CHEMISTRY A European Journal

Accepted Article Title: Outer-sphere reactivity shift from hydrophosphinylation to oligomerisation through secondary phosphine oxide-based nickel complexes Authors: Rudy Lhermet, Emile Moser, Erwann Jeanneau, Hélène Olivier-Bourbigou, and Pierre-Alain René Breuil

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Chem. Eur. J. 10.1002/chem.201701414

Link to VoR: http://dx.doi.org/10.1002/chem.201701414

Supported by ACES

Outer-sphere reactivity shift of secondary phosphine oxide-based nickel complexes : From ethylene hydrophosphinylation to oligomerization

Rudy Lhermet,^[a] Emile Moser,^[a] Erwann Jeanneau,^[b] Hélène Olivier-Bourbigou,^[a] and Pierre-Alain R. Breuil^{*[a]}

Abstract: A new dimension for secondary phosphine oxide (SPOs) ligands is described in this article. Demonstrated on original π -allylic nickel structures, these self-assembled complexes trigger catalytic hydrophosphinylation reactions. Addition of a Lewis acid as B(C₆F₅)₃ switches the reactivity towards migratory insertion and thus ethylene oligomerisation through an unprecedented outer-sphere interaction with the coordinated SPO ligand. NMR experiments and X ray analyses allowed to observe the zwitterionic active species formed as well as its degradation pathway.

While tertiary phosphines are among the most commonly used ligands for transition metal homogeneous catalysis,^[1] the potential of the air- and moisture-stable secondary phosphine oxides (SPOs) has been considered only recently although the first example of SPO-based metal complex was disclosed in 1983 for the platinum-catalysed hydroformylation of terminal alkenes.^[2] The ligands generated from SPOs present a great range of electronic properties thanks to their modularity (monodentate or bidentate, neutral or anionic, see Figure 1) that still needs to be assessed in catalysis.^[3] They are considered for gold nanoparticles stabilisation,^[4] for effective asymmetric noble metal-catalysed transformations as hydrogenation,^[5] or for coupling reactions.^[6] By contrast, when considering catalyst design and access to well-defined species, examples with firstrow and low-cost transition metals such as nickel remain more than sporadic despite their unique properties compared to noble metals as palladium. To the best of our knowledge, only Kläui followed by Walther and Hartung reported such isolated structures, without further reactivity studies.^[7] More recently, Han coworkers disclosed the nickel-catalvzed and hydrophosphinylation of terminal alkynes with a mixture of [Ni(PPh₂Me)₄] and Ph₂P(O)H,^[8] generating in situ a fivecoordinated hydrido phosphinito nickel complex (D, Figure 1), characterized by ¹H NMR spectroscopy but not isolated.

 [a] Dr. R. Lhermet, E. Moser, Dr. H. Olivier-Bourbigou, Dr. P.-A. R. Breuil
 IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3, 69360 Solaize, France

E-mail: pierre-alain.breuil@ifpen.fr

Webpage : http://www.ifpenergiesnouvelles.com
 [b] Dr. E. Jeanneau
 Centre de Diffractométrie Henri Longchambon
 Site CLEA - Bât. ISA, 3ème étage, 5 rue de La Doua; 69100
 Villeurbanne. France

Supporting information for this article is given via a link at the end of the document.

Figure 1. SPO modularity in coordination chemistry.

Although prone to promote hydrophosphinylation reactions, we anticipated that structures presenting a cationic nickel(II) species bearing metal-hydride or metal-carbon bonds could be of interest for migratory insertion of olefins to produce oligomers or polymers.^[9] However, due to their high reactivity and their instability, these organonickel compounds are usually generated *in situ* from a nickel(II) halide precatalyst and an excess of aluminum activator rather than isolated.^[10] Herein, we describe a family of supramolecular organonickel complexes and their reactivity shift from hydrophosphinylation towards ethylene oligomerization using unprecedented outer-sphere interactions of Lewis acids with SPOs.

recently that bis(cyclooctadiene)nickel(0) We reported [Ni(COD)₂] reacts with sulfonamido-phosphines in the presence of a second phosphine ligand, leading to a self-assembled supramolecular organometallic species.^[11] We thus wondered if similar structure could be reached starting from simple SPO preligands. Walther and Hartung described the reaction between [Ni(COD)₂] and two equivalents of diphenylphosphine oxide in THF and identified [Ni(Ph₂PO)₂(COD)] as resulting complex, after concomitant release of hydrogen and COD.^[7] Interestingly, performing this reaction in toluene, we isolated the diamagnetic π -allylic nickel **1a** bearing a phosphinito-phosphinous acid system as a yellow solid in 96% yield (Scheme 1). The structure of complex 1a was confirmed by X ray diffraction on monocrystal as well as ¹H, ¹³C, ³¹P NMR spectroscopies and elemental analysis.

WILEY-VCH

 $\mbox{Scheme 1. Synthesis of supramolecular SPO complexes. }^{\rm a}$ Reaction carried without COD.

Complex 1a adopts a square-planar coordination geometry with P-O bond lengths (1.553 and 1.559 Å) half way between single and double bonds (1.500-1.630 Å), traducing the negative charge delocalization (Figure 2). Equivalence of the two phosphorus atoms is supported by ³¹P NMR, with a sole singlet at 101 ppm. This proton exchange equilibrium is also pointed out by the great O-H-O angle (175.24°), the short O-O distance (2.431 Å) and the deshielded phosphinous acid proton (16.1 ppm). Using a related protocol, complexes 1b-1f were synthesized from the corresponding SPOs (Scheme 1). Nevertheless, an additional amount of COD was necessary to prevent metallic nickel formation. All these compounds are diamagnetic and were characterized by NMR analyses. They also present two equivalent phosphorus atoms with a single signal between 98 and 110 ppm as well as a deshielded phosphinous acid protons (see SI). Crystals of complex 1b, suitable for X-ray analysis, were grown in toluene. 1b structure displays similar square planar features to 1a (Figure 3), with an almost flat O-H-O angle (167.58°) and a short O-O distance (2.425 Å).

Figure 2. ORTEP plot (50% probability displacement ellipsoids) of complex 1a. Hydrogen atoms have been omitted for clarity (except for the OHO moiety).

Figure 3. ORTEP plot (50% probability displacement ellipsoids) of complex 1b. Hydrogen atoms have been omitted for clarity (except for the OHO moiety).

Under ethylene pressure and at 40°C, complexes **1a-1f** conduct to the formation of traces of tertiary ethyl phosphine oxides and vinylcylooctene, confirmed by GC/MS, ¹H and ³¹P NMR spectroscopies, along with complex degradation. We postulated an activation of complexes **1** under ethylene pressure, leading to the zwitterionic alkylnickel intermediates **2** after departure of the vinylcylooctene (Figure 4). These species probably coexist with their neutral form **2'** through a P($\sigma^4 \lambda^5$)-P($\sigma^3 \lambda^3$) equilibrium. In agreement with phosphorylation reactions, the formation of these tertiary ethyl phosphine oxide species can result from reductive elimination from Ni-ethyl intermediate **2'**.^[8,12]

Figure 4. Reactivity path of SPO-based nickel complexes.

The catalytic feature of complex **1a** for hydrophosphinylation transformations was demonstrated with ethylene or 1-octyne and $Ph_2P(O)H$. Under catalytic conditions (5 mol % of Ni, 30 bar of C_2H_4 and 70°C), complex **1a** efficiently coupled $Ph_2P(O)H$ and C_2H_4 in toluene to form $Ph_2P(O)Et$ with up to 73% yield. When focusing on 1-octyne, well-defined species **1a** led at 70°C in toluene to a mixture of branched and linear regio-isomers with 33% and 28% yield, respectively.

Scheme 1. Nickel-catalyzed hydrophosphinylation reactions.

We hypothesized that addition of Lewis acids may allow an outer-sphere modulation of the complex electronics and hamper

in this example contribution of structure 2', preventing P(III)-P(V) rearrangement which favors phosphorylation reactions and moreover, preserve the electro-deficient character of the nickel center profitable to ethylene oligomerization reactions.^[9,13] The proof-of-concept was established with tris(pentafluorophenyl)borane as a remote activator (Table 2). Indeed, mixing precursor **1a** with $B(C_6F_5)_3$ (2 equivalents) under ethylene pressure triggered the ethylene consumption, leading to short-chain linear olefins (C4 to C8), with up to 98.9% for 1butene in the C₄ fraction, although deactivation was noticed after 1 hour of reaction (see SI). In similar conditions, complex 1b provided a more active and stable catalyst (6467 goliao/(g_{Ni}.h)), while no activity was noticed with complex 1c at 40°C, 60°C being required for a weak reaction initiation, highlighting the induction of SPO electronic properties (para-CF₃ in 1b and para-OMe in 1c). Introducing steric hindrance on the SPOs as in complex 1d allows the access to a wider product distribution (K_{SCHULZ-FLORY}~0.7). Similarly to 1c, solely a slight reactivity could be detected with benzvl substituted SPO complex 1e at 60°C. This detrimental effect of electron-rich SPOs was confirmed with the alkyl analog 1f, inert even at 60°C. Interestingly, replacement of B(C₆F₅)₃ with GaCl₃ afforded a much more active system in the case of 1a, with a selectivity of 93.6% towards butenes. With para-CF₃ SPO-based complex 1b, ethylene uptake was lower than expected, with a butene selectivity up to 94.8%. Surprisingly, a 1:1 ratio between complex 1a and borane (50 µmol) also resulted in an absence of activity. In addition, when adding few equivalents of $Ph_2P(O)H$ to **1a** and $B(C_6F_5)_3$ under ethylene, Ph₂P(O)Et is obtained as the hydrophosphinylation product. The control of the olefin distribution brought by inner-sphere and outer-sphere modifications, through the nature of the SPO pre-ligand or the Lewis acid, respectively, lies in the heart of the industrial developments to meet the flexibility requirements of the LAO markets.

Table 2. Catalytic evaluation of complexes 1a-f associated with $B(C_6F_5)_3$ and $GaCI_3.^{[a]}$

Complex	T (°C)	m _{oligo}	Prod.	Product dist	ribution (%) ^[d]
	(0)	(g)		C ₄ (1-C ₄ ^[e])	C ₆	C ₈ +
1a ^[f]	40	8.6	3919	56.1 (98.9)	25.1	18.8
1b	40	14.2	6467	67.4 (91.9)	22.8	9.8
1c	60	<1	<500	59.0 (96.3)	20.3	20.7
1d	40	19.3	8778	14.5 (83.7)	6.2	79.3
1e	60	<1	<500	31.8 (86.9)	14.1	54.1
1f	60	-		-	-	-
1a ^[f,g]	40	15.9	7224	93.6 (59.7)	4.8	1.6
1b ^[g]	40	5.2	2340	94.8 (78.5)	4.8	1.0

[a] Ni complex (25 µmol), B(C₆F₅)₃ (50 µmol), toluene (30 mL), 30 bars of C₂H₄, 90 min. [b] Mass of oligomers formed during the reaction in grams. [c] Productivity in $g_{oligo}/(g_{Ni}.h)$. [d] In wt%, determined by GC. [e] 1-Butene wt% in C₄ fraction, determined by

GC. [f] **1a** solubilized in CH_2Cl_2 (2 mL). [g] $B(C_6F_5)_3$ replaced by GaCl_3 (2 eq.).

To gain mechanistic insights, **1a** was mixed in CD_2Cl_2 with one equivalent of $B(C_6F_5)_3$ and monitored by phosphorus decoupled proton NMR spectroscopy. Within ten minutes, disappearance of the phosphinito-phosphinous acid system signal at 101 ppm was observed. The rise of two new doublets indicated a disymmetrization of the system. Cis configuration of the P atoms was preserved, as evidenced by a weak ³¹P coupling constant ($J_{PP} = 32$ Hz). Taking a closer look at the signal at 110 ppm revealed a doublet of septuplet, due to a close interaction of one phosphorus with the six *ortho* fluorine atoms of $B(C_6F_5)_3$ ($J_{PF} = 5$ Hz, Figure 5). Moreover, a new broad singlet on the proton NMR spectra rose in the allylic area, attributed to a P-OH signal. All these observations support formation of the zwitterionic dissymmetric borate adduct **3a** (Figure 4).

Figure 5. ^{31}P NMR spectroscopy of complex 3 highlighting the interaction between one phosphorus and B(C_6F_5)_3.

The structure of adduct 3a was finally confirmed by elemental analysis and X ray analysis on monocrystal, obtained by slow diffusion of pentane in a toluene solution (Figure 6). Similarly, addition of two equivalents of B(C₆F₅)₃ to 1a led only to adduct 3 on the ³¹P NMR spectra, in solution with free borane detected by ¹⁹F NMR (see SI). Keeping the solution five days at room temperature resulted in the complete conversion of 3a into a new symmetrical compound 4a, fully characterized by NMR spectroscopies and elemental analysis. This preferred reaction path is in line with preliminary DFT calculations (wB97XD) from the structures determined by XRD. The formation of the boron adduct 3 from complex 1a is thermodynamically favored by 34.3 kcal.mol⁻¹. In addition, the degradation path of adduct **3**, leading to the stable complex 4a and the departure of C_6F_5H is also confirmed to be exergonic ($\Delta G = -15.0 \text{ kcal.mol}^{-1}$). Compound **4a** displayed two equivalent phosphorous atoms but no deshielded proton. Monocrystals could be obtained by slow diffusion of pentane in a toluene solution (Figure 7), confirming the bridging borane moiety through XRD.^[14] Complex 4a is not active towards ethylene at 40°C, even in the presence of additional $B(C_6F_5)_3$. Thus, the requirement of two equivalents of borane during catalysis remains unclear. In situ ³¹P NMR study of 1a

under ethylene with 1 or 2 equivalents of $B(C_6F_5)_3$, suggests that with one equivalent of borane, the decoordination of the SPO ligands occurs while with 2 equivalents, the ligands coordination is longer preserved, sustaining an enhanced catalyst lifetime (see SI).

Figure 6. ORTEP plot (50% probability displacement ellipsoids) of complex 3a. Hydrogen atoms have been omitted for clarity.

Figure 7. ORTEP plot (50% probability displacement ellipsoids) of complex 4a. Hydrogen atoms have been omitted for clarity.

In conclusion, we synthesized and fully characterized a new family of supramolecular phosphinito-phosphinous acid π -allylic nickel complexes. We highlight a unique remote control of the metallic center and its electro-density through SPO ligands to switch the complex reactivity towards elementary migratory insertion and ethylene oligomerization and selectivity. Ultimately, NMR experiments and X ray analyses provided crucial information on the Lewis acid interaction generating zwitterionic active species as well as its degradation pathway. Such outer-sphere interaction on the broad class of SPO ligands opens an unprecedented opportunity for the electronic steering in transition metal (asymmetric) catalysis.

Experimental Section

Ligand and complex syntheses and characterizations, crystal structure determinations, DFT calculations and reactivity study are detailed in the

supporting information file. This material is available free of charge via the Internet.

Acknowledgements

We thank IFP Energies nouvelles for financial support, Dr Pierre Boulens for preliminary results.

Keywords: Secondary phosphine oxide ligand • nickel • Lewis acid interaction • outer-sphere coordination • homogeneous catalysis

- [1] Hartwig, J. F. Organotransition Metal Chemistry: From Bonding to Catalysis (University Science, **2010**).
- a) P. W. N. M. van Leeuwen, C. F. Roobeek, R. L. Wife, J. H. G. Frijns J. Chem. Soc., Chem. Commun. 1986, 31-33; b) P. W. N. M. van Leeuwen, C. F. Roobeek, Eur. Pat. Appl., EP 82576, Chem. Abstr. 1983, 99, 121813.
- [3] D. Martin, D. Moraleda, T. Achard, L. Giordano, G.L. Buono Chemistry Eur. J. 2011, 17, 12729–12740.
- I. Cano, M. A. Huertos, A. M. Chapman, G. Buntkowsky, T. Gutmann, P.
 B. Groszewicz, P. W. N. M. van Leeuwen J. Am. Chem. Soc. 2015, 137 7718-7727.
- [5] H. Landert, F. Spimdler, A. Wyss, H.U. Blaser, B. Pugin, Y. Ribourduoille, B. Gschwend, B. Ramalingam, A. Pfaltz Angew. Chem. Int. Ed. 2010, 49, 6873-6876.
- a) M. Karanik, D. Lesage, Y. Gimbert, P. Nava, S. Humbel, L. Giordano, G. Buono, J.-C. Tabet Organometallics 2011, 30, 4814-4821; b) C.
 Wolf, H. Xu J. Org. Chem. 2008, 73, 162-167; c) J. Bigeault, L. Giordano, G. Buono, Angew. Chem. Int. Ed. 2005, 44, 4753-4757; d) C.
 Wolf, R. Lebours Org. Lett. 2004, 6, 1147-1150; e) W.-M Dai, K. K. Y. Yeung, W. H. Leung, R. K. Haynes Tetrahedron Asym. 2003, 14, 2821-2826; f) G. Y. Li J. Org. Chem. 2002, 67, 3643-3650; g) G. Y. Li J. Organomet. Chem. 2002, 653, 63-68; h) Y. Li, G. Zheng, A. F. Noonan J. Org. Chem. 2001, 66, 8677-6881; i) Y. Li Angew. Chem. Int. Ed. 2001, 40, 1513-1516.
- [7] a) B. Walther, H. Hartung, M. Maschmeier, U. Baumeister, B. Messbauer Z. Anorg. Allg. Chem. **1988**, 566, 121-130. b) W. Kläui, W, Eberspach, R. Schwarz J. Organomet. Chem. **1983**, 252, 347-357.
- [8] a) L.-B. Han, Y. Ono, H. Yazawa Org. Lett. 2005, 7, 2909-2911; b) L.-B.
 Han, C. Zhang, H. Yazawa, S. Shimada J. Am. Chem. Soc. 2004, 126, 5080-5081.
- [9] a) G. Wilke Angew. Chem. Int. Ed. 1973, 12, 943-1026; b) B.
 Bogdanović, B. Henc, H. G. Karmann, H. G. Nüssel, D. Walter, G.
 Wilke Ind. Eng. Chem. 1970, 62, 34-44; c) U. Birkenstock, H.
 Bonnemann, B. Bogdanović, D. Walter, G. Wilke Advan. Chem. Ser.
 1968, 70, 250-265.
- [10] For representative reviews see: a) P.-A. R. Breuil, L. Magna, H. Olivier-Bourbigou *Catal. Lett.* 2015, 145, 173-192; b) S. Wang, W.-H. Sun, C. Redshaw J. Organomet. Chem. 2014, 751, 717-741; c) F. Speiser, P. Braunstein, L. Saussine Acc. Chem. Res. 2005, 38, 784-793; d) V. C. Gibson, S. K. Spitzmesser Chem. Rev. 2003, 103, 283-315; e) S. Mecking Coord. Chem. Rev. 2000, 203, 325-351; f) S. D. Ittel, L. K. Johnson, M. Brookhart Chem. Rev. 2000, 100, 1169-1203.
- [11] P. Boulens, E. Pellier, E. Jeanneau, J. N. H. Reek, H. Olivier-Bourbigou, P.-A. R. Breuil Organometallics 2015, 34, 1139-1142.
- [12] For recent examples of nickel-catalyzed phosphorylation and cross-coupling reactions see: a) Y. Gao, H. Deng, S. Zhang, W. Xue, Y. Wu, H. Qiao, P. Xu, Y Zhao J. Org. Chem. 2015, 80, 1192-1199; b) L. Liu, Y. Lv, Y. Wu, X. Gao, Z. Zeng, Y. Gao, G. Tang, Y. Zhao RSC Adv. 2014, 4, 2322-2326; c) L. Liu, Y. Wang, Z. Zeng, P. Xu, Y. Gao, Y. Yin, Y. Zhao Adv. Synth. Catal. 2013, 355, 659-666; d) T. Chen, Y. Zhao, G. J. Guo, L.-B. Han Chem. Lett. 2013, 42, 1065-1067; e) Y.-L. Zhao, G.-J.

WILEY-VCH

Wu, Y. Li, L.-X. Gao, F.-S. Han Chem. Eur. J. 2012, 18, 9622-9627; f)
C. Shen, G. Yang, W. Zhang Org. Biomol. Chem. 2012, 10, 3500-3505;
g) Q. Xu, L.-B. Han J. Organomet. Chem. 2011, 696, 130-140.

[13] a) J. D. Azoulay, Z. A. Koretz, G. Wu, G. C. Bazan Angew. Chem. Int. Ed. 2010, 49, 7890-7894; b) Y. Chen, G. Wu, G. C. Bazan Angew. Chem. Int. Ed.2005, 44, 1108-1112; c) Z. J. A. Komon, G. M. Diamond, M. K. Leclerc, V. Murphy, M. Okazaki, G. C. Bazan J. Am. Chem. Soc. 2002, 124, 15280-15285; d) B. Y. Lee, X. Bu, G. C. Bazan Organometallics 2001, 20, 5425-5431; e) B. Y. Lee, G. C. Bazan, J. Vela, Z. J. A. Komon, X. Bu J. Am. Chem. Soc. 2001, 123, 5352-5353; f) Z. J. A. Komon, X. Bu, G. C. Bazan J. Am. Chem. Soc. 2000, 122, 12379-12380; g) Z. J. A. Komon, X. Bu, G. C. Bazan *J. Am. Chem.* Soc. **2000**, *122*, 1830-1831.

[14] Related MP₂O₂BF₂ structures: a) A. Christiansen, D. Selent, A. Spannenberg, W. Baumann, R. Franke, A. Börner *Organometallics* 2010, 29, 3139-3145; b) E. Y. Y. Chan, Q.-F. Zhang, Y.-K. Sau, S. M. F. Lo, H. H. Y. Sung, I. D. Williams, R. K. Haynes, W.-H. Leung *Inorg. Chem.* 2004, 43, 4921-4926; c) K. R. Dixon, A. D. Rattray *Inorg. Chem.* 1977, *16*, 209-211; d) W. B. Beaulieu, T. B. Rauchfuss, D. M. Roundhill *Inorg. Chem.* 1975, *14*, 1732-1734.

WILEY-VCH

Entry for the Table of Contents (Please choose one layout)

Layout 2:

COMMUNICATION

A new dimension for secondary phosphine oxide (SPOs) ligands is described in this article. Demonstrated on original π -allylic nickel structures, these self-assembled complexes trigger catalytic hydrophosphinylation reactions. Addition of a Lewis acid as B(C₆F₅)₃ switches the reactivity towards migratory insertion and thus ethylene oligomerisation through an unprecedented outer-sphere interaction with the coordinated SPO ligand.

Rudy Lhermet, Erwann Jeanneau, Hélène Olivier-Bourbigou, Pierre-Alain R. Breuil*

Page No. – Page No.

Title