Russian Journal of General Chemistry, Vol. 74, No. 12, 2004, pp. 1943–1944. Translated from Zhurnal Obshchei Khimii, Vol. 74, No. 12, 2004, pp. 2056–2057. Original Russian Text Copyright © 2004 by Prishchenko, Livantsov, Novikova, Livantsova, Pol'shchikov, Krut'ko.

LETTERS TO THE EDITOR

Addition of Bis(trimethylsiloxy)phosphine to Aryl-substituted Acetylenes

A. A. Prishchenko, M. V. Livantsov, O. P. Novikova, L. I. Livantsova, D. G. Pol'shchikov, and D. P. Krut'ko

Lomonosov Moscow State University, Moscow, Russia

Received June 22, 2004

Addition of bis(trimethylsiloxy)phosphine to styrene, its heterocyclic analogs, and vinylferrocene is a convenient method for preparing functionalyzed phosphonites and their derivatives [1]. In the present work we showed that bis(trimethylsiloxy)phosphine **A** reacts with aryl-substituted acetylenes in a way much different from its exothermic addition to dimethyl acetylenedicarboxylate [2], i.e. by a radical mechanism and only in the presence of a catalyst, azodiisobutyronitrile, under conditions of its thermolysis at 100–120°C. Thus the reactions of phosphine **A** with phenyl- and anisylacetylenes involve double regioselective addition to the acetylene fragment to form diphosphonites **I**.

 $\begin{array}{c} 2(\text{Me}_3\text{SiO})_2\text{PH} + \text{HC} \equiv \text{CAr} \\ \xrightarrow{R} & \\ \xrightarrow{\text{R}} & (\text{Me}_3\text{SiO})_2\text{PCH}_2\text{CH}(\text{Ar})\text{P}(\text{OSiMe}_3)_2, \\ & \\ & \text{Ia, Ib} \end{array}$

Ar = Ph (a), 4-MeOC₆H₄ (b).

Under the same conditions, the reaction of excess phosphine **A** with tolane stops on the formation of substituted vinylphosphonite **II** which, according to NMR data, is 2:1 mixture of the *E* and *Z* isomers.

 $\xrightarrow{A, R'} \xrightarrow{Ph} C=C \stackrel{Ph}{\swarrow} H + \stackrel{Ph}{(Me_3SiO)_2P} C=C \stackrel{H}{\swarrow} H + \stackrel{Ph}{(Me_3SiO)_2P} C=C \stackrel{H}{\swarrow} H$ $(E)-II \qquad (Z)-II$

Treatment of compounds **I** with dilute solutions of sodium methylate in methanol provides water-soluble salts as white hygroscopic crystals.

The NMR spectra of compounds I–III contain characteristic signals of the $P^1C^1H_2C^2H(C^3)P^2$ and

Ia, Ib $\xrightarrow{2MeONa, MeOH}_{-4Me_3SiOMe}$ H \xrightarrow{NaO}_{H} PCH₂CH(Ar)P H IIIa, IIIb Ar = Ph (a), 4-MeOC₆H₄ (b).

 $PC^1=C^2H$ fragments, whose parameters are given below. In the ¹H and ¹³C NMR spectra, the proton and ¹³C signals of the CH₂ fragment of compound **II** overlap with the respective signals of the phenyl fragments. For compound **II**, the NMR data for the preferred isomer are given first.

1,2-Bis[bis(trimethylsiloxy)phosphino]-1-phenylethane (Ia). A mixture of 42 g of bis(trimethylsiloxy)phosphine, 6.1 g of phenylacetylene, and 0.3 g of azodiisobutyronitrile was heated to 100°C, after which the temperature was raised to 130°C over the course of 1 h. Distillation gave 24.3 g (78%) of diphosphonite **Ia**, bp 133°C (0.5 mm Hg). ¹H NMR spectrum, δ, ppm: 1.85–2.0 m (C¹H_AH_B), 2.84 m *ABMX* system [C²H_M, ²J(P²H_M) 3.6, ³J(H_BH_M) 11.6, ³J(H_BH_M) 9.2 Hz]. ¹³C NMR spectrum, δ_C, ppm: 40.27 d.d (C¹, ¹J_{PC} 31.7, ²J_{PC} 15.5 Hz), 50.72 d.d (C², ¹J_{PC} 30.3, ²J_{PC} 9.6 Hz), 139.81 d.d (C³, ²J_{PC} 9.1, ³J_{PC} 3.1 Hz). ³¹P NMR spectrum, δ_P, ppm: 160.89 d (P¹, ³J_{PP} 7.0 Hz), 148.94 d (P², ³J_{PP} 7.0 Hz).

Compounds Ic and II were obtained analogously.

1-Anisyl-1,2-bis[bis(trimethylsiloxy)phosphino]ethane (**Ib**). Yield 74%, bp 139°C (0.5 mm Hg). ¹H NMR spectrum, δ, ppm: 1.85-2.05 m (C¹H_AH_B), 2.80 m *ABMX* [C²H_M, ²J(P²H_M) 4.0, ³J(H_AH_M) 12.4, ³J(H_{BHM}) 8.6 Hz], 3.91 s (OCH₃). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 39.60 d (C¹, ¹J_{PC} 30.0, ²J_{PC} 14.9 Hz), 49.07 d.d (C², ¹J_{PC} 27.6, ²J_{PC} 11.3 Hz), 130.75 d.d (C³, ²J_{PC} 9.0, ³J_{PC} 3.4 Hz), 55.02 s (OCH₃), 157.85 s (OC=). ³¹P NMR spectrum, $\delta_{\rm P}$, ppm: 164.33 d (P¹, ³ $J_{\rm PP}$ 8.4 Hz), 151.46 d (P², ³ $J_{\rm PP}$ 8.4 Hz).

Bis(trimethylsilyl) (1,2-diphenylvinyl)phosphonite (II). Yield 69%, bp 152°C (0.5 mm Hg). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 151.34 d (C¹, ¹J_{PC} 36.6 Hz) and 152.41 d (C¹, ¹J_{PC} 45.2 Hz), 1.57 d (CSi, ³J_{PC} 3.2 Hz) and 1.45 d (CSi, ³J_{PC} 2.9 Hz). ³¹P NMR spectrum, $\delta_{\rm P}$, ppm: 144.26 and 139.99 s.

1-Phenylethylenebis(sodium hydrogen phosphonite) (IIIa). To a solution of 3.2 g of sodium methylate in 50 ml of methanol, a solution of 15.7 g of phosphonite **Ia** in 30 ml of diethyl ether was added with stirring at 10°C. The resulting mixture was heated to boiling, the solvent was removed, and the residue was kept in a vacuum (1 mm Hg) for 1 h to obtain 8.2 g (98%) of salt **IIIa.** ¹H NMR spectrum, δ, ppm: 6.65 d (P¹H, ¹J_{PH} 516.3 Hz), 6.78 d.d (P²H, ¹J_{PH} 515.5, ³J_{HH} 2.4 Hz). ¹³C NMR spectrum, δ_C, ppm: 29.66 d (C¹, ¹J_{PC} 89.5 Hz), 43.04 d (C², u1J_{PC} 82.9 Hz), 136.4–134.4 m (C³). ³¹P NMR spectrum, δ_P, ppm: 29.06 d.d (P¹, ¹J_{PH} 516.3, ³J_{PP} 55.6 Hz), 23.56 d.d (P², ¹J_{PH} 515.5, ³J_{PP} 55.6 Hz). Found, %: C 34.43; H 3.69. C₈H₁₀Na₂O₄P₂. Calculated, %: C 34.55; H 3.62.

Salt IIIb was obtained analogously.

1-Anisylethylenebis(sodium hydrogen phosphonite) (IIIb). Yield 96%. ¹H NMR spectrum, δ ,

ppm: 6.52 d (P¹H, ¹ J_{PH} 519.4 Hz), 6.81 d.d (P²H, ¹ J_{PH} 522.1, ³ J_{HH} 2.6 Hz). ¹³C NMR spectrum, δ_{C} , ppm: 30.05 d (C¹, ¹ J_{PC} 90.3 Hz), 41.89 d (C², ¹ J_{PC} 83.7 Hz), 135.1–135.3 m (C³), 54.92 s (OCH₃), 158.01 s (OC=). ³¹P NMR spectrum, δ_{P} , ppm: 35.83 d.d (P¹, ¹ J_{PH} 519.4, ³ J_{PP} 57.1 Hz), 29.55 d.d (P², ¹ J_{PH} 522.1, ³ J_{PP} 57.1 Hz). Found, %: C 34.94; H 3.98. C₉H₁₂Na₂O₅P₂. Calculated, %: C 35.08; H 3.92.

The NMR spectra were obtained on a Varian VXR-400 spectrometer in $CDCl_3$ or D_2O (salts **III**) against TMS (¹H, ¹³C) or 85% of H_3PO_4 in D_2O (³¹P).

REFERENCES

- Prishchenko, A.A., Livantsov, M.V., Livantsova, L.I., Novikova, O.P., and Grigor'ev, E.V., *Zh. Obshch. Khim.*, 1996, vol. 66, no. 12, p. 2055; Prishchenko, A.A., Livantsov, M.V., Livantsova, L.I., Pol'shchikov, D.G., and Grigor'ev E.V., *Zh. Obshch. Khim.*, 1999, vol. 69, no. 2, p. 346; Livantsova, L.I., Prishchenko, A.A., Livantsov, M.V., Nikolaev, S.N., and Grigor'ev, E.V., *Zh. Obshch. Khim.*, 2000, vol. 70, no. 7, p. 1220; Li vantsov, M.V., Prishchenko, A.A., Livantsova, L.I., Nikolaev, S.N., Meleshonkova, N.N., and Grigor' ev, E.V., *Zh. Obshch Khim.*, 2003, vol. 73, no. 1, p. 163.
- Prishchenko, A.A., Livantsov, M.V., Livantsova, L.I., Grigor'ev, E.V., Goncharova, Zh.Yu., and Novikova, O.P., *Zh. Obshch. Khim.*, 1997, vol. 67, no. 11, p. 1912.