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ABSTRACT: A new method for the construction of functionalized furo[3,2-c]coumarins via MBH-type/acyl-transfer/Wittig
reaction is reported. The current approach would open a new route for the simultaneous formation of two rings in a one-pot reaction
which is accompanied by incorporation of a keto functionality on the furan ring by activating the terminal alkynoates with
phosphine. Furthermore, this protocol could also be applicable to the internal alkynoates/propiolamides to generate the 2,3-
disubstituted furo[3,2-c]coumarins/furo[3,2-c]quinolinones by excluding the acyl-transfer reaction.

Phosphine-mediated reactions are ubiquitous in organic
synthesis and have emerged as a powerful tool to

construct several biologically active and medicinally important
compounds.1 Due to their unique synthetic potentials and high
reactivity, activated alkynes have been manifested to be
versatile substrates in phosphine-mediated reactions.2 Con-
sequently, the Wittig and Morita−Baylis−Hillman (MBH)
reactions are potential C−C bond-forming phosphine-medi-
ated reactions, and recently they have attracted the attention of
synthetic chemists due to their multifaceted applications
toward the synthesis of privileged heteroarenes and hetero-
cycles.3 Considering the prominence of phosphine-mediated
reactions, the development of a single modular method that
could efficiently facilitate both the MBH and Wittig reactions
is a great challenge in modern organic chemistry.
Furocoumarin is an important class of privileged scaffold

found in many natural products and exhibits a wide range of
biological activities and pharmacological properties.4 For
example, neotranshinlactone is a natural product isolated
from Salvia miltiorrhiza, a furo[3,2-c]coumarin derivative,
which showed more potent and more selective anti-breast
cancer activity than the prescribed drug tamoxifen citrate.5

Tremendous work has explored the transition-metal catalysts
in this field,6 and recently, various metal-free alternatives have
also attracted great interest.7 Remarkably, the simultaneous
formation of two heterocycle rings in a one-pot synthesis is an
important task in organic synthesis, and installing a carbonyl
functional group on the aryl ring of furo[3,2-c]coumarin is
considered to be much more challenging.

Our research group has been working toward the develop-
ment of new methods for the construction of diverse
heteroarenes by Michael addition of PR3 to α,β-unsaturated
carbonyl compounds and subsequent acylation/Wittig reaction
via in situ generation of phosphorus zwitterions.8 To continue
developing phosphine-mediated methods, we have conceived
that the zwitterions can be generated from the alkynoates and
PR3 in an MBH-type reaction that could further be employed
in Wittig reaction for the synthesis of functionally diverse
heteroarenes. In such an instance, we are inquisitive to explore
it following our approach, which could turn out to be a
powerful method to access multifarious heteroaromatics.
Herein, we report a new method for the synthesis of
functionalized furo[3,2-c]coumarins and 2,3-disubstituted
furo[3,2-c]coumarins/furo[3,2-c]quinolinones by using termi-
nal alkynoates or internal alkynoates/propiolamides, PR3, and
acyl chlorides in the presence of a base (Scheme 1). It is worth
noting that the installation of keto functionality on the furan
ring via an unprecedented acyl-transfer reaction proceeds
accompanied by the MBH and Wittig reactions of terminal
alkynoates under phosphine-mediated reaction conditions.
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Our initial plan was to develop a new synthetic method for
the preparation of furo[3,2-c]coumarins 5 from the alkynoates
through an MBH-type/O-acylation/intramolecular Wittig
reaction strategy (Scheme 1). Accordingly, we examined the
reaction of terminal alkynoate 1a, PPh3, and PhCOCl (3a) in
the presence of Et3N in CH3CN at 60 °C. To our surprise, an
unexpected functionalized furo[3,2-c]coumarin derivative 4aa
was found in 29% yield instead of furo[3,2-c]coumarin
derivative 5aa. We realized that a double amount of acyl
chloride participated in the reaction and it was further
employed to improve the yield of the furo[3,2-c]coumarin
4aa to 60% (see the SI). The structure of compound 4aa was
further unambiguously confirmed by the X-ray diffraction
analysis.9 Encouraged by the results of the MBH-type/
unprecedented acyl-transfer/Wittig reaction sequence, we
further investigated the optimal reaction conditions. Upon
screening of various factors such as phosphines, bases, and
solvents (see the SI for the detailed optimization), the most
suitable conditions were established as shown in Scheme 2.

Having established the optimal reaction conditions, the
scope of the substrates was further investigated (Scheme 3).
The alkynoates bearing different R1 substituents reacted with
PhCOCl (3a) to afford the desired furo[3,2-c]coumarins 4aa−
4fa in high yields, irrespective of the electronic effect of the
substituent. Delightfully, the OMe group at different positions
on the aryl ring of 1 furnished the corresponding furo[3,2-
c]coumarins 4fa−4ha in 80−83% yields within 3 h. Notably,
the naphthyl substituent on alkynoate (1i) reacted with 3a,
and the desired product 4ia was obtained in only 23% yield in
4 h, presumably due to the steric hindrance from the naphthyl
group. In addition, the reaction could also be performed as a
gram-scale synthesis of 4aa in substantial quantities with
similar efficacy.
Next, we tested various acyl chlorides 3 with 1a to prepare a

series of R2-substituted furo[3,2-c]coumarins 4. In general, the
acyl chlorides bearing electron-withdrawing groups (1b−1d)
were more efficient than electron-donating groups (1e, and 1f)
under the reaction conditions. The aroyl chlorides with Br, Cl,
and F substituents smoothly furnished the desired products
4ab−4ad in high yields, whereas aroyl chlorides containing Me
and OMe groups afforded the corresponding products 4ae and
4af in relatively lower yields. Moreover, the aroyl chlorides

with meta-substituted Cl and Me groups also successfully
underwent the reaction to provide the desired products 4ag
and 4ah in 80% and 75% yields, respectively. Furthermore, the
strong steric influence was noticed when the ortho-substituted
aroyl chlorides reacted with 1a; unfortunately, we could only
found zwitterion intermediates 2 in all these cases. Excitedly,
the heteroaryl and aliphatic acyl chlorides were also well-
tolerated, albeit affording the desired furo[3,2-c]coumarins 4ai-
4al in only 62−68% yields. It should be noted that in case of
TFAA (3m), the hydrated furo[3,2-c]coumarin 8 was resulted
in high efficiency through 4am due to the electron-deficient
trifluoroacetyl group.
After successful examination of terminal alkynoates, we wish

to explore the utility of the internal alkynoates in our protocol
(Scheme 4). Accordingly, the reaction of internal alkynoate 9a
with PhCOCl (3a) was examined under the conditions of 4. In
contrast, we have found the formation of furo[3,2-c]coumarin
6aa via the MBH-type/Wittig sequence by excluding the acyl-
transfer reaction. Encouragingly, reducing the amount of 3a
also successfully furnished the desired product 6aa in 79%
yield within 6 h. Furthermore, the substrates bearing Br and
OMe groups reacted with 3a to provide the products 6ba and
6ca in 52% and 72% yields. Interestingly, the aroyl chlorides
with 4-Cl, 4-Me, and heteroaryl (2-furyl) groups were

Scheme 1. Our Approach for the Synthesis of Furo[3,2-
c]coumarins via MBH-Type/Acyl Transfer/Wittig Reaction

Scheme 2. Optimal Reaction Conditions for 4aa

Scheme 3. Substrate Scope for the Functionalized Furo[3,2-
c]coumarins 4a,b

aThe reactions were carried out with alkynoate 1 (0.3 mmol), PPh3
(1.1 equiv), R2COCl 3 (2.2 equiv), and DIPEA (1.5 equiv) in dry
DCE (3 mL) under argon at 60 °C. bIsolated yield. cPerformed a
gram-scale reaction (1a: 3 mmol, 1.04 g). dTrifluoroacetic anhydride
(TFAA) (2.5 equiv) was used. DCE = 1,2-dichloroethane.
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subjected to 3a, affording the desired products 6ac, 6ae, and
6aj in 55%−81% yields. In addition, the aliphatic acyl chlorides
such as acetyl (3l), and TFAA (3m) were also tolerated, albeit
providing the lower yields of the corresponding products 6al
and 6am.
In order to investigate the mechanism, several experiments

have been examined to find out the intermediates by
monitoring the 31P NMR analysis (Figure 1). The zwitterion

2a (23.7 ppm) could be easily prepared in quantitative yields
by the reaction of 1a with PPh3 in DCE at 30 °C within 5 min.
We further attempted a reaction of the zwitterion 2a with acyl
chloride 3a in the absence of a base. After 6 h, the bis-acylated
phosphonium salt 10aa peak at 21.4 ppm was found by
diminishing the peak at 23.7 ppm in the reaction mixture by
monitoring the 31P NMR, and 10aa was further confirmed by
the ESI-HRMS analysis.10 Notably, the monoacylated
phosphonium species were not found even with use of 1.1
equiv of PhCOCl (3a) in the reaction mixture. It could be
understood that the acyl transfer is highly feasible and the ylide
C could be easily formed even in the absence of a base under
our reaction conditions.
Next, to further illustrate the intramolecular acyl-transfer

reaction, two reactions were carried out using two different
acyl chlorides (PhCOCl 3a and 4-ClC6H4COCl 3c) with

different addition sequence under the standard conditions
(Scheme 5a). Interestingly, we could not found any crossover

products, and only two products 4aa and 4ac were obtained as
major and minor products in both the reactions, depending on
the first addition of acyl chloride. It clearly indicates that the
intermolecular C-acylation has been ruled out under our
conditions, and the rearrangement of betaine intermediate D
would facilitate the intramolecular acyl-transfer reaction
(Scheme 6).3a Furthermore, the phosphorus ylide 11an was
obtained in 53% yield while 1a reacted with pentafluor-
obenzoyl chloride (3n) under optimal conditions in 10 h
(Scheme 5b). Remarkably, it was found that further cyclization
and Wittig reaction for 11an did not occur. The ortho-
substituted fluoro groups may hamper the attack of ylide 11an
to the ester functionality, and the ylide nucleophilicity was
significantly weakened by the adjacent highly strong electron-
withdrawing acyl functionality (COC6F5). The phosphorus
ylide 11an could be further characterized by X-ray diffraction
analysis and ESI-HRMS.9

Based on the results and control experiments, a plausible
reaction mechanism is described in Scheme 6. The phosphorus
zwitterion A, which was formed by the initial phospha-Michael
addition of PPh3 to 1, could easily be converted into the
zwitterion 2 via isomerization. The O-acylation of zwitterion 2
with acyl chloride 3 would generate phosphonium salt B which
is further transformed into phosphorus ylide C by the
spontaneous elimination of HCl (Figure 1b).11 In the case of
terminal alkynoates (R = H), the intramolecular cyclization
upon ylide C would provide the betaine D that further
undergoes the C−O bond cleavage to generate the function-
alized zwitterion E via acyl-transfer reaction. In the presence of
a base, the zwitterion E would further react with the second
equivalent of 3 to produce the ylide 11, and subsequent
intramolecular Wittig reaction of 11 would provide the
functionalized furo[3,2-c]coumarin 4 via betaine F. In case of
internal alkynoates (R = Ph), however, the phosphorus ylide C
would undergo the intramolecular cyclization to generate the
betaine G, and subsequent Wittig reaction of G leads to the
furo[3,2-c]coumarin 6. It is worthy to note that the fully
substituted hindered betaine intermediates F and G preferred
Wittig reaction whereas less steric hindered betaine D
proceeds rearrangement reaction to incorporate the keto

Scheme 4. Substrate Scope for the Furo[3,2-c]coumarins
6a,b

aThe reactions were carried out with alkynoate 9 (0.3 mmol), PPh3
(1.1 equiv), R2COCl 3 (1.1 equiv), and DIPEA (1.5 equiv) in dry
DCE (3 mL) under argon at 60 °C. bIsolated yield. cPerformed a
gram-scale reaction (6a: 4 mmol, 1.0 g). dTFAA (1.5 equiv) was used.

Figure 1. 31P NMR analysis of phosphonium species 2a and 10aa.

Scheme 5. Control Experiments for (a) Elucidating the
Intramolecular Acyl Transfer Reaction and (b) Confirming
the Generation of Bis-Acylated Ylide 11an
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functionality in the products via an unprecedented acyl-transfer
reaction.
Furthermore, to demonstrate the effectiveness of our

protocol, 3-phenylpropiolamide derivative 12a was tested
with acyl chlorides 3a and 3m under the standard conditions
of 6. To our delight, the furo[3,2-c]quinolinones 7aa and 7am
were obtained in 70% and 40% yields within 4 h, respectively
(Scheme 7). Unfortunately, our efforts to prepare terminal
propiolamide derivatives were unsuccessful, and therefore, they
could not be further tested in our reaction conditions.

In summary, we have developed a novel method for the
synthesis of functionalized furo[3,2-c]coumarins from terminal
alkynoates and acyl chlorides in moderate to high yields via a
MBH-type/acyl-transfer/intramolecular Wittig strategy in a
one-pot reaction. The most important feature of this strategy is
installing a keto functionality at the aryl ring of furo[3,2-
c]coumarins under metal-free conditions, which also demon-
strates a new type of C-acylation of phosphorus ylide.
Furthermore, 2,3-disubstituted furo[3,2-c]coumarins and furo-
[3,2-c]quinolinones were also prepared from the internal
alkynoates and propiolamides via an MBH-type/intramolecular
Wittig strategy. Further investigations to access multifarious
heteroarenes utilizing this protocol are underway in our
laboratory.
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