Polyhedron 72 (2014) 66-71

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Reactions of a diacetylenic tetracobalt carbonyl complex with monophosphine triphenylphosphine or diphosphines

Xu-Feng Liu*

Department of Chemical Engineering, Ningbo University of Technology, Ningbo 315016, China

ARTICLE INFO

Article history: Received 28 November 2013 Accepted 27 January 2014 Available online 10 February 2014

Keywords: Cobalt carbonyl complex Phosphine ligand Carbonyl substitution Synthesis Crystal structure

ABSTRACT

1. Introduction

The well known complexes (μ -RC \equiv CR')Co₂(CO)₆ have been prepared by the reactions of $Co_2(CO)_8$ with alkynes since 1950s [1]. Studies on these cobalt carbonyl complexes, $(\mu$ -RC \equiv CR')Co₂(CO)₆, have attracted a great deal of interest due to their applications in organic syntheses [2], the Pauson-Khand reaction [3], the protection of alkynes and the marking of acetylenic steroids [4]. Phosphine ligand substitution in $(\mu$ -RC \equiv CR')Co₂(CO)₆ has been extensively studied in order to synthesize new complexes containing cobalt carbonyl [5–9]. The parent complex **1** was obtained by the reaction of 1,7-octadiyne with $Co_2(CO)_8$ [1]. However, substitution reactions of **1** are relatively rare in the literature. As a continuation of our previous work on carbonyl substitution reactions of the transition metal carbonyl complexes [10–13], we have initiated a study on the carbonyl substitution of **1** with a monophosphine or diphosphines and have successfully prepared a series of cobalt carbonyl complexes. In this paper, we will describe the synthesis and characterization of cobalt carbonyl derivatives containing a monophosphine or diphosphines via a carbonyl exchange reaction.

2. Experimental

2.1. Materials and methods

All reactions were performed using standard Schlenk and vacuum-line techniques under N₂ atmosphere. PPh₃, dppe, dppp, dppb and Me₃NO·2H₂O were available commercially and used as received. CH₂Cl₂ and MeCN were distilled over CaH₂ under N₂. **1** [1] was prepared according to literature procedures. IR spectra were recorded on a Nicolet MAGNA 560 FTIR spectrometer. ¹H, ³¹P anad ¹³C NMR spectra were obtained on a Bruker Avance 500 MHz spectrometer. Elemental analyses were performed with a Perkin-Elmer 240C analyzer, while ESI-MS data were obtained on a Bruker Micro TOF Q-II instrument.

2.2. Characterization of 1

IR (KBr disk, cm⁻¹): $v_{C} \equiv_{0} 2093$ (vs), 2049 (vs), 2028 (vs), 2005 (vs), 1995 (vs). ¹H NMR (500 MHz, CDCl₃, ppm): 6.09 (s, 2H, 2C \equiv CH), 2.96 (s, 4H, 2CH \equiv CCH₂), 1.84 (s, 4H, CH \equiv CCH₂ CH₂CH₂CH₂C \equiv CH). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): 199.88 (C \equiv O), 96.72 (C \equiv CH), 73.16 (C \equiv CH), 33.90, 31.47 (2s, CH₂).

CrossMark

2.3. Synthesis of (μ-HC=CCH₂CH₂CH₂CH₂CH₂C=CH-μ)[Co₂(CO)₅(PPh₃)]₂ (**2**)

To a solution of **1** (0.068 g, 0.1 mmol) and PPh₃ (0.052 g, 0.2 mmol) in CH₂Cl₂ (5 mL) was added a solution of Me₃NO·2H₂O (0.022 g, 0.2 mmol) in MeCN (5 mL). The new mixture was stirred for 1 h. The solvent was reduced in vacuo and the residue was subjected to TLC separation using CH_2Cl_2 /petroleum ether (v/v = 1:5) as the eluent. The main red band afforded 0.068 g (59%) of 2 as a red solid. Anal. Calc. for C₅₄H₄₀Co₄O₁₀P₂: C, 56.57; H, 3.52. Found: C, 56.88; H, 3.36%. IR (KBr disk, cm^{-1}): $v_C \equiv_0 2054$ (vs), 2000 (vs), 1953 (vs). ¹H NMR (500 MHz, CDCl₃, ppm): 7.50-7.29 (m, 30H, PhH), 5.19 (s, 2H, 2C=CH), 1.84-1.76 (m, 4H, 2CH=CCH₂), 1.21–1.08 (m, 4H, CH=CCH₂CH₂CH₂CH₂C=CH). ³¹P{¹H} NMR (200 MHz, CDCl₃, 85% H₃PO₄, ppm): 54.68 (s). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): 206.24, 205.14, 202.30 (C=0), 134.88, 134.55, 132.98, 132.90, 130.25, 128.53, 128.46 (PhC), 94.53 (C=CH), 71.73 (C=CH), 32.10, 31.57, 29.71 (CH₂). ESI-MS: m/z 1145.9421 [M⁺] (Calc. 1145.9425).

2.4. Synthesis of $(\mu$ -HC=CCH₂CH₂CH₂CH₂CH₂CH- μ)[Co₂(CO)₅]₂(dppe) (**3**) and $(\mu$ -HC=CCH₂CH₂CH₂CH₂C=CH- μ) [Co₂(CO)₆][Co₂(CO)₄(dppe)] (**4**)

To a solution of 1 (0.068 g, 0.1 mmol) and dppe (0.040 g, 0.1 mmol) in CH₂Cl₂ (5 mL) was added a solution of Me₃NO·2H₂O (0.022 g, 0.2 mmol) in MeCN (5 mL). The new mixture was stirred for 1 h. The solvent was reduced in vacuo and the residue was subjected to TLC separation using CH_2Cl_2 /petroleum ether (v/v = 1:3) as the eluent. The first red band afforded 0.020 g (20%) of **3** as a red solid, whilst the second red band afforded 0.016 g (16%) of 4 as a red solid. **3**: Anal. Calc. for C₄₄H₃₄Co₄O₁₀P₂: C, 51.79; H, 3.36. Found: C, 52.02; H, 3.59%. IR (KBr disk, cm⁻¹): v_C=0 2056 (vs), 1999 (vs), 1988 (vs), 1955 (vs). ¹H NMR (500 MHz, CDCl₃, ppm): 7.42-7.27 (m, 16H, o-PhH and m-PhH), 7.15-7.12 (m, 4H, p-PhH), 4.94 (s, 2H, 2C=CH), 2.91-2.79 (m, 4H, 2CH=CCH₂), 2.24-2.19 (m, 2H, PCH₂), 2.09–2.04 (m, 2H, PCH₂), 1.87–1.71 (m, 4H, CH \equiv CCH₂CH₂CH₂CH₂CCH). ³¹P{¹H} NMR (200 MHz, CDCl₂, 85% H₃PO₄, ppm): 49.46 (s). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): 207.74, 204.67, 201.70 (C=0), 136.81, 136.48, 133.68, 133.38, 133.01, 132.97, 130.59, 130.14, 129.84, 128.77 (PhC), 92.63 C=CH), 25.64 (t, J_{P-C} = 9.6 Hz, PCH₂). ESI-MS: *m*/*z* 1019.8929 [M⁺] (Calc. 1019.8955). 4: Anal. Calc. for C44H34C04O10P2: C, 51.79; H, 3.36. Found: C, 51.58; H, 3.54%. IR (KBr disk, cm^{-1}): $v_{c} \equiv_{0} 2056$ (vs), 1999 (vs), 1986 (vs), 1956 (vs). ¹H NMR (500 MHz, CDCl₃, ppm): 7.49-7.39 (m, 12H, m-PhH and p-PhH), 7.31-7.24 (m, 8H, o-PhH), 5.42 (s, 2H, 2C=CH), 3.06, 3.03, 2.86, 2.83 (AB q, J_{AB} = 3.9 Hz, 4H, 2CH CCH₂), 2.02 (d, J = 8.5 Hz, 2H, PCH₂), 1.88, 1.86 (2s, 6H, PCH₂ and CH=CCH₂CH₂CH₂CH₂C=CH). ${}^{31}P{}^{1}H{}$ NMR (200 MHz, CDCl₃, 85% H₃PO₄, ppm): 48.41 (s). ${}^{13}C{}^{1}H{}$ NMR (125 MHz, CDCl₃, ppm): 205.60, 204.17, 201.87 (C=0), 135.81, 135.49, 134.06, 133.76, 133.00, 132.96, 132.11, 132.08, 131.39, 131.35, 130.68, 130.35, 128.88, 128.84, 128.81 (PhC), 91.15 (C=CH), 70.56 (C=CH), 33.46, 28.93 (HC=CCH₂CH₂CH₂CH₂CCH), 25.41 (d, J_{P-C} = 13.5 Hz, PCH₂). ESI-MS: *m*/*z* 1019.8949 [M⁺] (calc. 1019.8955).

2.5. Synthesis of (μ-HC=CCH₂CH₂CH₂CH₂CH₂C=CH-μ)[Co₂(CO)₅]₂(dppp) (**5**)

To a solution of **1** (0.068 g, 0.1 mmol) and dppp (0.041 g, 0.1 mmol) in CH_2Cl_2 (5 mL) was added a solution of $Me_3NO\cdot 2H_2O$ (0.022 g, 0.2 mmol) in MeCN (5 mL). The new mixture was stirred for 1 h. The solvent was reduced *in vacuo* and the residue was subjected to TLC separation using CH_2Cl_2 /petroleum ether (v/v = 1:3)

as the eluent. The main red band afforded 0.030 g (29%) of **5** as a red solid. *Anal.* Calc. for $C_{45}H_{36}Co_4O_{10}P_2$: C, 52.25; H, 3.51. Found: C, 51.94; H, 3.27%. IR (KBr disk, cm⁻¹): $v_{C} \equiv_0 2060$ (vs), 2000 (vs), 1954 (vs). ¹H NMR (500 MHz, CDCl₃, ppm): 7.35–7.27 (m, 20H, PhH), 5.24 (s, 2H, 2C \equiv CH), 2.91–2.77 (m, 4H, 2CH \equiv CCH₂), 2.19–2.14 (m, 4H, 2PCH₂), 2.04–1.99 (m, 2H, PCH₂CH₂CH₂P), 1.90–1.85 (m, 4H, CH \equiv CCH₂CH₂CH₂CH₂C \equiv CH). ³¹P{¹H} NMR (200 MHz, CDCl₃, 85% H₃PO₄, ppm): 45.40 (s). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): 206.14, 204.31, 202.04 (C \equiv O), 137.11, 136.76, 135.45, 135.12, 131.53, 131.47, 131.45, 131.34, 131.26, 130.17, 131.01, 128.65, 128.58, 128.55 (PhC), 91.98 (C \equiv CH), 71.46 (C \equiv CH), 31.97, 31.87 (HC \equiv CCH₂CH₂CH₂CH₂C \equiv CH), 29.72, 29.17 (PCH₂CH₂CH₂CH₂CH₂CH₂CH₂CH), CH₂P). ESI-MS: *m/z* 1034.9095 [M⁺+H] (Calc. 1034.9190).

2.6. Synthesis of $(\mu$ -HC \equiv CCH₂CH₂CH₂CH₂C \equiv CH- μ)[Co₂(CO)₅]₂(dppb) (**6**)

To a solution of 1 (0.068 g, 0.1 mmol) and dppb (0.043 g, 0.1 mmol) in CH₂Cl₂ (5 mL) was added a solution of Me₃NO·2H₂O (0.022 g. 0.2 mmol) in MeCN (5 mL). The new mixture was stirred for 1 h. The solvent was reduced in vacuo and the residue was subjected to TLC separation using CH_2Cl_2 /petroleum ether (v/v = 1:3) as the eluent. The main red band afforded 0.038 g (36%) of 6 as a red solid. Anal. Calc. for C₄₆H₃₈Co₄O₁₀P₂: C, 52.70; H, 3.65. Found: C, 52.54; H, 3.89%. IR (KBr disk, cm^{-1}): $v_c \equiv_0 2059$ (vs), 2000 (vs), 1954 (vs). ¹H NMR (500 MHz, CDCl₃, ppm): 7.65, 7.42 (2s, 20H, PhH), 4.71 (s, 2H, 2C=CH), 2.96–2.72 (m, 4H, 2CH=CCH₂), 2.12-2.06 (m, 8H, PCH₂CH₂CH₂CH₂P), 1.87 (s, 4H, CH=CCH₂CH₂ CH₂CH₂C≡CH). ³¹P{¹H} NMR (200 MHz, CDCl₃, 85% H₃PO₄, ppm): 46.60 (s). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): 207.86, 204.20, 201.97 (C=0), 133.45, 133.36, 131.84, 131.56, 130.74, 129.72, 129.52, 128.62 (PhC), 91.59 (C=CH), 73.72 (C=CH), 33.50, 32.58 $(HC \equiv CCH_2CH_2CH_2CH_2C \equiv CH)$, 30.94 (d, $J_{P-C} = 21.9$ Hz, PCH₂), 25.62 (d, J_{P-C} = 12.1 Hz, PCH₂CH₂). ESI-MS: m/z 1047.9249 [M⁺] (Calc. 1047.9268).

2.7. X-ray structure determination

Single crystals of **1–3** and **6** suitable for X-ray diffraction analysis were grown by slow evaporation of $CH_2Cl_2/hexane$ solutions at 4 °C. A single crystal of **1–3** or **6** was mounted on a Rigaku MM-007 CCD diffractometer. Data were collected at 113 or 293 K using a graphite monochromator with Mo K α radiation ($\lambda = 0.71073$ Å) in the ω - ϕ scanning mode. Data collection, reduction and absorption corrections were performed by the CRYSTALCLEAR program [14]. The structures were solved by direct methods using the SHELXS-97 program and refined by full-matrix least-squares techniques using SHELXL-97 [15] on F^2 . Hydrogen atoms were located using the geometric method. Details of crystal data, data collections and structure refinement are summarized in Table 1.

3. Results and discussion

3.1. Synthesis and characterization

As shown in Scheme 1, the reactions of 1 with PPh₃, dppp or dppb in the presence of $Me_3NO\cdot2H_2O$ afforded 2, 5 and 6 in 29–59% yields, respectively, whereas the reaction of 1 with dppe in the presence of $Me_3NO\cdot2H_2O$ resulted in the formation of 3 and 4 in 20 and 16% yields, respectively. While complex 2 contains the monophosphine PPh₃, complexes 3–6 contain the bridging diphosphines dppe, dppp or dppb.

The new complexes 2-6 are air-stable red solids, which have been characterized by elemental analysis and various spectroscopic techniques. The IR spectra of 2-6 displayed three to four

Table 1

Crystal data and structure refinements details for 1-3 and 6.

Complex	1	2	3 ·0.25CH ₂ Cl ₂	6
Empirical formula	$C_{20}H_{10}Co_4O_{12}$	C ₂₇ H ₂₀ Co ₂ O ₅ P	$C_{44,25}H_{34,50}Cl_{0.50}Co_4O_{10}P_2$	C ₉₂ H ₇₆ Co ₈ O ₂₀ P ₄
Formula weight	678.00	573.26	1041.60	2096.86
Temperature (K)	113(2)	113(2)	293(2)	293(2)
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Crystal system	triclinic	triclinic	triclinic	monoclinic
Space group	ΡĪ	ΡĪ	ΡĪ	P2(1)/n
a (Å)	6.857(7)	8.199(7)	9.829(2)	25.289(5)
b (Å)	7.655(7)	9.019(8)	10.983(2)	17.020(3)
<i>c</i> (Å)	12.584(11)	17.782(14)	23.493(5)	28.526(6)
α (°)	98.796(8)	102.896(13)	87.50(3)	90
β(°)	101.490(19)	91.200(13)	78.03(3)	115.52(3)
γ (°)	103.429(16)	100.303(10)	74.34(3)	90
V (Å ³)	615.7(10)	1258.5(17)	2388.9(8)	11079(4)
Ζ	1	2	2	4
D_{calc} (g cm ⁻³)	1.829	1.513	1.448	1.258
μ (mm ⁻¹)	2.707	1.417	1.512	1.281
F(000)	334	582	1053	4260
Crystal size (mm ³)	$0.20\times0.18\times0.12$	$0.20\times0.18\times0.12$	$0.20\times0.18\times0.12$	$0.28\times0.24\times0.20$
$\theta_{\min}, \theta_{\max}$ (°)	1.69, 27.96	2.35, 25.02	1.77, 25.02	1.42, 25.02
Reflections collected/unique	6377/2895	10607/4433	19438/8350	88916/19527
R _{int}	0.0408	0.0638	0.0416	0.1527
hkl range	$-8\leqslant h\leqslant 8$	$-9\leqslant h\leqslant 9$	$-11 \leqslant h \leqslant 11$	$-30 \leqslant h \leqslant 29$
	$-10\leqslant k\leqslant 10$	$-10\leqslant k\leqslant 10$	$-13 \leqslant k \leqslant 13$	$-20\leqslant k\leqslant 20$
	$-16 \leqslant l \leqslant 16$	$-18 \leqslant l \leqslant 21$	$-27 \leqslant l \leqslant 26$	$-33 \leqslant l \leqslant 30$
Completeness to θ_{max} (%)	98.2	99.8	99.2	99.7
Data/restraints/parameters	2895/0/163	4433/0/317	8350/31/569	19527/2568/1106
Goodness of fit on F ²	1.049	1.023	1.075	1.219
$R1/wR2 \ (I > 2\sigma(I))$	0.0289/0.0725	0.0820/0.2263	0.0551/0.1849	0.1641/0.4022
R1/wR2 (all data)	0.0305/0.0736	0.1096/0.2492	0.0648/0.1957	0.2881/0.4665
Largest difference in peak and hole (e $Å^{-3}$)	0.449/-0.989	1.431/-0.994	1.409 / -0.425	1.196 / -0.582

Scheme 1. Preparation of complexes 2-6.

Fig. 1. ORTEP view of 1 with 30% probability level ellipsoids.

Fig. 2. ORTEP view of 2 with 30% probability level ellipsoids.

absorption bands in the region 2060–1953 cm⁻¹ for their terminal carbonyls and the $v_{\rm C} \equiv_0$ values moved towards lower frequencies with respect to **1** (2093, 2049, 2028, 2005 and 1995 cm⁻¹) but were very close to the bands for (μ -FcC \equiv CH)Co₂(CO)₅(PPh₃) (Fc = ferrocene) (2055, 1999 and 1963 cm⁻¹) [16]. The ¹H NMR spectra of **2–6** showed a singlet at 5.42–4.71 ppm for the acetylenic protons. The ³¹P{¹H} NMR spectra of **2–6** exhibited a singlet at 54.68–45.40 ppm for the phosphorus atoms of PPh₃, dppe, dppp or dppb coordinated to the cobalt atoms. The ¹³C{¹H} NMR spectra of **2–6** demonstrated three singlets at about 200 ppm for the terminal carbonyls and two singlets at about 90 and 70 ppm for the acetylenic carbons.

3.2. X-ray crystal structures

The molecular structures of 1-3 and 6 were determined by single crystal X-ray diffraction analysis. While ORTEP views of 1-3 and 6 are shown in Figs. 1-4, selected bond lengths and angles are presented in Table 2. As shown in Figs. 1 and 2, complexes 1

and **2** consist of two pseudo-tetrahedral $[C_2Co_2]$ clusters with twelve terminal carbonyls or ten terminal carbonyls and two PPh₃ ligands, which are joined together through a zigzag chain, C8C9C10C10AC9AC8A or C7C8C9C9AC8AC7A. The molecules of **1** and **2** are centrosymmetric, with the midpoint of C10–C10A or C9–C9A as an inversion center. The Co–Co bond lengths [2.482(2) Å for 1 and 2.4602(19) Å for 2] and the triple bond lengths [C7-C8 = 1.345(2) Å for 1 and C6-C7 = 1.341(9) Å for 2] are comparable to the previously reported complexes $C_{20}H_8[Co_2(CO)_6]_2$ [17] and $(\mu$ -FcC \equiv CH)Co₂(CO)₄(dppm) (dppm = Ph₂PCH₂PPh₂) [18]. The phosphorus atom of PPh₃ in **2** resides in an apical position of the square-pyramidal coordination sphere of the cobalt atom, consistent with the crystal structure of $(\mu$ -FcC \equiv CH)Co₂(CO)₅(PPh₃) [16].

As shown in Figs. 3 and 4, complexes 3 and 6 consist of two pseudo-tetrahedral $[C_2Co_2]$ clusters with ten terminal carbonyls and dppe or dppb. The macrocycles of 3 and 6 have 12 and 14 atoms, respectively, which are joined together by a zigzag chain, C38C39C40C41C42C43 or C40C41C42C43C44C45, and a

Table 2

Selected bond lengths (Å) and angles (°) for 1-3 and 6.

Fig. 3. ORTEP view of 3 with 30% probability level ellipsoids.

diphosphine ligand, dppe or dppb. The Co–Co bond lengths [2.4890(13) and 2.4882(13) Å for **3**, and 2.487(3) and 2.441(3) Å for **6**] are close to that of **1**, whereas the triple bond lengths [C37–C38 = 1.328(8) Å and C43–C44 = 1.321 (8) Å for **3**, and C39–C40 = 1.27(2) Å and C45–C46 = 1.26(2) Å for **6**] are somewhat shorter than that of **1**. It should be noted that the two phosphorus atoms of dppe or dppb both reside in an apical position of the square-pyramidal coordination sphere of the cobalt atoms, in good agreement with **2** and analogous dicobalt complexes [19]. In addition, the structure of **6** is of lower quality than **3** and there are 2568 restraints in the crystal refinement because of so many disordered

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co(1)-C(7)	1.9571(2)	Co(2)-C(8)	1.975(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co(1)-C(8)	1.972(2)	C(7) - C(8)	1.345(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co(1)-Co(2)	2.482(2)	C(8) - C(9)	1.489(2)
$\begin{array}{cccccc} C(7)-Co(1)-C(8) & 40.04(7) & C(8)-Co(2)-Co(1) & 51.00(7) \\ C(7)-Co(1)-Co(2) & 50.63(7) & C(8)-C(7)-Co(2) & 70.73(1) \\ C(8)-C(1)-Co(2) & 51.09(5) & C(8)-C(7)-Co(1) & 70.06(1) \\ C(7)-Co(2)-C(8) & 40.02(6) & Co(2)-C(7) - Co(1) & 78.71(8) \\ C(7)-Co(2)-Co(1) & 50.66(5) & Co(1)-C(8)-Co(2) & 77.91(8) \\ \hline \\ \hline \\ \hline \\ \hline \\ Co(1)-C(7) & 1.982(8) & Co(2)-C(7) & 1.956(8) \\ Co(1)-C(6) & 2.000(9) & Co(2)-P(1) & 2.212(2) \\ Co(1)-Co(2) & 2.4602(2) & C(6)-C(7) & 1.341(9) \\ Co(2)-C(6) & 1.950(7) & C(7)-Co(8) & 1.511(1) \\ C(7)-Co(1)-Co(6) & 39.3(3) & C(7)-Co(2)-P(1) & 102.4(2) \\ C(7)-Co(1)-Co(2) & 50.9(2) & C(6)-Co(2)-Co(1) & 52.4(3) \\ C(6)-Co(1)-Co(2) & 50.6(2) & C(7)-Co(2)-Co(1) & 51.8(2) \\ C(6)-Co(2)-C(7) & 40.2(3) & P(1)-Co(2)-Co(1) & 51.8(2) \\ C(6)-Co(2)-C(7) & 40.2(3) & P(1)-Co(2)-Co(1) & 153.13(7) \\ C(6)-Co(2)-P(1) & 104.1(3) & C(7)-C(6)-Co(1) & 69.6(5) \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ Co(1)-C(43) & 1.992(5) & Co(3)-Co(4) & 2.4882(1) \\ Co(2)-C(44) & 1.924(5) & C(37)-C(38) & 1.328(8) \\ C(44)-Co(1)-Co(2) & 49.67(2) & C(43)-Co(2)-P(1) & 99.02(2) \\ C(44)-Co(1)-Co(2) & 49.67(2) & C(43)-Co(2)-P(1) & 199.02(2) \\ C(44)-Co(1)-Co(2) & 49.67(2) & C(43)-Co(2)-Co(1) & 51.47(2) \\ C(43)-Co(1)-Co(2) & 49.67(2) & C(43)-Co(2)-Co(1) & 51.9(1) \\ C(44)-Co(2)-C(43) & 39.7(2) & P(1)-Co(2)-Co(1) & 51.9(1) \\ C(44)-Co(2)-C(43) & 39.7(2) & P(1)-Co(2)-Co(1) & 51.9(7) \\ C(44)-Co(2)-C(4) & 1.934(1) & Co(2)-C(39) & 1.987(2) \\ Co(1)-C(39) & 2.010(2) & C(43)-C(44) & 1.22(6) \\ Co(1)-C(39) & 3.7.2(6) & C(49)-C(4) & 1.26(2) \\ C(40)-Co(1)-Co(2) & 49.9(5) & P(2)-Co(3)-C(4) & 1.58(2) \\ C(40)-Co(1)-Co(2) & 49.9(5) & P(2)-Co(3)-C(4) & 151.85(2) \\ C(40)-Co(1)-Co(2) & 51.1(5) & C(39)-C(40)-C(41) & 130.3(2) \\ C(40)-Co(2)-C(39) & 37.9(6) & C(46)-C(45)-C(44) & 144.0(2) \\ P(1)-Co(2)-Co(1) & 147.06(1) & C(23)-C(24)-C(25) & 111.9(1) \\ \end{array} \right)$	Co(2)-C(7)	1.956(2)	C(9)-C(10)	1.524(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7)-Co(1)-C(8)	40.04(7)	C(8)-Co(2)-Co(1)	51.00(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7)-Co(1)-Co(2)	50.63(7)	C(8)-C(7)-Co(2)	70.73(1)
$\begin{array}{cccccc} C(7)-Co(2)-C(8) & 40.02(6) & Co(2)-C(7)-Co(1) & 78.71(8) \\ C(7)-Co(2)-Co(1) & 50.66(5) & Co(1)-C(8)-Co(2) & 77.91(8) \\ \hline \\ $	C(8)-Co(1)-Co(2)	51.09(5)	C(8)-C(7)-Co(1)	70.60(1)
$\begin{array}{cccccccc} C(7)-Co(2)-Co(1) & 50.66(5) & Co(1)-C(8)-Co(2) & 77.91(8) \\ \hline 2 & & & & & \\ Co(1)-C(7) & 1.982(8) & Co(2)-C(7) & 1.956(8) \\ Co(1)-C(6) & 2.000(9) & Co(2)-P(1) & 2.212(2) \\ Co(1)-Co(2) & 2.4602(2) & C(6)-C(7) & 1.341(9) \\ Co(2)-C(6) & 1.950(7) & C(7)-C(8) & 1.511(1) \\ C(7)-Co(1)-Co(6) & 39.3(3) & C(7)-Co(2)-P(1) & 102.4(2) \\ C(7)-Co(1)-Co(2) & 50.9(2) & C(6)-Co(2)-Co(1) & 52.4(3) \\ C(6)-Co(1)-Co(2) & 50.6(2) & C(7)-Co(2)-Co(1) & 51.8(2) \\ C(6)-Co(2)-C(7) & 40.2(3) & P(1)-Co(2)-Co(1) & 153.13(7) \\ C(6)-Co(2)-P(1) & 104.1(3) & C(7)-C(6)-Co(1) & 69.6(5) \\ \hline 3 & & & \\ Co(1)-C(44) & 1.984(6) & Co(2)-C(43) & 1.953(5) \\ Co(1)-C(43) & 1.992(5) & Co(3)-Co(4) & 2.4882(1) \\ Co(2)-C(44) & 1.934(5) & C(37)-C(38) & 1.328(8) \\ C(44)-Co(1)-Co(2) & 2.4890(1) & C(43)-Co(2)-P(1) & 99.02(2) \\ C(44)-Co(1)-Co(2) & 50.19(2) & C(43)-Co(2)-P(1) & 99.02(2) \\ C(44)-Co(1)-Co(2) & 50.19(2) & C(43)-Co(2)-Co(1) & 51.47(2) \\ C(43)-Co(1)-Co(2) & 50.19(2) & C(43)-Co(2)-Co(1) & 51.59(1) \\ C(44)-Co(2)-P(1) & 103.64(2) & C(37)-C(38)-C(39) & 141.7(5) \\ \hline 6 & & \\ Co(1)-C(40) & 1.983(1) & Co(2)-C(39) & 1.987(2) \\ Co(1)-C(39) & 2.010(2) & C(45)-C(46) & 1.26(2) \\ Co(1)-C(39) & 2.010(2) & C(45)-C(46) & 1.26(2) \\ Co(1)-C(39) & 2.010(2) & C(45)-C(46) & 1.26(2) \\ Co(1)-C(39) & 3.7.2(6) & C(46)-Co(3)-C(4) & 51.85(2) \\ C(40)-Co(1)-Co(2) & 49.9(5) & P(2)-Co(3)-C(41) & 130.3(2) \\ C(40)-Co(1)-Co(2) & 51.1(5) & C(39)-C(40)-C(41) & 130.3(2) \\ C(40)-Co(2)-C(3) & 37.9(6) & C(46)-C(45)-C(44) & 144.0(2) \\ P(1)-Co(2)-Co(1) & 147.06(1) & C(23)-C(24)-C(25) & 111.9(1) \\ \end{array}$	C(7)-Co(2)-C(8)	40.02(6)	Co(2)-C(7)-Co(1)	78.71(8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(7)-Co(2)-Co(1)	50.66(5)	Co(1)-C(8)-Co(2)	77.91(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2			
$\begin{array}{cccc} Co(1)-C(4) & 1.034(2) & Co(2)-P(1) & 2.212(2) \\ Co(1)-Co(2) & 2.4602(2) & C(6)-C(7) & 1.341(9) \\ Co(2)-C(6) & 1.950(7) & C(7)-C(8) & 1.511(1) \\ C(7)-Co(1)-C(6) & 39.3(3) & C(7)-Co(2)-P(1) & 102.4(2) \\ C(7)-Co(1)-Co(2) & 50.9(2) & C(6)-Co(2)-Co(1) & 52.4(3) \\ C(6)-Co(1)-Co(2) & 50.6(2) & C(7)-Co(2)-Co(1) & 51.8(2) \\ C(6)-Co(2)-C(7) & 40.2(3) & P(1)-Co(2)-Co(1) & 153.13(7) \\ C(6)-Co(2)-P(1) & 104.1(3) & C(7)-C(6)-Co(1) & 69.6(5) \\ \hline {\bf 3} & \\ Co(1)-C(43) & 1.992(5) & Co(3)-Co(4) & 2.4882(1) \\ Co(1)-Co(2) & 2.4890(1) & C(43)-C(44) & 1.321(8) \\ Co(2)-C(44) & 1.934(5) & C(37)-C(38) & 1.328(8) \\ C(44)-Co(1)-Co(2) & 49.67(2) & C(44)-Co(2)-P(1) & 99.02(2) \\ C(44)-Co(1)-Co(2) & 50.19(2) & C(43)-Co(2)-P(1) & 51.47(2) \\ C(43)-Co(1)-Co(2) & 50.19(2) & C(43)-Co(2)-Co(1) & 51.59(1) \\ C(44)-Co(2)-P(1) & 103.64(2) & C(37)-C(38) & 1.28(8) \\ Co(1)-C(40) & 1.983(1) & Co(2)-C(39) & 1.41.7(5) \\ \hline {\bf 6} & \\ Co(1)-C(40) & 1.983(1) & Co(2)-C(39) & 1.987(2) \\ Co(1)-Co(2) & 2.487(3) & Co(3)-C(44) & 2.441(3) \\ Co(2)-C(40) & 1.939(2) & C(39)-C(40) & 1.27(2) \\ C(40)-Co(1)-Co(2) & 49.9(5) & P(2)-Co(3)-Co(4) & 151.85(2) \\ C(40)-Co(1)-Co(2) & 51.1(5) & C(39)-C(40)-C(41) & 130.3(2) \\ C(40)-Co(2)-C(39) & 37.9(6) & C(46)-C(45)-C(44) & 144.0(2) \\ P(1)-Co(2)-Co(1) & 147.06(1) & C(23)-C(24)-C(25) & 111.9(1) \\ \end{array}$	$\frac{2}{C_0(1)-C(7)}$	1 982(8)	$C_{0}(2) - C(7)$	1 956(8)
$\begin{array}{ccccc} C(1) - C(2) & 2.4602(2) & C(6) - C(7) & 1.341(9) \\ Co(2) - C(6) & 1.950(7) & C(7) - C(8) & 1.511(1) \\ C(7) - Co(1) - Co(2) & 50.9(2) & C(6) - Co(2) - P(1) & 102.4(2) \\ C(7) - Co(1) - Co(2) & 50.9(2) & C(6) - Co(2) - Co(1) & 52.4(3) \\ C(6) - Co(1) - Co(2) & 50.6(2) & C(7) - Co(2) - Co(1) & 51.8(2) \\ C(6) - Co(2) - C(7) & 40.2(3) & P(1) - Co(2) - Co(1) & 153.13(7) \\ C(6) - Co(2) - P(1) & 104.1(3) & C(7) - C(6) - Co(1) & 69.6(5) \\ \hline {\bf 3} & & & & \\ Co(1) - C(4) & 1.984(6) & Co(2) - C(43) & 1.953(5) \\ Co(1) - C(43) & 1.992(5) & Co(3) - Co(4) & 2.4882(1) \\ Co(1) - Co(2) & 2.4890(1) & C(43) - C(44) & 1.321(8) \\ Co(2) - C(44) & 1.934(5) & C(37) - C(38) & 1.328(8) \\ C(44) - Co(1) - Co(2) & 49.67(2) & C(44) - Co(2) - P(1) & 99.02(2) \\ C(44) - Co(1) - Co(2) & 50.19(2) & C(43) - Co(2) - P(1) & 99.02(2) \\ C(44) - Co(2) - P(1) & 103.64(2) & C(37) - C(38) & 1.47(2) \\ C(44) - Co(2) - P(1) & 103.64(2) & C(37) - C(38) - C(39) & 141.7(5) \\ \hline {\bf 6} & & & \\ Co(1) - C(40) & 1.983(1) & Co(2) - Co(1) & 15.007(5) \\ C(40) - Co(2) & 2.487(3) & Co(3) - Co(4) & 2.441(3) \\ Co(2) - C(40) & 1.939(2) & C(39) - C(40) & 1.27(2) \\ C(40) - Co(1) - Co(2) & 49.9(5) & P(2) - Co(3) - Co(4) & 151.85(2) \\ C(39) - Co(1) - Co(2) & 51.1(5) & C(39) - C(40) - C(41) & 130.3(2) \\ C(40) - Co(2) - C(39) & 37.9(6) & C(46) - C(45) - C(44) & 144.0(2) \\ P(1) - Co(2) - Co(1) & 147.06(1) & C(23) - C(24) - C(25) & 111.9(1) \\ \end{array}$	$C_0(1) = C(6)$	2,000(9)	$C_0(2) - P(1)$	2212(2)
$\begin{array}{cccc} Co(2)-C(6) & 1.950(7) & C(7)-C(8) & 1.511(1) \\ C(7)-Co(1)-C(6) & 39.3(3) & C(7)-Co(2)-P(1) & 102.4(2) \\ C(7)-Co(1)-Co(2) & 50.9(2) & C(6)-Co(2)-Co(1) & 52.4(3) \\ C(6)-Co(1)-Co(2) & 50.6(2) & C(7)-Co(2)-Co(1) & 51.8(2) \\ C(6)-Co(2)-C(7) & 40.2(3) & P(1)-Co(2)-Co(1) & 153.13(7) \\ C(6)-Co(2)-P(1) & 104.1(3) & C(7)-C(6)-Co(1) & 69.6(5) \\ \hline {\bf 3} & & & & \\ Co(1)-C(44) & 1.984(6) & Co(2)-C(43) & 1.953(5) \\ Co(1)-C(43) & 1.992(5) & Co(3)-Co(4) & 2.4882(1) \\ Co(1)-Co(2) & 2.4890(1) & C(43)-C(44) & 1.321(8) \\ Co(2)-C(44) & 1.934(5) & C(37)-C(38) & 1.328(8) \\ C(44)-Co(1)-Co(2) & 49.67(2) & C(44)-Co(2)-P(1) & 99.02(2) \\ C(44)-Co(1)-Co(2) & 50.19(2) & C(43)-Co(2)-P(1) & 99.02(2) \\ C(44)-Co(2)-C(43) & 39.7(2) & P(1)-Co(2)-Co(1) & 51.59(1) \\ C(44)-Co(2)-P(1) & 103.64(2) & C(37)-C(38)-C(39) & 141.7(5) \\ \hline {\bf 6} & & \\ Co(1)-C(40) & 1.983(1) & Co(2)-C(39) & 1.987(2) \\ Co(1)-Co(2) & 2.487(3) & Co(3)-Co(4) & 2.241(3) \\ Co(2)-C(40) & 1.939(2) & C(39)-C(40) & 1.27(2) \\ C(40)-Co(1)-Co(2) & 9.57.2(6) & C(46)-Co(3)-C(45) & 37.8(6) \\ C(40)-Co(1)-Co(2) & 51.1(5) & C(39)-C(40) & 151.85(2) \\ C(39)-Co(1)-Co(2) & 51.1(5) & C(39)-C(40)-C(41) & 130.3(2) \\ C(40)-Co(2)-C(39) & 37.9(6) & C(46)-C(45)-C(44) & 144.0(2) \\ P(1)-Co(2)-Co(1) & 147.06(1) & C(23)-C(24)-C(25) & 111.9(1) \\ \end{array}$	$C_0(1) = C_0(2)$	2.660(2)	C(6) - C(7)	1341(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_0(2) = C(6)$	1.950(7)	C(7) - C(8)	1.511(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7) = Co(1) = C(6)	393(3)	C(7) - Co(2) - P(1)	1024(2)
$\begin{array}{ccccccc} C(6)-Co(1)-Co(2) & 50.6(2) & C(7)-Co(2)-Co(1) & 51.8(2) \\ C(6)-Co(2)-C(7) & 40.2(3) & P(1)-Co(2)-Co(1) & 153.13(7) \\ C(6)-Co(2)-P(1) & 104.1(3) & C(7)-C(6)-Co(1) & 69.6(5) \\ \hline {\bf 3} & & & & \\ Co(1)-C(44) & 1.984(6) & Co(2)-C(43) & 1.953(5) \\ Co(1)-C(43) & 1.992(5) & Co(3)-Co(4) & 2.4882(1) \\ Co(1)-Co(2) & 2.4890(1) & C(43)-C(44) & 1.321(8) \\ Co(2)-C(44) & 1.934(5) & C(37)-C(38) & 1.328(8) \\ C(44)-Co(1)-C(2) & 49.67(2) & C(44)-Co(2)-P(1) & 99.02(2) \\ C(44)-Co(1)-Co(2) & 50.19(2) & C(43)-Co(2)-P(1) & 99.02(2) \\ C(44)-Co(2)-C(43) & 39.7(2) & P(1)-Co(2)-Co(1) & 51.59(1) \\ C(44)-Co(2)-P(1) & 103.64(2) & C(37)-C(38)-C(39) & 141.7(5) \\ \hline {\bf 6} & & \\ Co(1)-C(40) & 1.983(1) & Co(2)-C(39) & 1.987(2) \\ Co(1)-Co(2) & 2.487(3) & Co(3)-C(46) & 1.26(2) \\ Co(1)-Co(2) & 2.487(3) & Co(3)-C(40) & 1.27(2) \\ C(40)-Co(1)-Co(2) & 37.2(6) & C(46)-Co(3)-C(45) & 37.8(6) \\ C(40)-Co(1)-Co(2) & 51.1(5) & C(39)-C(40) & 151.85(2) \\ C(39)-Co(1)-Co(2) & 51.1(5) & C(39)-C(40) & 151.85(2) \\ C(40)-Co(2)-C(39) & 37.9(6) & C(46)-C(45)-C(44) & 144.0(2) \\ P(1)-Co(2)-Co(1) & 147.06(1) & C(23)-C(24)-C(25) & 111.9(1) \\ \end{array}$	C(7) - Co(1) - Co(2)	50.9(2)	C(6) - Co(2) - Co(1)	52.4(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6) - Co(1) - Co(2)	50.6(2)	C(7) - Co(2) - Co(1)	51.8(2)
$\begin{array}{ccccccc} C(6)-Co(2)-P(1) & 104.1(3) & C(7)-C(6)-Co(1) & 69.6(5) \\ \hline 3 \\ \hline Co(1)-C(44) & 1.984(6) & Co(2)-C(43) & 1.953(5) \\ Co(1)-Co(2) & 2.4890(1) & C(43)-C(44) & 1.321(8) \\ Co(2)-C(44) & 1.934(5) & C(37)-C(38) & 1.328(8) \\ C(44)-Co(1)-Co(2) & 49.67(2) & C(44)-Co(2)-P(1) & 99.02(2) \\ C(44)-Co(1)-Co(2) & 49.67(2) & C(44)-Co(2)-P(1) & 99.02(2) \\ C(44)-Co(2)-C(43) & 38.8(2) & C(43)-Co(2)-P(1) & 99.02(2) \\ C(44)-Co(2)-C(2) & 50.19(2) & C(43)-Co(2)-Co(1) & 51.47(2) \\ C(43)-Co(2)-C(43) & 39.7(2) & P(1)-Co(2)-Co(1) & 51.59(1) \\ C(44)-Co(2)-P(1) & 103.64(2) & C(37)-C(38)-C(39) & 141.7(5) \\ \hline 6 \\ \hline Co(1)-C(40) & 1.983(1) & Co(2)-C(39) & 1.987(2) \\ Co(1)-Co(2) & 2.487(3) & Co(3)-Co(4) & 2.441(3) \\ Co(2)-C(40) & 1.939(2) & C(39)-C(40) & 1.27(2) \\ C(40)-Co(1)-C(39) & 37.2(6) & C(46)-Co(3)-C(45) & 37.8(6) \\ C(40)-Co(1)-Co(2) & 51.1(5) & C(39)-C(40) & 151.85(2) \\ C(39)-Co(1)-Co(2) & 51.1(5) & C(39)-C(40) & 144.0(2) \\ P(1)-Co(2)-Co(1) & 147.06(1) & C(23)-C(24)-C(25) & 111.9(1) \\ \end{array}$	C(6) - Co(2) - C(7)	40.2(3)	P(1)-Co(2)-Co(1)	153.13(7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(6)-Co(2)-P(1)	104.1(3)	C(7) - C(6) - Co(1)	69.6(5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$S = C_0(1) C(AA)$	1.094(6)	$C_{0}(2) = C(42)$	1 052(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_0(1) - C(44)$	1.002(5)	Co(2) - C(43)	1.333(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_0(1) = C_0(2)$	24890(1)	C(43) - C(44)	1 321(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_0(2) = C(44)$	1 934(5)	C(37) - C(38)	1 328(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(44) = Co(1) = C(43)	38.8(2)	C(43) = Co(2) = P(1)	99.02(2)
$\begin{array}{c} C(43)-Co(1)-Co(2) & 50.19(2) & C(43)-Co(2)-Co(1) & 51.59(1) \\ C(44)-Co(2)-C(43) & 39.7(2) & P(1)-Co(2)-Co(1) & 51.59(1) \\ C(44)-Co(2)-P(1) & 103.64(2) & C(37)-C(38)-C(39) & 141.7(5) \\ \hline {\bf 6} & & & & \\ Co(1)-C(40) & 1.983(1) & Co(2)-C(39) & 1.987(2) \\ Co(1)-C(39) & 2.010(2) & C(45)-C(46) & 1.26(2) \\ Co(1)-Co(2) & 2.487(3) & Co(3)-Co(4) & 2.441(3) \\ Co(2)-C(40) & 1.939(2) & C(39)-C(40) & 1.27(2) \\ C(40)-Co(1)-C(39) & 37.2(6) & C(46)-Co(3)-C(45) & 37.8(6) \\ C(40)-Co(1)-Co(2) & 49.9(5) & P(2)-Co(3)-Co(4) & 151.85(2) \\ C(39)-Co(1)-Co(2) & 51.1(5) & C(39)-C(40)-C(41) & 130.3(2) \\ C(40)-Co(2)-C(39) & 37.9(6) & C(46)-C(45)-C(44) & 144.0(2) \\ P(1)-Co(2)-Co(1) & 147.06(1) & C(23)-C(24)-C(25) & 111.9(1) \\ \end{array}$	C(44) = Co(1) = Co(2)	49.67(2)	C(44) = Co(2) = Co(1)	51 47(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(43) = Co(1) = Co(2)	50 19(2)	C(43) = Co(2) = Co(1)	51.17(2) 51.59(1)
$\begin{array}{cccccc} C(44)-Co(2)-P(1) & 103.64(2) & C(37)-C(38)-C(39) & 141.7(5) \\ \hline {\bf 6} & & & & & \\ Co(1)-C(40) & 1.983(1) & Co(2)-C(39) & 1.987(2) \\ Co(1)-C(39) & 2.010(2) & C(45)-C(46) & 1.26(2) \\ Co(1)-Co(2) & 2.487(3) & Co(3)-Co(4) & 2.441(3) \\ Co(2)-C(40) & 1.939(2) & C(39)-C(40) & 1.27(2) \\ C(40)-Co(1)-C(39) & 37.2(6) & C(46)-Co(3)-C(45) & 37.8(6) \\ C(40)-Co(1)-Co(2) & 49.9(5) & P(2)-Co(3)-Co(4) & 151.85(2) \\ C(39)-Co(1)-Co(2) & 51.1(5) & C(39)-C(40)-C(41) & 130.3(2) \\ C(40)-Co(2)-C(39) & 37.9(6) & C(46)-C(45)-C(44) & 144.0(2) \\ P(1)-Co(2)-Co(1) & 147.06(1) & C(23)-C(24)-C(25) & 111.9(1) \\ \end{array}$	C(44) = Co(2) = C(43)	397(2)	P(1) = Co(2) = Co(1)	150.07(5)
6 6 Co(1)-C(40) 1.983(1) Co(2)-C(39) 1.987(2) Co(1)-C(39) 2.010(2) C(45)-C(46) 1.26(2) Co(1)-Co(2) 2.487(3) Co(3)-Co(4) 2.441(3) Co(2)-C(40) 1.939(2) C(39)-C(40) 1.27(2) C(40)-Co(1)-Co(2) 49.9(5) P(2)-Co(3)-Co(4) 151.85(2) C(39)-Co(1)-Co(2) 51.1(5) C(39)-C(40)-C(41) 130.3(2) C(40)-Co(2)-Co(3) 37.9(6) C(46)-C(45)-C(44) 144.0(2) P(1)-Co(2)-Co(1) 147.06(1) C(23)-C(24)-C(25) 111.9(1)	C(44) = Co(2) = P(1)	103.64(2)	C(37) - C(38) - C(39)	141 7(5)
$\begin{array}{c ccccc} \mathbf{b} & & & & & & & & & & & & & & & & & & &$	c(11) co(2) 1(1)	100101(2)		1111(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	b $C_{2}(1) = C(40)$	1.002(1)	$C_{2}(2)$ $C(20)$	1.007(2)
$\begin{array}{ccccc} C(4)-C(39) & 2.010(2) & C(43)-C(46) & 1.26(2) \\ Co(1)-Co(2) & 2.487(3) & Co(3)-Co(4) & 2.441(3) \\ Co(2)-C(40) & 1.939(2) & C(39)-C(40) & 1.27(2) \\ C(40)-Co(1)-C(39) & 37.2(6) & C(46)-Co(3)-C(45) & 37.8(6) \\ C(40)-Co(1)-Co(2) & 49.9(5) & P(2)-Co(3)-Co(4) & 151.85(2) \\ C(39)-Co(1)-Co(2) & 51.1(5) & C(39)-C(40)-C(41) & 130.3(2) \\ C(40)-Co(2)-C(39) & 37.9(6) & C(46)-C(45)-C(44) & 144.0(2) \\ P(1)-Co(2)-Co(1) & 147.06(1) & C(23)-C(24)-C(25) & 111.9(1) \\ \end{array}$	$C_0(1) - C(40)$	1.983(1)	C(2) = C(39)	1.987(2)
$\begin{array}{ccccc} C(1)-C(2) & 2.457(3) & C(3)-C(4) & 2.441(3) \\ C(2)-C(40) & 1.939(2) & C(39)-C(40) & 1.27(2) \\ C(40)-Co(1)-C(39) & 37.2(6) & C(46)-Co(3)-C(45) & 37.8(6) \\ C(40)-Co(1)-Co(2) & 49.9(5) & P(2)-Co(3)-Co(4) & 151.85(2) \\ C(39)-Co(1)-Co(2) & 51.1(5) & C(39)-C(40)-C(41) & 130.3(2) \\ C(40)-Co(2)-C(39) & 37.9(6) & C(46)-C(45)-C(44) & 144.0(2) \\ P(1)-Co(2)-Co(1) & 147.06(1) & C(23)-C(24)-C(25) & 111.9(1) \\ \end{array}$	$C_0(1) - C(39)$	2.010(2)	C(45) - C(46)	1.20(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_0(1) = C_0(2)$	2.487(3)	C(3) = C(4)	2.441(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(40) = C(40)	1.939(2)	C(39) - C(40) C(46) = Co(2) = C(45)	1.2/(2)
$\begin{array}{c} c_{(40)}-c_{0(1)}-c_{0(2)} & 49.9(5) & r_{(2)}-c_{0(3)}-c_{0(4)} & 151.85(2) \\ c_{(30)}-c_{0(1)}-c_{0(2)} & 51.1(5) & c_{(30)}-c_{(40)}-c_{(41)} & 130.3(2) \\ c_{(40)}-c_{0(2)}-c_{(39)} & 37.9(6) & c_{(46)}-c_{(45)}-c_{(44)} & 144.0(2) \\ P(1)-c_{0(2)}-c_{0(1)} & 147.06(1) & c_{(23)}-c_{(24)}-c_{(25)} & 111.9(1) \end{array}$	C(40) = C0(1) = C(39) C(40) = Co(1) = Co(2)	37.2(0)	L(40) - L0(3) - L(45) P(2) Co(2) Co(4)	37.8(0) 151.95(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(40) = C0(1) = C0(2)	49.9(3) 51.1(5)	r(2) = CO(3) = CO(4) C(20) = C(40) = C(41)	1202(2)
$\begin{array}{c} P(1)-Co(2)-Co(1) & 147.06(1) & C(23)-C(24)-C(25) & 111.9(1) \end{array}$	C(39) = CO(1) = CO(2)	37.0(6)	C(46) - C(40) - C(41)	130.3(2) 144.0(2)
1(1) - C(2) - C(1) = 147.00(1) = C(23) - C(24) - C(23) = 111.9(1)	P(1) = Co(2) = C(39)	1/7.9(0)	C(33) - C(34) - C(34)	144.0(2) 111.0(1)
	1(1)-00(2)-00(1)	147.00(1)	C(23) = C(24) = C(23)	111.3(1)

Fig. 4. ORTEP view of 6 with 30% probability level ellipsoids.

solvent molecules in the crystal structure. The room temperature analysis and poor crystal quality may lead to such results.

3.3. Discussion

The present work reports a novel series of diacetylenic tetracobalt carbonyl complexes with the monophosphine ligand PPh₃ or bridging diphosphine ligands, dppe, dppp or dppb. The reactions of the starting material 1 with dppe, dppp or dppb resulted in the formation of two coordination modes: macrocycle and intramolecular bridging. The macrocyclic complex 3 and intramolecular bridging complex **4** were obtained from the reaction of dppe at the same time and the structure of **3** was determined by X-ray crystallography, whereas the structure of **4** was deduced from ¹H, ³¹P{¹H} and ¹³C¹H NMR and ESI-MS spectroscopy. It is very interesting that when dppe was replaced by dppp or dppb, the same type of reactions vielded products with only one coordination mode: the macrocyclic complexes 5 and 6. X-ray analysis also revealed the structure of 6. Unfortunately, all attempt to grow suitable single crystals of 4 and 5 failed. A detailed mechanism for the reactions is still uncertain and will need deeper study.

4. Summary

In summary, the reactions of complex **1** with PPh₃, dppe, dppp or dppb afforded diacetylenic tetracobalt carbonyl complexes **2–6** in moderate yields. The new complexes **2–6** were characterized by elemental analysis, spectroscopy and, in some cases, by X-ray crystallography. These macrocyclic complexes may have potential applications in supramolecular chemistry.

Acknowledgements

This work was supported by the National Training Programs of Innovation and Entrepreneurship for Undergraduates (2013110 58010), the Zhejiang Province Science and Technology Innovation Program (2013R422014) and Ningbo Science and Technology Innovation Team (2011B82002).

Appendix A. Supplementary material

CCDC 971422–971425 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336 033; or e-mail: deposit@ccdc.cam.ac.uk.

References

- [1] H. Greenfield, H.W. Sternberg, R.A. Friedel, J.H. Wotiz, R. Markby, I. Wender, J. Am. Chem. Soc. 78 (1956) 120.
- [2] N.E. Schore, Chem. Rev. 88 (1988) 1081.
- [3] S.D. Najdi, M.M. Olmstead, N.E. Schore, J. Organomet. Chem. 431 (1992) 335.
- [4] Y. Rubin, C.B. Knobler, F. Diederich, J. Am. Chem. Soc. 112 (1990) 4966.
- [5] L.S. Chia, W.R. Cullen, M. Franklin, A.R. Manning, Inorg. Chem. 14 (1975) 2521.
- [6] E. Sappa, G. Predieri, L. Marko, Inorg. Chim. Acta 228 (1995) 147.
- [7] K. Yang, S.G. Bott, M.G. Richmond, Organometallics 13 (1994) 3788
- [8] S. Clément, L. Guyard, A. Khatyr, M. Knorr, Y. Rousselin, M.M. Kubicki, Y. Mugnier, S. Richeter, P. Gerbier, C. Strohmann, J. Organomet. Chem. 699 (2012) 56.
- [9] M.J. Macazaga, M.L. Marcos, C. Moreno, F. Benito-Lopez, J. Gomez-González, J. González-Velasco, R.M. Medina, J. Organomet. Chem. 691 (2006) 138.
- [10] X.-F. Liu, Z.-Q. Jiang, Z.-J. Jia, Polyhedron 33 (2012) 166.
- [11] X.-F. Liu, H.-Q. Gao, Polyhedron 65 (2013) 1.
- [12] X.-F. Liu, X.-W. Xiao, J. Organomet. Chem. 696 (2011) 2767.
- [13] X.-F. Liu, J. Organomet. Chem. 750 (2014) 117.
- [14] CRYSTALCLEAR 1.3.6. Rigaku and Rigaku/MSC. The Woodlands, TX, 2005.
- G.M. Sheldrick, SHELXS97 and SHELXS97, A Program for Crystal Structure Solution, University of Göttingen, Germany, 1997.
 J.-H. Ye, Q.-L. Suo, Y.-B. Wang, L.-M. Han, X.-B. Leng, J. Inorg. Chem. 20 (2004)
- [16] J.-H. Ye, Q.-L. Suo, Y.-B. Wang, L.-M. Han, X.-B. Leng, J. Inorg. Chem. 20 (2004) 559.
- [17] R.D. Adams, U.H.F. Bunz, W. Fu, L. Nguyen, J. Organomet. Chem. 578 (1999) 91.
- [18] V. Derdau, S. Laschat, Organometallics 18 (1999) 3859.
- [19] R.H. Cragg, J.C. Jeffery, M.J. Went, J. Chem. Soc., Chem. Commun. (1990) 993.