.; Oliver, A.; Twamley, B. Unusual Redox Chemistry of Ytterbium Carbazole–Bis(oxazoline) Compounds: Oxidative Coupling of Primary Phosphines by an Ytterbium Carbazole–Bis(oxazoline) Dialkyl. *Organometallics* **2013**, *32*, 6532– 6540. (b) Buffet, J.-C.; Davin, J. P.; Spaniol, T. P.; Okuda, J. Alkaline earth metal amide complexes containing a cyclen-derived (NNNN) macrocyclic ligand: synthesis, structure, and ring-opening polymerization activity towards lactide monomers. New J. Chem. 2011, 35, 2253-2257

(21) (a) Edelmann, F. T. Lanthanide amidinates and guanidinates: from laboratory curiosities to efficient homogeneous catalysts and precursors for rare-earth oxide thin films. Chem. Soc. Rev. 2009, 38, 2253-2268. (b) Edelmann, F. T. Advances in the Coordination Chemistry of Amidinate and Guanidinate Ligands. Adv. Organomet. Chem. 2008, 57, 183-352.

(22) Wicht, D. K.; Paisner, S. N.; Lew, B. M.; Glueck, D. S.; Yap, G. P. A.; Liable-Sands, L. M.; Rheingold, A. L.; Haar, C. M.; Nolan, S. P. Terminal Platinum(II) Phosphido Complexes: Synthesis, Structure, and Thermochemistry. Organometallics 1998, 17, 652-660.

(23) Li, J.-N.; Liu, L.; Fu, Y.; Guo, Q.-X. What are the pKa values of organophosphorus compounds? Tetrahedron 2006, 62, 4453-4462.

(24) Basalov, I. V.; Yurova, O. S.; Cherkasov, A. V.; Fukin, G. K.; Trifonov, A. A. Amido Ln(II) Complexes Coordinated by Bi- and Tridentate Amidinate Ligands. Non-Conventional Coordination Modes of Amidinate Ligands and Catalytic Activity in Intermolecular Olefin Hydrophosphination. Inorg. Chem. 2016, 55, 1236-1244.

(25) Basalov, I. V.; Dorcet, V.; Fukin, G. K.; Carpentier, J.-F.; Sarazin, Y.; Trifonov, A. A. Highly active, chemo- and regioselective Yb(II) and Sm(II) catalysts for the hydrophosphination of styrene with PhPH2. Chem. - Eur. J. 2015, 21, 6033-6036.

(26) (a) Burns, C. J.; Anderson, R. A. Reaction of (C5Me5)2Yb with fluorocarbons: formation of $(C5Me5)4Yb2(\mu-F)$ by intermolecular C-F activation. J. Chem. Soc., Chem. Commun. 1989, 2, 136-137. (b) Deacon, G.; Mackinnon, P.; Tuong, T. Organolanthanoids. IV. Some reactions of Bis(polyfluorophenyl)ytterbium compounds. Aust. J. Chem. 1983, 36, 43-53. (c) Deacon, G. B.; MacKinnon, P. I. Selective removal of ortho halogens by a diorganolanthanoid. Tetrahedron Lett. 1984, 25 (7), 783-784. (d) Watson, P. L.; Tulip, T. H.; Williams, I. Defluorination of perfluoroolefins by divalent lanthanoid reagents: activating carbon-fluorine bonds. Organometallics 1990, 9, 1999-2009. (27) (a) Bange, C. A.; Waterman, R. Challenges in Catalytic Hydrophosphination. Chem. - Eur. J. 2016, 22, 12598-12605. (b) Koshti, V.; Gaikwad, S.; Chikkali, S. H. Contemporary avenues in catalytic P-H bond addition reaction: A case study of hydrophosphination. Coord. Chem. Rev. 2014, 265, 52-73.

(28) Brinkmann, C.; Barrett, A. G. M.; Hill, M. S.; Procopiou, P. A. Heavier Alkaline Earth Catalysts for the Intermolecular Hydroamination of Vinylarenes, Dienes, and Alkynes. J. Am. Chem. Soc. 2012, 134, 2193-2207.

(29) Tilley, T. D.; Andersen, R. A.; Zalkin, A. Tertiary phosphine complexes of the f-block metals. Crystal structure of Yb[N(SiMe3)-2]2[Me2PCH2CH2PMe2]: evidence for a ytterbium-.gamma.-carbon interaction. J. Am. Chem. Soc. 1982, 104, 3725-3727.

(30) Westerhausen, M.; Hartmann, M.; Makropoulos, N.; Wieneke, B.; Wieneke, M.; Schwarz, W.; Stalkec, D. Synthese von Erdalkalimetallocenen aus Erdalkalimetallbis[bis(trimethylsilyl)amid] und 6-Methyl-6-phenylfulven. Z. Naturforsch., B: J. Chem. Sci. 1998, 53, 117-125.

(31) Lyle, S. J.; Rahman, M. M. Complexometric titration of yttrium and the lanthanons-I: A comparison of direct methods. Talanta 1963, 10, 1177-1182.

(32) APEX2, SMART; Bruker AXS Inc.: Madison, Wisconsin, USA, 2012.

(33) Sheldrick, G. M. SHELXT - Integrated space-group and crystalstructure determination. Acta Crystallogr., Sect. A: Found. Adv. 2015, 71, 3-8.

(34) SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2001.

Article