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ABSTRACT: Herein we report the rational, computationally-guided design of an iridium(I) catalyst system capable of enabling 
directed hydrogen isotope exchange (HIE) with the challenging sulfone directing group. Substrate binding energy was used as a 
parameter to guide rational ligand design via an in-silico catalyst screen, resulting in a lead series of chelated iridium(I) NHC-
phosphine complexes. Subsequent preparative studies show that the optimal catalyst system displays high levels of activity in HIE, 
and we demonstrate the labeling of a broad scope of substituted aryl sulfones. We also show that the activity of the catalyst is 
maintained at low pressures of deuterium gas, and apply these conditions to tritium radiolabeling, including the expedient 
synthesis of a tritium-labeled drug molecule.

KEYWORDS: rational catalyst design, hydrogen isotope exchange, iridium catalysis, C–H activation, sulfone

The incorporation of heavy isotopes into potential drug 
molecules has, over time, become an indispensable tool within 
the pharmaceutical industry.1 One of the most utilized 
methods in this area is directed hydrogen isotope exchange 
(HIE, Scheme 1), wherein hydrogen atoms ortho to a Lewis 
basic directing group (DG) are replaced with deuterium or 
tritium.2

Scheme 1. General Reaction Scheme for Directed HIE
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Homogeneous iridium catalysts have proven highly active in 
ortho-directed HIE.3 These species have enabled the use of a 
broad range of directing groups in the labeling of small 
molecules and potential drug candidates.4 Related to this, 
studies within our own laboratory have led to the 
development of a series of catalytically active iridium(I) 
NHC/phosphine complexes 1-2 (Figure 1), which deliver heavy 
isotopes of hydrogen (deuterium, D, and tritium, T) to aryl 
and alkenyl substrates via a directed C–H activation process 
with a broad range of directing groups.3d,5 Additionally, 
iridium(I) NHC chloride complexes of type 3 have shown 
utility in the labeling of 

Figure 1. Ir(I) Precatalysts for directed HIE
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primary aryl sulfonamides and aryl aldehydes.6

Despite these advances, however, certain high-value 
functionalities, common throughout pharmaceutical motifs 
and natural products, still present significant challenges for 
directed HIE. One such example is the aryl sulfone unit, which 
is prevalent throughout drug discovery.7 For example, 
sulfones are present in antibiotics, such as Dapsone and 
Dextrosulphenidol,8a,b and are also components  within a 
range of other medicines, including the non-steroidal anti-
inflammatory, Rofecoxib, and the retinoid, Sumarotene 
(Figure 2).8c,d However, the capacity to exploit the sulfone as a 
directing group in C–H activation processes,9 including HIE,10 
is currently vastly undermet. With specific regard to HIE, 
Muri and Pfaltz have reported a N,P-chelated Ir(I) catalyst 
which mediates deuterium labeling of a series of substrates, 
including one example of a simple aryl (phenyl methyl) 
sulfone. This catalyst system does, however, require activation 
with elevated pressures (2.2 bar) of deuterium.10a Nonetheless, 
the abundance of the sulfone moiety in pharmaceutically 
active agents makes 

Figure 2. Examples of Sulfone-containing Drug 
Molecules

Page 1 of 8

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



S
O O

N
H

O

Cl

Cl
OH

OH
Dextrosulphenidol

O

O

S
O

O

Rofecoxib

S
O O

Sumarotene

S
O O

H2N NH2

Dapsone

the ability to exploit these functional units as handles for 
ortho-directed HIE a particularly attractive goal. Additionally, 
applying a mechanistic approach to such a challenge has the 
potential to deliver an enhanced, and potentially predictive, 
understanding of such directed functionalization endeavors, 
enabling the use of sulfones in a broader range of C–H 
activation processes.

Current iridium-catalyzed HIE processes directed by 
sulfones have a range of limitations. For example, previous 
studies within our laboratory towards sulfone-directed HIE 
have employed monodentate iridium(I) catalysts; specifically, 
NHC/phosphine 1a and NHC/Cl analogue 3a. When these 
catalyst systems were applied to the labeling of phenyl methyl 
sulfone 4a, low levels of incorporation were observed (Figure 
3a).6a We hypothesized that, in this case, substrate binding 
was, unusually, the turnover-limiting step, in contrast to less 
hindered directing groups where C–H activation is turnover 
limiting.5c

Figure 3. Sulfone Labeling: Challenges with Monodentate 
Catalysts and a Potential Chelated Catalyst Solution
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Bearing in mind that catalysts 1-3 possess very large NHC 
and (for 1 & 2) phosphine ligands, coordinated in a trans 
relationship (Figure 3b), the tetrahedral nature of the sulfone 
directing group results in significant steric repulsion between 
the substrate and ligand when compared to more planar 
directing groups, such as acetyl. This may inhibit substrate 
binding which, in turn, would severely limit the isotope 
incorporation in sulfone-derived substrates, as observed with 

1a and 3a.6a We hypothesized that the use of a tethered N-
heterocyclic carbene-phosphine ligand (NHC-P, Figure 3b) 
would result in a less hindered catalyst environment, more 
able to accommodate the sulfone unit.

The paradigm of rational ligand design is emerging as an 
appreciably powerful tool through which the knowledge and 
understanding gained from mechanistic insights allows an 
effective catalyst to be accessed rapidly.11,12 We selected this 
approach to address the challenge of developing a broadly 
effective chelated catalyst system with the ability to label 
sulfone-bearing substrates to high levels of isotope 
incorporation under mild reaction conditions. Specifically, a 
system derived from rational, computational design would not 
only provide a solution to the challenge of sulfone labeling, 
but would also potentially facilitate the application of the 
designed system to a more diverse array of substrate classes.

To initiate our studies, and guided by our postulate that 
substrate binding was limiting in the sulfone case (Figure 3), 
computational modeling was used to calculate the binding 
energy (EBind) of model substrate methyl phenyl sulfone 4a to 
catalytically relevant5c iridium(III) hydride complexes of 
varying designs (Figure 4). The binding energy was calculated 
using the counterpoise method, as described by Boys and 
Bernardi.13 We observed that, while methyl phenyl sulfone 4a 
could coordinate to the monodentate NHC/phosphine 
iridium(III) hydride derived from 1a (Figure 4a), a modest 
binding energy of only -15.3 kcal mol-1 was calculated, with a 
similarly poor binding energy of -15.9 kcal mol-1 for precatalyst 
3a (Figure 4b). To place these binding energies in context, 
when the same method was applied to the binding of 
acetophenone 5 (which has been shown to label to high levels 
using precatalyst 1a5c), a significantly more negative, and 
therefore more favorable, binding energy of -23.1 kcal mol-1 
was found (Figure 4c).

Figure 4. Calculation of Binding Energy with 
Monodentate Ligand Systems
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In terms of selecting a chelating ligand system to overcome 
these binding issues, a number of tethered NHC-P ligand 
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motifs have been reported.14 Due to the range of tethers and 
combinations of NHC and phosphine substituents already 
established, an in silico screening was carried out to determine 
which characteristics of the chelating ligand would lead to an 
increased sulfone binding energy, and thus a potentially 
effective catalyst system. Accordingly, we proposed a virtual 
library of eighteen structurally diverse NHC-P ligands, 
covering a number of chelate sizes (from four to seven 
membered rings), and a range of steric and electronic 
parameters, as dictated by the substituents on the NHC and 
phosphine moieties. In each case, the binding energy of 
methyl phenyl sulfone to the relevant chelated iridium(III) 
hydride was calculated (Scheme 2).

Firstly, it was noted that only those ligands with N-aryl 
substituents gave significantly higher sulfone binding energies 

Scheme 2. In Silico Screen of Bidentate Ligands, and 
the Calculated Binding Energy for Methyl Phenyl 
Sulfone
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than the monodentate systems (cf. 6 vs 7). In general, ethylene 
tethered systems (6, 9-13) showed a favorable range of binding 
energies, from -23.7 kcal mol-1 for 13, to -29.5 kcal mol-1 for 10. 
Also, aryl and alkyl phosphines both gave enhanced binding 
energies when compared to the aforementioned monodentate 
catalysts. Furthermore, substitution on the backbone of the 
NHC appeared to deliver a moderately more favorable binding 
energy in some cases (cf. 12 vs 11). The larger, benzyl-tethered 
ligands, 14-18, also showed favorable sulfone binding energies, 
with a similar pattern to the corresponding ethylene-bridged 
systems being observed in terms of the NHC substituent. 
Dicyclohexyl phosphinyl variant 16, however, displayed a 

reduced binding energy with respect to the 
diphenylphosphinyl analogue 15, and, as such, no further 
dialkylphosphines were considered. The effect of the chelate 
ring size and rigidity was next examined, with the ortho-
phenylene, 19, methylene 

Figure 5. Calculated Binding Energies with Sulfone 4a

Figure 6. Summary of the Targeted Iridium(I) 
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bridged, 20, and directly N-P bound ligand, 21, all displaying 
favorable binding energies. Interestingly, phosphite, 22, 
returned the highest binding energy of all ligand variations 
examined. Finally, the benzimidazole-derived NHC, 23, was 
also found to be favorable, resulting in a binding energy of -
30.8 kcal mol-1. The calculated binding energies for each of the 
18 bidentate complexes, as well as monodentate complexes 1a 
and 3a, are shown graphically in Figure 5.

From this in silico screen, a total of six ligands (11, 13, 15, 17, 
18, and 23) were selected for progression based on their 
binding energy of methyl phenyl sulfone 4a, coupled with 
their synthetic tractability in each case. The structures of the 
targeted iridium(I) precatalysts 24-29 are shown in Figure 6, 
with the selected ligands predicted to give complexes with a 
range of substrate binding energies, from -23.7 to -30.8 kcal 
mol-1. The ligands for the iridium(I) precatalysts shown were 
then synthesized via modification of existing literature 
procedures.14d-g,15

With the iridium(I) precatalysts 24-29 in hand, their labeling 
of methyl phenyl sulfone 4a was investigated. This initial 
catalyst screen was performed at 25 °C in dichloromethane, 
with a standard catalyst loading of 5 mol% and a reaction time 
of 16 h. In the majority of cases (i.e. with the exception of 25 
Table 1. Catalyst Screen
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1 1a 96a

2 3a 176a

3 24 35

4 25 12

5 26 23

6 27 13

7 28 36

8 29 43

aReactions performed in triplicate.

Figure 7. Solvent Applicability in Sulfone Labeling15
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and 27), a marked increase in the isotope incorporation was 
observed, compared to the monodentate systems 1a and 3a 
(Table 1).

Based on the labeling results shown in Table 1, the most 
promising catalyst, 29, was selected for further optimization, 
beginning with a solvent screen, and exploiting the versatility 
of the catalyst’s BArF counterion in this regard.5d As shown in 
Figure 7, the observed incorporation reached significantly 
higher levels in a broad range of solvents compared to the 
initial labeling result in DCM. In particular, chlorobenzene 
and fluorobenzene delivered the highest levels of labeling, 
affording excellent 93% and 91% incorporations, respectively. 
Additionally, use of non-halogenated solvents such as di-iso-
propyl ether, MTBE, diethyl ether, and toluene also provided 
high levels (>70%) of deuterium incorporation.

Accordingly, chlorobenzene was chosen as the optimal 
solvent for this sulfone labeling process with catalyst 29. Not 
only did this medium allow for the best incorporation from 
the eleven solvents examined but additional technical 
advantages were delivered, in that the higher boiling nature of 
chlorobenzene meant that cooling to -78 °C could be avoided 
when exchanging the atmosphere within the reaction 

manifold from nitrogen to deuterium, thus simplifying the 
practical procedure. Notably, maintaining catalyst loadings at 
5 mol%, the reaction time could be reduced to 1 h, with no 
drop in the observed isotope incorporation.15 These conditions 
were then applied to a broad range of aryl sulfones to establish 
the scope of our developed process (Scheme 3). A total of 
eighteen additional substrates were examined, encompassing 
a diverse range of sulfones, with, generally, excellent 
deuterium incorporation effectiveness observed throughout 
the series. Both electron-donating and electron-withdrawing 
substituents in the ortho (4b-4d) and meta (4e-4h) positions 
of the aryl ring were well tolerated, leading to high levels of 
incorporation. Notably, meta-trifluoromethyl substrate 4g 
exhibits almost no incorporation at the considerably hindered 
position between both aryl substituents, but displays excellent 
levels of deuterium labeling at the less hindered position ortho 
to the sulfone. With less sterically encumbered meta 
substituents (4f and 4h) both positions ortho to the sulfone 
are labeled to a high degree. A range of electronically distinct 
para-substituents are 

Scheme 3. Scope of Aryl Sulfone Labeling
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also well tolerated (4i-4l, 4n). In the case of para-nitro 
substrate 4m, this alternative directing group is shown to 
mildly outcompete the sulfone, but does not prevent an 
acceptable level of isotope incorporation through sulfone-
directed HIE. Furthermore, restricting the orientation of the 
sulfone, as in cyclic substrate 4o, did not result in a decrease 
in the excellent levels of incorporation generally observed. We 
next turned our attention to the effects of increasing the steric 
bulk around the sulfone group, with substrates 4p-4r. While a 
slight decrease in the levels of incorporated deuterium were 
observed in diphenyl sulfone 4p and iso-propyl phenyl sulfone 
4q (57% and 66%, respectively), an excellent incorporation of 
80% was observed with the bulky tert-butyl phenyl sulfone 4r. 
We also investigated labeling of benzyl methyl sulfone 4s, 
where the sulfone would direct labeling via a 6-membered 
metallacyclic intermediate (6-mmi), which is considerably 
less favored than the more common 5-mmi.5c Nonetheless, 
moderate levels of incorporation were still observed in this 
more challenging substrate under these mild standard 
conditions with a low catalyst loading of 5 mol%.
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In order to further expand the utility of our newly developed 
catalyst system, we investigated the effects of employing a 
reduced pressure of deuterium gas using a TRITEC manifold 
system, with these conditions more closely emulating those 
deployed for radiolabeling with tritium gas within a 
pharmaceutical industry setting. Following only minimal 
optimization of our standard conditions,15 we obtained high 
levels of labeling under these low-pressure conditions 
(Scheme 4). Employing phenyl methyl sulfone 4a, it was found 
that with a deuterium pressure of only ~400 mbar, a mildly 
elevated catalyst loading of 7.5 mol% allowed for similar levels 
of deuterium incorporation to the standard (non-TRITEC) 
laboratory set-up. Notably, when employing the most active 
catalyst reported by Pfaltz and Muri,10a very low levels of 
labeling of this same substrate, 4a, were observed when 
employing 1 atm of D2 for catalyst activation,15 as is routinely 
employed with our suite of Ir(I) catalysts, including 29. 
Indeed, the requirement for supra-atmospheric catalyst 
activation with this previously reported system may present 
practical challenges when applying the methodology to low-
pressure tritiations (vide infra).

With a successful reduced atmosphere protocol in hand 
using catalyst 29, the conditions were then applied to the 
tritium 

Scheme 4. Reduced Pressure Deuterium and Tritium 
Labeling of Methyl Phenyl Sulfone 4a
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labeling of the same sulfone 4a. Exposure of 4a to 7.5 mol% of 
precatalyst 29 under 405 mbar of tritium gas afforded t-4a 
with a high activity of 51.3 Ci/mmol, corresponding to a 
tritium incorporation of 88% across both ortho positions. 
Additionally, the major mass ion of [M+4] confirmed that the 
sample had indeed been labeled with two units of tritium 
(Scheme 4).

Finally, in order to further demonstrate the power of our 
developed catalyst as applied to radiolabeling, as shown in 
Scheme 5 we targeted a tritium-labeled sample of the highly 
potent GPR119 agonist 30.16 Accordingly, benzylic bromide-
containing sulfone 4t could be readily tritiated and alkylated 
in one pot to afford t-30 with excellent levels of radiolabel 
incorporation.

Scheme 5. Tritium Labeling of GRP119 Agonist 30
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In conclusion, we have employed a computationally-guided, 
rational ligand design approach to target a series of iridium(I) 
NHC-P complexes for the directed HIE of aryl sulfones. The 
resulting optimal complex proved to be highly active in a 

range of solvents, and an extensive substrate scope has been 
established, with high levels of deuterium incorporation being 
exhibited across the series. Furthermore, the catalyst system 
has been shown to retain its activity when applied to the low-
pressure labeling systems currently used extensively in the 
pharmaceutical industry. Finally, the emerging iridium(I) 
NHC-P catalyst has been applied to tritium labeling, 
furnishing a selectively tritiated sample of GPR119 agonist t-30 
with high levels of specific activity. Our current studies are 
focused on extending our understanding of these catalytic 
systems in order to further refine our design process to 
encompass even more challenging substrates.
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