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Abstract
The deoxygenation of 1- alkyl- 3- methyl- 3- phospholene 1- oxides, which may be re-
garded as trialkyl phosphine oxides (R3PO), and the reduction of dialkyl- 
phenylphosphine oxides (R2PhPO) and methyl- diphenylphosphine oxide (MePh2PO) 
have been elaborated by applying user- friendly silanes, such as tetramethyldisiloxane  
(>SiH–O–HSi<) and polymethylhydrosiloxane ((O–SiH)n) under solvent- free, 
catalyst- free, and microwave (MW)- assisted conditions. New silanes of type 
Ar2SiH2, alkyl2SiH2, and Ar3SiH were also applied in a few cases. The reactivity of 
the phosphine oxides and the silanes could be mapped on the basis of our experimen-
tal data.

1 |  INTRODUCTION

These days, the deoxygenation of phosphine oxides is in the 
focus due to its high importance.[1-6] The resulting phos-
phines, on the one hand, may be useful intermediates, and 
on the other hand, they may serve as P- ligands in transition 
metal complexes. Transformations, such as the Wittig, Appel, 
and the Mitsunobu reactions, involve the stoichiometric con-
version of triphenylphosphine to triphenylphosphine oxide 
causing an environmental burden and meaning cost. These 
problems can be eliminated by applying the phosphine in 
a catalytic amount, and by insuring the in situ reduction of 
the phosphine oxide formed. This was first elaborated for 
the Wittig reaction using silanes as the reducing agent by 
O’Brien.[7-10] Since then, the catalytic Wittig reaction has be-
come a hot topic and found a number of applications.[11-16] It 
is worth mentioning that P- aryl and alkyl phospholanes and 
phospholenes are the most suitable phosphines in the cata-
lytic cycles due to the easy reducibility of the related ring 
phosphine oxides.[7,8] The ring strain is known to signifi-
cantly aid the deoxygenation of the P=O group.[17]

Many silanes were described as reducing agents. 
Trichlorosilane is the most widespread reagent[18-20]; how-
ever, its volatile (bp: 32°C) and corrosive properties mean 
disadvantage. For this, Cl3SiH is, in most cases, applied to-
gether with three equivalents of pyridine or triethylamine that 
has also an impact on the stereochemistry.[19] Phenylsilane 
may be the choice of the reagent for the deoxygenation of 
the P=O function; however, despite the fact that a quantity 
of 0.33 equivalents is enough, it is rather expensive.[21-23] 
Tetramethyldisiloxane (TMDS) and  polymethylhydrosiloxane 
(PMHS) are cheap, but not too reactive reducing agents. For 
this, copper- , titanium-  and indium- catalyzed methods,[24-28] 
along with a phosphoric acid diester- promoted protocol[29] 
were developed for the deoxygenation of phosphine oxides.

During our earlier work, we studied the deoxygenation of 
1- phenyl- 3- methyl- 3- phospholene 1- oxide (1) by different 
silanes (3- 10) in detail.[30,31] The most important results are 
summarized in Scheme 1 and Table 1. The expensive phe-
nylsilane (PhSiH3) 3 was found to be the best reagent under 
solvent- free and microwave (MW)- assisted conditions that 
could be replaced well by TMDS (4) and PMHS (5), al-
though somewhat higher temperatures and longer reaction 
times were necessary (Table 1, entries 2 and 3 vs 1).[30] Later 
on, other silanes were also tried out.[31] It was found that 
1- naphthylsilane (NaphSiH3 6), benzylsilane (BnSiH3 7), and 
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bis(4- methylphenyl)silane [(4- MePh)2SiH2 8] were more re-
active than PMHS (5) and TMDS (4) (Table 1, entries 4–6), 
but tetraphenyl- disilane ([Ph2SiH]2 10) and bis(1- naphthyl)
silane ([1- Naph]2SiH2 9) were less reactive than PMHS (5) 
(Table 1, entries 7 and 8). The reactivity of (Ph2SiH)2 (10) 
and TMDS (4) seemed to be comparable.

The MW- assisted and solvent- free deoxygenation of tri-
arylphosphine oxides (Ar3PO, where Ar=Ph, 4- MePh, 4- 
ClPh) requested a higher excess of the silanes (3- 5) and more 
forcing conditions.[30] Applying PhSiH3 (3) in a quantity of 
nine equivalents, the reductions were complete after a 0.5- 
hour irradiation at 150°C. Using 10 equivalents of TMDS (4) 
or five equivalents of PMHS (5), the deoxygenations were 
complete after a treatment of 200°C for 6- 8 hour and 175°C 
for 7.5 hour, respectively.[30] Steric hindrance is a limiting 
factor for P=O deoxygenations.

It is a green chemical approach to substitute catalysts by 
MW irradiation. We experienced that in heterogeneous phase 
C- alkylations,[32-34] and in Kabachnik- Fields reactions,[35-37] 
the catalysts could be omitted under MW conditions. It was 
shown above that this approach was utilized in the TMDS-  and 
PMHS- promoted deoxygenations.[30,31] Due to their lower re-
activity, TMDS and PMHS were advised to be applied to-
gether with metal- containing or metal- free catalysts.[24-29] We 

found that under MW irradiation, there is no need for any 
catalyst (Table 1, entries 2 and 3).[30,31]

In this article, we wish to make a further profit of our 
finding by extending the method to the reduction of a series 
of phosphine oxides of type R3-nPArn (where n=0, 1, 2). It 
was also our purpose to set the order of reactivity of the phos-
phine oxides and also that of the silanes. For this, we planned 
to test a few more new silanes.

2 |  RESULTS AND DISCUSSION

Our first model compounds were 1- alkyl- 3- methyl- 
 3- phospholene oxides (11a- d) that may be important precur-
sors for phosphines in catalytic Wittig reactions, as it was 
mentioned in the Introduction.[7-10] These trialkyl- like phos-
phine oxides (11a- d) were subjected to deoxygenation by 
PhSiH3, TMDS, and PMHS under solvent- free conditions 
(Scheme 2). The phosphines (12a- d) were analyzed as the 
corresponding phospholene sulfides (13a-d). Experimental 
data are summarized in Table 2.

As regards the reduction of 1- ethyl- , 1- propyl- , 1- butyl- , 
and 1- isopentyl- 3- phospholene oxides (11a- d) with PhSiH3 
(3), there was practically no observable differences in their 

S C H E M E  1  Deoxygenation 
of 3- methyl- 1- phenyl- 3- phospholene 
1- oxide (1) by silanes under solvent- free, 
microwave- assisted conditions[30,31]
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Entry Silane Equiv. T (°C) t Conv. (%)a Literature

1 PhSiH3 (3) 1 80 40 min 100 [30]

2 TMDS (4) 2 110 3 h 100 [30]

3 PMHS (5) 2 110 2 h 100 [30]

4 NaphSiH3 (6) 1 80 30 min 100 [31]

5 BnSiH3 (7) 1 80 50 min 100 [31]

6 (4- MePh)2SiH2 (8) 1 80 1 h 100 [31]

7 (1- Naph)2SiH2 (9) 1 150 1 h 98 [31]

8 (Ph2SiH)2 (10) 1 150 45 min 100 [31]
aOn the basis of the relative 31P NMR intensities.

T A B L E  1  Deoxygenation of 
3- methyl- 1- phenyl- 3- phospholene 1- oxide 
(1) by different silanes under solvent- free, 
microwave- assisted conditions
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reactivity (Table 2, entries 1, 7, 13, and 19). The MW- assisted 
accomplishments were significantly faster (Table 2, entries 2, 
8, 14, and 20). Using PhSiH3 (3), the reactivity of the alkyl- 3- 
phospholene oxides (11a- d) was comparable with that of the 
phenyl derivative (1) (Table 1, entry 1). Applying TMDS (4) 
for the series under discussion (11a- d), the deoxygenations 
took somewhat longer than for the 1- phenyl- 3- phospholene 
oxide 1 (Table 2, entries 3/4, 9/10, 15/16, and 21/22 vs Table 1, 
entry 2 in respect of the MW- assisted accomplishments). 
Hence, TMDS (4) seems to reveal a somewhat lower reactiv-
ity toward 1- alkyl- 3- phospholene oxides (11a- d) than toward 
the 1- phenyl derivative (1). Using PMHS (5), it can be said 

that the reactivity toward the 1- alkyl- 3- phospholene oxides 
(11a- d) is more or less the same, as that toward the 1- phenyl 
substrate (1) (Table 2, entries 5/6, 11/12, 17/18, and 23/24 
Table 1, entry 3 in respect of the MW- assisted variations).

The point is that in the case of 1- alkyl- 3- methyl- 3-  
phospholene 1- oxides (11a- d), PhSiH3 (3) may also be 
 replaced by the cheap and user- friendly TMDS (4) and PMHS 
(5). In both variations, MW assistance is advantageous. The 
corresponding phosphine sulfides (13a- d) were prepared in 
yields of 82%- 93%. The 1- alkyl- 3- methyl- 3- phospholene 
1- sulfides (13a- d) are new compounds that were character-
ized by 31P, 13C, and 1H NMR spectral data, as well as HRMS.

S C H E M E  2  Deoxygenation of 
1- alkyl- 3- methyl- 3- phospholene 1- oxides 
(11a- d) by silanes (3- 5) under solvent- free 
conditions
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T A B L E  2  Deoxygenation of 1- alkyl- 3- methyl-  3- phospholene 1- oxides (11a- d) without solvent by different silanes on conventional heating 
or microwave irradiation

Entry Phospholene oxide Silane Equiv. Mode of heating T (°C) t Conv. (%)a Yield of 13 (%)

1 11a PhSiH3 (3) 1 Δ 80 1 h ~100 90 (13a)

2 11a PhSiH3 (3) 1 MW 80 35 min 100 91 (13a)

3 11a TMDS (4) 2 Δ 110 5.5 h 99 90 (13a)

4 11a TMDS (4) 2 MW 110 3 h 90 82 (13a)

5 11a PMHS (5) 2 Δ 110 3 h 100 90 (13a)

6 11a PMHS (5) 2 MW 110 2 h 100 93 (13a)

7 11b PhSiH3 (3) 1 Δ 80 70 min ~100 90 (13b)

8 11b PhSiH3 (3) 1 MW 80 45 min 100 89 (13b)

9 11b TMDS (4) 2 Δ 110 9 h ~100 91 (13b)

10 11b TMDS (4) 2 MW 110 5 h ~100 88 (13b)

11 11b PMHS (5) 2 Δ 110 4 h ~100 91 (13b)

12 11b PMHS (5) 2 MW 110 2 h ~100 93 (13b)

13 11c PhSiH3 (3) 1 Δ 80 1 h 100 94 (13c)

14 11c PhSiH3 (3) 1 MW 80 40 min ~100 89 (13c)

15 11c TMDS (4) 2 Δ 110 6 h 98 90 (13c)

16 11c TMDS (4) 2 MW 110 4 h 91 85 (13c)

17 11c PMHS (5) 2 Δ 110 3 h 99 91 (13c)

18 11c PMHS (5) 2 MW 110 2 h 100 93 (13c)

19 11d PhSiH3 (3) 1 Δ 80 1 h ~100 92 (13d)

20 11d PhSiH3 (3) 1 MW 80 45 min 100 90 (13d)

21 11d TMDS (4) 2 Δ 110 6 h 94 89 (13d)

22 11d TMDS (4) 2 MW 110 4 h 90 88 (13d)

23 11d PMHS (5) 2 Δ 110 3 h 97 90 (13d)

24 11d PMHS (5) 2 MW 110 2 h 92 88 (13d)
aOn the basis of relative 31P NMR intensities.
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After the deoxygenation of 1- alkyl- 3- phospholene  oxides 
(11a- d) that can be regarded as “trialkyl”- like tertiary phos-
phine oxides, the next model compounds were dialkyl- 
phenylphosphine oxides and methyl- diphenylphosphine 
oxide. These tertiary phosphine oxides were reduced by user- 
friendly silanes PhSiH3 (3), TMDS (4), and PMHS (5) under 
solvent- free and MW- assisted conditions. In these cases, the 
products were isolated as phosphines. Comparative thermal 
experiments were also carried out.

Experimental data on the deoxygenation of dialkyl- 
phenylphosphine oxides (14a- d) (Scheme 3) are found in 
Table 3. The reducing agents PhSiH3 (3), TMDS (4), and PMHS 
(5) were used in a one equivalent, two equivalents, and two 
equivalents quantity, respectively, in the range of 110- 175°C.

Reduction of dimethyl- phenylphosphine oxide (14a) with 
PhSiH3 (3), TMDS (4), and PMHS (5) under MW conditions 
required a reaction time of 0.75, 5, and 2.5 hour, respectively 
(Table 3, entries 1, 3, and 5), while the thermal variations 
were complete after 1.75, 8, and 5 hour, respectively (Table 3, 
entries 2, 4, and 6). Dimethyl- phenylphosphine (15a) was 
isolated in yields of 90%- 95%.

Dipropyl- phenylphosphine oxide (14b) revealed a similar 
reactivity toward PhSiH3 (3) (Table 3, entries 7 and 8), but in 
respect of TMDS (4) and PMHS (5), its reactivity was some-
what lower (Table 3, entries 9- 12). Regarding the MW- assisted 
deoxygenations, reaction times of 0.75, 6, and 4 hour were 
 necessary using PhSiH3 (3), TMDS (4), and PMHS (5), respec-
tively (Table 3, entries 7, 9, and 11). Dipropyl- phenylphosphine 
(15b) could be prepared in yields of 85%- 88%.

S C H E M E  3  Deoxygenation of dialkyl- phenylphosphine oxides 
(14a-d) by silanes 3-5
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T A B L E  3  Deoxygenation of dialkyl- phenylphosphine oxides (14a-d) by different silanes under solvent- free conditions on conventional 
heating or microwave irradiation

Entry Phosphine oxide Silane Equiv. Mode of heating T (°C) t (h) Conv. (%)a Yield (%)

1 14a PhSiH3 (3) 1b MW 110 0.75 ~100 92

2 14a PhSiH3 (3) 1 Δ 110 1.75 ~100 95

3 14a TMDS (4) 2 MW 175 5 95 90

4 14a TMDS (4) 2 Δ 175 8 98

5 14a PMHS (5) 2 MW 175 2.5 92 83

6 14a PMHS (5) 2 Δ 175 5 96

7 14b PhSiH3 (3) 1 MW 110 0.75 96 85

8 14b PhSiH3 (3) 1 Δ 110 1.75 96 87

9 14b TMDS (4) 2 MW 175 6 88

10 14b TMDS (4) 2 Δ 175 10 90

11 14b PMHS (5) 2 MW 175 4 98 88

12 14b PMHS (5) 2 Δ 175 6 95

13 14c PhSiH3 (3) 1 MW 110 1 95 88

14 14c PhSiH3 (3) 1 Δ 110 2 99

15 14c TMDS (4) 2 MW 175 7 98 90

16 14c TMDS (4) 2 Δ 175 10 90

17 14c PMHS (5) 2 MW 175 4 92 84

18 14c PMHS (5) 2 Δ 175 6 97

19 14d PhSiH3 (3) 1 MW 1.25 95 87

20 14d PhSiH3 (3) 1 Δ 110 2.5 97

21 14d TMDS (4) 2 MW 175 7 94 89

22 14d TMDS (4) 2 Δ 175 10 85

23 14d PMHS (5) 2 MW 175 4 90 82

24 14d PMHS (5) 2 Δ 175 6 83
aOn the basis of relative 31P NMR intensities.
bNine equivalents of PhSiH3 were used in an unoptimized experiment.[30]
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Dibutyl- phenylphosphine oxide (14c) behaved rather  similarly 
to the dipropyl analog 14b. Regarding the MW accomplishments, 
using PhSiH3 (3), TMDS (4), and PMHS (5), there was a need 
for a 1- , 7- , and 4- hour reaction time,  respectively, to reach al-
most quantitative conversions (Table 3, entries 13, 15, and 17). 
Completion of the thermal variations required 2, 10, and 6 hour, 
respectively (Table 3, entries 14, 16, and 18).

The deoxygenating experiments with diisopentyl- 
phenylphosphine oxide (14d) also matched into the series 
including the reductions of the propyl and butyl derivatives 
(Table 3, entries 19- 24).

To broaden the scope of the reductive agents, other silanes, 
such as bis(4- phenylphenyl)silane ([4- PhPh]2SiH2 16), bis(anthra-
nyl)silane (Anth2SiH2 17), bis(fluorenyl)silane (Fluorenyl2SiH2 
18), and tri(1- naphthyl)silane (1- Naph3SiH 19), were also 
tested (Figure 1). The model reaction was the reduction of 
3- methyl- 1- phenyl- 3- phospholene 1- oxide (1) that is an dialkyl- 
aryl- like phosphine oxide. The results are found in Table 4.

It was found that the fluorenyl and the 4- PhPh bis- silanes 
(18 and 16) could be used in the deoxygenation of phospholene 
oxide 1 at 150°C (Table 4, entries 3 and 5), and the reactions were 
faster on MW irradiation (Table 4, entries 4 and 6). However, the 
application of Anth2SiH2 (17) required a higher temperature of 

180°C (Table 4, entries 1 and 2). Trinaphthylsilane 19 remained 
unreactive even at 200°C (Table 4, entries 7 and 8).

Taking into account also the earlier experiences sum-
marized in Scheme 1,[30,31] the order of reactivity shown in 
Figure 2 can be set for the silanes (3- 10, 16- 19) applied in 
our study.

Experimental data on the deoxygenation of methyl- 
diphenylphosphine oxide (20) (Scheme 4) are shown in 
Table 5. It is recalled that triphenylphosphine oxide was re-
duced by PhSiH3 (3) at 150°C.[30] The reactivity of diphenyl 
derivative 20 allowed a lower temperature of 110°C. Under 
MW conditions and after an irradiation of 1 hour, phosphine 
21 was obtained in a complete conversion and in a yield of 
90% (Table 5, entry 1). The comparative thermal exper-
iment required a 2- hour heating (Table 5, entry 2). TMDS 
(4) and PMHS (5) were of lower reactivity requesting a reac-
tion temperature of 175°C. Using TMDS (4), an irradiation 
of 7 hour was necessary to obtain phosphine 21 in a yield 
of 87% (Table 5, entry 3). Measuring in PMHS (5), similar 
results could be obtained after a somewhat shorter (5 hour) 
reaction time (Table 5, entry 5). In the last two cases, the 
thermal control experiments required a reaction time of 15 
and 9 hour, respectively (Table 5, entries 4 and 6).

F I G U R E  1  New silanes applied by us 
in deoxygenations
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T A B L E  4  Deoxygenation of 3- methyl- 1- phenyl- 3- phospholene 1- oxide (1) by silanes 16- 19 under solvent- free conditions

Entry Silane Equiv. Mode of heating T (°C) t (h) Conv. (%)a

1 Anth2SiH2 (17) 1 Δb 180 3 98

2 Anth2SiH2 (17) 1 MWb 180 1.5 96

3 Fluorenyl2SiH2 (18) 1 Δb 150 2 100

4 Fluorenyl2SiH2 (18) 1 MWb 150 1 100

5 (4- PhPh)2SiH2 (16) 1 Δb 150 3 97

6 (4- PhPh)2SiH2 (16) 1 MWb 150 1.5 99

7 1- Naph3SiH (19) 1 Δb 200 3 0

8 1- Naph3SiH (19) 1 MW 200 3 0
aOn the basis of relative 31P NMR intensities.
bIn the presence of 0.05 mL of PhMe to avoid heterogeneity.

F I G U R E  2  The order of reactivity of different types of silanes in deoxygenation

(3) (6) (7) (8) (5) (10)(4) (9)

Fluorenyl2SiH2 > (4-PhPh)2SiH2 > Anth2SiH2 >>> 1-Naph3SiH

(18) (16) (17) (19)

PhSiH3 ~ NaphSiH3 > BnSiH3 > (4-MePh)2SiH2 >> PMHS > TMDS ~ (Ph2SiH)2 > (1-Napht)2SiH2 ~
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It can be seen that methyl- diphenylphosphine oxide 20 is 
significantly less reactive than the dialkyl- phenyl derivatives 
(14a- d) are. This may be due to steric factors.

Dialkyl- phenylphosphines 15a- c and methyl- 
diphenylphosphine (21) are known compounds that were 
identified by comparison of their δP chemical shifts with 
 literature data and by HRMS. New phosphine 15d was iden-
tified in a similar way.

The order of reactivity of the phosphine oxides investi-
gated in the present study and earlier[30] is shown in Figure 3.

In summary, a MW- assisted solvent-  and catalyst- 
free method using TMDS and PMHS as user- friendly 
and cheap silanes was elaborated for the deoxygenation 
of 1- alkyl- 3- methyl- 3- phospholene 1- oxides, dialkyl- 
phenylphosphine oxides, and methyl- diphenylphosphine 
oxide. The reactivity of the different phosphine oxides and 
silanes was mapped, and a few new phosphine sulfides were 
prepared during our work.

3 |  EXPERIMENTAL

3.1 | General
31P NMR spectra were registrated in CDCl3 solution on 
a Bruker AV- 300 spectrometer operating at 121.5 MHz. 
Chemical shifts are downfield relative to 85% H3PO4. 

The spectra used for estimation of the percentage quan-
tity of the components were obtained applying a 30° 
pulse, d1=2.2 seconds, AQ=0.9 seconds, number of data 
points=65 536, number of scans: ca. 32. High- resolution 
molecular weights were obtained using a Q- TOF Premier 
mass spectrometer in positive electrospray mode. PMHS 
with an average molecular weight 1700- 3200 was used. 
The reactions were carried out in a 300- W CEM Discover 
focused microwave reactor equipped with a pressure 
 controller applying 50- 80 W under isothermal condi-
tions. Silanes 3- 5 and 7 are available commercially, while 
silanes 6, 8-10, and 16-19 were prepared by LiAlH4 
reduction of the corresponding chlorosilanes in accord 
with literature procedures.[38-41] Compound 9 may also 
be  synthesized by a known procedure.[42] PMHS with an 
average molecular weight of 1700- 3200 was purchased 
from Sigma- Aldrich.

3.2 | General procedure 
for the deoxygenation of 1- alkyl- 3- methyl- 
3- phospholene 1- oxides (11) and for the 
trapping of the phosphines (12) so obtained
A mixture of 0.55 mmol of 1- alkyl- 3- methyl- 3- phospholene 
1- oxides (11a-d) (11a: 0.08 g, 11b: 0.09 g, 11c: 0.10 g, 
11d: 0.10 g) and 0.068 mL (0.55 mmol) of PhSiH3 (3), or 
0.19 mL (1.1 mmol) of TMDS (4), or 0.042 mL (1.1 mmol) 
of PMHS (5), or 0.55 mmol of silanes 6-10 and 16-19 (6: 
0.087 mL, 7: 0.075 mL, 8: 0.12 mL, 9: 0.20 g, 10: 0.19 g, 
16: 0.16 g, 17: 0.21 g, 18: 0.20 g, 19: 0.23 g) was heated 
under nitrogen atmosphere at the appropriate temperature 
for the appropriate time in a glass bomb immersed to an 
oil bath or in a commercial MW vial in the MW reactor 

S C H E M E  4  Deoxygenation of diphenyl- methylphosphine oxide 
(20) by silanes 3- 5
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T A B L E  5  Deoxygenation of methyl- diphenylphosphine oxide (20) by different silanes under solvent- free conditions on conventional heating 
or microwave irradiation

Entry Silane Equiv. Mode of heating T (°C) t (h) Conv. (%)a Yield of 21 (%)

1 PhSiH3 (3) 1 MW 110 1 98 90

2 PhSiH3 (3) 1 Δ 110 2 99 90

3 TMDS (4) 2 MW 175 7 90 87

4 TMDS (4) 2 Δ 175 15 90 87

5 PMHS (5) 2 MW 175 5 93 89

6 PMHS (5) 2 Δ 175 9 89 ~84
aOn the basis of relative 31P NMR intensities.

F I G U R E  3  The order of reactivity 
of different tertiary phosphine oxides in 
deoxygenations by silanes
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(Table 2). Then, the reaction mixture containing phos-
phine 12 was cooled to 26°C, and the crude product was 
reacted further immediately to form the corresponding 
sulfide (13).

To ~0.55 mmol of the corresponding phosphine (12) in 
2 mL of dichloromethane, 20.7 mg (0.65 mmol) of powdered 
sulfur was added under nitrogen. The mixture was stirred 
at 25°C for overnight, and then the solvent was evaporated. 
Column chromatography of the residue using hexane- ethyl 
acetate 9:1 as the eluent afforded the sulfide (13) as a dense 
oil. For the details, see Table 2.

The following phospholene sulfides were prepared:
1-Ethyl-3-methyl-3-phospholene 1-sulfide (13a). 31P 

NMR (CDCl3) δ: 65.1; 13C NMR (CDCl3) δ: 6.7 (2JP-

C=4.6, C2′), 19.6 (3JP-C=10.3, C3- Me), 26.0 (1JP-C=48.7, 
C1′), 37.8 (1JP-C=50.1, C2*), 41.0 (1JP-C=52.6, C5*), 
121.2 (2JP-C=5.2, C4), 137.2 (2JP-C=9.6, C3), *may be re-
versed; 1H NMR (CDCl3) δ: 1.24 (dt, J1=7.6, J2=19.5, 
3H, CH2CH3), 1.81 (bs, 3H, C3- CH3), 1.88- 2.08 (m, 2H, 
CH2CH3), 2.54- 2.91 (m, 4H, CH2PCH2), 5.49 (d, J=30.5, 
1H, CH=); [M+H]+

found=161.0551, C7H14PS requires 
[M+H]+=161.0548.

3-Methyl-1-propyl-3-phospholene 1-sulfide (13b). 31P 
NMR (CDCl3) δ: 62.4; 13C NMR (CDCl3) δ: 15.1 (3JP-C=15.9, 
C3′), 16.2 (2JP-C=3.6, C2′), 19.4 (3JP-C=10.3, C3- Me), 34.7 (1JP-

C=47.5, C1′), 38.4 (1JP-C=50.0, C2*), 41.6 (1JP-C=52.5, C5*), 
121.0 (2JP-C=5.2 C4), 137.1 (2JP-C=9.6, C3), *may be reversed; 
1H NMR (CDCl3) δ: 1.07 (t, J=7.3, 3H, CH2CH3), 1.63- 1.77 
(m, CH2CH3) overlapped by 1.80 (bs, C3- CH3), total int. 5H, 
1.89- 2.02 (m, CH2Et, 2H), 2.60- 2.92 (m, 4H, CH2PCH2), 5.48 
(d, J=31.2, 1H, CH=); [M+H]+

found=175.0711, C8H16PS re-
quires [M+H]+=175.0705.

1-Butyl-3-methyl-3-phospholene 1-sulfide (13c). 31P 
NMR (CDCl3) δ: 62.9; 13C NMR (CDCl3) δ: 13.4 (C4′), 
19.5 (3JP-C=18.2, C3- Me), 23.7 (3JP-C=15.5, C3′), 24.7 (2JP-

C=3.8, C2′), 32.6 (1JP-C=47.7, C1′), 38.4 (1JP-C=50.1, C2*), 
41.7 (1JP-C=52.6, C5*), 121.2 (2JP-C=5.2, C4), 137.2 (2JP-

C=9.6, C3), *may be reversed; 1H NMR (CDCl3) δ: 0.95 (t, 
J=7.3, 3H, CH2CH3), 1.38- 1.52 (m, 2H, CH2), 1.57- 1.72 
(m, 2H, CH2), 1.80 (bs, 3H, C3- CH3), 1.89- 2.04 (m, 2H, 
CH2Pr), 1.91- 2.04 (m, 4H, CH2PCH2), 5.48 (d, J=31.3, 
1H, CH=); [M+H]+

found=189.0867, C9H18PS requires 
[M+H]+=189.0861.

1-Isopentyl-3-methyl-3-phospholene 1-sulfide (13d). 
31P NMR (CDCl3) δ: 63.4; 13C NMR (CDCl3) δ: 19.4 (3JP-

C=10.3, C3- Me), 21.9 (2× CHCH3), 28.5 (3JP-C=15.0, C3′), 
30.6 (1JP-C=47.9, C1′), 31.1 (2JP-C=3.8, C2′), 38.1 (1JP-

C=50.1, C2*), 41.4 (1JP-C=52.6, C5*), 130.0 (2JP-C=5.2, C4), 
137.0 (2JP-C=9.6, C3), *may be reversed; 1H NMR (CDCl3) δ: 
0.71- 0.81 (m, 6H, 2× CHCH3), 1.26- 1.40 (m, 2H, CH2CH), 
1.41- 1.53 (m, 1H, CH), 1.62 (bs, 3H, C3- CH3), 1.71- 1.84 
(m, 2H, PCH2CH2), 2.39- 2.69 (m, 4H, CH2PCH2), 5.30 (d, 

J=30.3, 1H, CH=); [M+H]+
found=203.1029, C10H20PS re-

quires [M+H]+=203.1023.

3.3 | General procedure for the 
deoxygenation of the phosphine oxides 14a-d  
and 20 using phenylsilane, TMDS, and PMHS
A mixture of 0.50 mmol of phosphine oxide (14a: 0.08 g, 
14b: 0.11 g, 14c: 0.12 g, 14d: 0.12 g, 20: 0.12 g), 0.50 mmol 
(0.062 mL) of phenylsilane or 1.0 mmol (0.18 mL) of TMDS 
or 1.0 mmol (0.040 mL) of PMHS was heated under nitro-
gen atmosphere using an oil bath or a microwave oven at the 
appropriate temperature in a glass bomb (a thick- wall glass 
tube that can be closed) or in a commercial MW vial, re-
spectively, for the appropriate time. Then, the reaction mix-
ture was cooled to room temperature, and after taking up the 
oily mixture in some ethyl acetate, it was absorbed on a 2- cm 
layer of silica gel. Then, the phosphine was washed off using 
hexane- ethyl acetate, 9:1 to afford the corresponding phos-
phine 14a-d and 20 (as colorless oils). As a matter of fact, the 
main fraction was collected after a smaller pre- fraction. For 
the details, see Tables 3 and 5.

The following phosphines were prepared:
Dimethyl-phenylphosphine (15a). From the experi-

ment marked in Table 3, entry 5. Yield: 83%, colorless 
oil; 31P NMR (CDCl3) δ: −43.2, δ (CDCl3)

[43]: −42.4; 
[M+H]+

found=139.0682, C8H12P requires: 139.0677.
Dipropyl-phenylphosphine (15b). From the experi-

ment marked in Table 3, entry 11. Yield: 88%, colorless 
oil; 31P NMR (CDCl3) δ: −26.3, δ (CDCl3)

[44]: −27.7; 
[M+H]+

found=195.1316, C12H20P requires: 195.1297.
Dibutyl-phenylphosphine (15c). From the experi-

ment marked in Table 3, entry 17. Yield: 84%, colorless 
oil; 31P NMR (CDCl3) δ: −24.2, δ (CDCl3)

[45]: −24.6; 
[M+H]+

found=223.1618, C14H24P requires: 223.1610.
Diisopentyl-phenylphosphine (15d). From the experiment 

marked in Table 3, entry 23. Yield: 82%, colorless oil; 31P 
NMR (CDCl3) δ: −22.8, δ (CDCl3); [M+H]+

found=251.1929, 
C16H28P requires: 251.1923. On oxidation by 30% H2O2, the 
starting phosphine oxide (14d) was regenerated; 31P NMR 
(CDCl3) δ: 42.5, [M+H]+

found=267.1880, C16H28PO re-
quires: 267.1872.

Diphenyl-methylphosphine (21). From the experi-
ment marked in 5, entry 5. Yield: 89%, colorless oil; 
31P NMR (CDCl3) δ: −26.4, δ (CDCl3)

[46]: −26.1; 
[M+H]+

found=201.0840, C13H14P requires: 201.0833.

ACKNOWLEDGMENTS

This project was supported by the Hungarian Research 
Development and Innovation Fund (K119202).



8 of 8 |   KOVÁCS et al.

REFERENCES

 [1] D. Hérault, D. H. Nguyen, D. Nuel, G. Buono, Chem. Soc. Rev. 
2015, 44, 2508.

 [2] T. Kovács, G. Keglevich, Curr. Org. Chem. 2017, 21, 569.
 [3] L. D. Quin, A Guide to Organophosphorus Chemistry, John 

Wiley & Sons, New York 2000.
 [4] G. M. Kosolapoff, L. D. Quin, M. L, in Organic Phosphorus 

Compounds (Eds: G. M. Kosolapoff, L. Maier), Wiley-
Interscience, New York 1973, Vol. 6, Ch. 18, pp. 1.

 [5] R. Engel, in Handbook of Organophosphorus Chemistry (Ed: R. 
Engel), Marcel Dekker, New York 1992, Ch. 5, pp. 193.

 [6] G. Keglevich, Hung. Chem. J. 1998, 53, 385.
 [7] C. J. O’Brien, J. L. Tellez, Z. S. Nixon, L. J. Kang, A. L. Carter, 

S. R. Kunkel, K. C. Przeworski, G. A. Chass, Angew. Chem. Int. 
Ed. 2009, 48, 6836.

 [8] C. J. O’Brien, Z. S. Nixon, A. J. Holohan, S. R. Kunkel, J. L. 
Tellez, B. J. Doonan, E. E. Coyle, F. Lavigne, L. J. Kang, K. C. 
Przeworski, Chem. Eur. J. 2013, 19, 15281.

 [9] C. J. O’Brien, F. Lavigne, E. E. Coyle, A. J. Holohan, B. J. 
Doonan, Chem. Eur. J. 2013, 19, 5854.

 [10] E. E. Coyle, B. J. Doonan, A. J. Holohan, K. A. Walsh, F. Lavigne, 
E. H. Krenske, C. J. O’Brien, Angew. Chem. Int. Ed. 2014, 53, 
12907.

 [11] T. Werner, M. Hoffmann, S. Deshmukh, Eur. J. Org. Chem. 2014, 
2014, 6873.

 [12] M. Hoffmann, S. Deshmukh, T. Werner, Eur. J. Org. Chem. 2015, 
2015, 4532.

 [13] T. Werner, M. Hoffmann, S. Deshmukh, Eur. J. Org. Chem. 2015, 
2015, 3286.

 [14] T. Werner, M. Hoffmann, S. Deshmukh, Eur. J. Org. Chem. 2014, 
2014, 6630.

 [15] M.-L. Schirmer, S. Adomeit, A. Spannenberg, T. Werner, Chem. 
Eur. J. 2016, 22, 2458.

 [16] H. A. Van Kalkeren, A. L. Blom, F. P. J. T. Rutjes, M. A. J. 
Huijbregts, Green. Chem. 2013, 15, 1255.

 [17] G. Keglevich, M. Fekete, T. Chuluunbaatar, A. Dobó, V. Harmat, 
L. Tőke, J. Chem. Soc. Perkin. Trans. 2000, 1, 4451.

 [18] H. Fritzsche, U. Hasserodt, F. Korte, Chem. Ber. 1965, 98, 171.
 [19] L. D. Quin, K. C. Caster, J. C. Kisalus, K. A. Mesch, J. Am. Chem. 

Soc. 1984, 106, 7021.
 [20] E. H. Krenske, J. Org. Chem. 2012, 77, 3969.
 [21] H. Fritzsche, U. Hasserodt, F. Korte, Chem. Ber. 1964, 97, 1988.
 [22] K. L. Marsi, J. Org. Chem. 1974, 39, 265.
 [23] O. M. Demchuk, R. Jasiński, K. M. Pietrusiewicz, Heteroatom. 

Chem. 2015, 26, 441.
 [24] Y. H. Li, S. Das, S. L. Zhou, K. Junge, M. Beller, J. Am. Chem. 

Soc. 2012, 134, 9727.

 [25] M. Berthod, A. Favre-Réguillon, J. Mohamad, G. Mignani, G. 
Docherty, M. Lemaire, Synlett 2007, 10, 1545.

 [26] C. Petit, A. Favre-Réguillon, B. Albela, L. Bonneviot, G. Mignani, 
M. Lemaire, Organometallics 2009, 28, 6379.

 [27] L. Pehlivan, E. Metay, D. Delbrayelle, G. Mignani, M. Lemaire, 
Tetrahedron 2012, 68, 3151.

 [28] T. Coumbe, N. J. Lawrence, F. Muhammad, Tetrahedron. Lett. 
1994, 35, 625.

 [29] Y. H. Li, L. Q. Lu, S. Das, S. Pisiewicz, K. Junge, M. Beller, J. 
Am. Chem. Soc. 2012, 134, 18325.

 [30] G. Keglevich, T. Kovács, F. Csatlós, Heteroatom. Chem. 2015, 
26, 199.

 [31] T. Kovács, A. Urbanics, F. Csatlós, J. Binder, A. Falk, F. Uhlig, G. 
Keglevich, Curr. Org. Synth. 2016, 13, 148.

 [32] G. Keglevich, T. Novák, L. Vida, I. Greiner, Green. Chem. 2016, 
8, pp. 1073.

 [33] G. Keglevich, A. Grün, Z. Blastik, I. Greiner, Heteroatom. Chem. 
2011, 22, 174.

 [34] A. Grün, Z. Blastik, L. Drahos, G. Keglevich, Heteroatom. Chem. 
2012, 23, 241.

 [35] G. Keglevich, A. Szekrényi, Lett. Org. Chem. 2008, 5, 616.
 [36] E. Bálint, E. Fazekas, L. Drahos, G. Keglevich, Heteroatom. 

Chem. 2013, 24, 510.
 [37] E. Bálint, E. Fazekas, J. Kóti, G. Keglevich, Heteroatom. Chem. 

2015, 26, 106.
 [38] A. E. Finholt, A. C. Bond Jr., K. E. Wilzbach, H. I. Schlesinger, J. 

Am. Chem. Soc. 1947, 69, 2692.
 [39] P. D. Prince, M. J. Bearpark, G. S. McGrady, J. W. Steed, Dalton. 

Trans. 2008, 2008, 271.
 [40] J. Binder, R. Fischer, M. Flock, H.-G. Stammler, A. Torvisco, F. 

Uhlig, Phosphorus Sulfur Silicon 2016, 191, SI, 478.
 [41] J. Binder, PhD thesis, Graz University of Technology 2015.
 [42] W. Steudel, H. Gilman, J. Am. Chem. Soc. 1960, 82, 6129.
 [43] S. Sayalero, M. A. Pericàs, Synlett 2006, 16, 2585.
 [44] J. Tong, S. Liu, S. Zhang, S. Z. Li, Spectrochim. Acta. Mol. 

Biomol. Spectrosc. 2007, 67, 837.
 [45] T. Li, A. J. Lough, R. H. Morris, Chem. Eur. J. 2007, 13, 3796.
 [46] F. Dornhaus, M. Bolte, H.-W. Lerner, M. Wagner, Eur. J. Inorg. 

Chem. 2006, 24, 5138.

How to cite this article: Kovács T, Urbanics A, 
Csatlós F, Keglevich G. A study on the deoxygenation 
of trialkyl- , dialkyl- phenyl-  and alkyl-diphenyl 
phosphine oxides by hydrosilanes. Heteroatom Chem. 
2017;28:e21376. https://doi.org/10.1002/hc.21376

https://doi.org/10.1002/hc.21376

