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Catalytic and stoichiometric oxidations of sulfide by peroxides,
periodate salts, enzymatic systems, and transition-metal-based
oxidants are important from biochemical,1 environmental,2 and
industrial perspectives.3 There are only a few examples of transition-
metal-based catalysts using molecular oxygen as the oxidant because
sulfide has been well-known for many years as a poor ligand4 and
is, therefore, not able to displace peroxide from an inner-sphere
peroxide catalysts. Its sulfoxide analogue, on the other hand, is not
a good leaving group after binding to a catalyst that contains an
oxygen donor ligand. To avoid suffering from a very slow oxidation
rate or no catalytic reactivity, transition-metal-based catalysts must
be used together with highly reactive peroxides such as H2O2 and
tert-BuO2H as the ultimate oxidants5 or have a highly reactive
peroxide involved as an intermediate, sometimes generated via an
outer-sphere electron-transfer pathway.6

We previously reported that the aerobic oxidation of cyclohexene
catalyzed bycis-[RuII(H2O)(bpy)2(PR3)]2+ (bpy ) 2,2′-bipyridine
and PR3 ) tertiary phosphine) involved a putativecis-[RuIV(bpy)2-
(PR3)(O)]2+ intermediate without the formation of H2O2.7a We
recently reported the remarkable heteroscorpionate ligand effect on
rate enhancement (1.9× 107) of ligand substitution kinetics for
fac-[RuII(H2O)(dpp)(tpmm)]2+ (dpp) di(pyrazol-1-yl)propane and
tpmm ) tris(pyrid-2-yl)methoxymethane).8

We now report a unique combination of the two studies in which
the low-oxidation state heteroscorpionate RuII-H2O2+ complex
having a remarkable steric ligand effect is used as a catalyst for
aerobic oxidation of methylp-tolyl sulfide to methyl p-tolyl
sulfoxide. This novel reactivity is the first documented example of
aerobic sulfide oxidation catalyzed by a transition-metal complex
without the formation of a highly reactive peroxide as an intermedi-
ate. Remarkably, this aerobic oxidation of sulfide occurs due
primarily to the steric effect of the heteroscorpionate dpp ligand.
The X-ray crystal structure of [2A](PF6)2 with crystals grown by a
slow diffusion of CH3C(O)CH3 out of a 1:1 (v/v) H2O:CH3C(O)-
CH3 solution is shown in Figure 1.

Aerobic oxidation of methylp-tolyl sulfide catalyzed by [2B]-
(PF6)2 in 1,2-dichlorobenzene (ODCB) o-dichlorobenzene) at 25.0
( 0.1 °C was monitored by GCI-MS.9

This aerobic sulfide oxidation study is reminiscent of those by
Riley,6a-b Mestroni,6c Fergusson,6d Espenson,5a Kagan,5b and
Seraglia.5c However, these reactions require vigorous conditions
and are known to occur only when highly reactive peroxides such
as H2O2 or tert-BuO2 are involved as the intermediate or are used
as the oxidants. For example, alkylarylsulfides were catalytically
oxidized bycis- or trans-[RuII(X)2(DMSO)4] (X ) Cl or Br),6a fac-
or mer-[RuII(Br)2(THT)(BEPS)] (THT) tetrahydrothiophene and
BEPS ) bis(3-(ethylsulfinyl)propyl)-sulfide),6b trans-[RuIII (Cl)4-
(DMSO)2]-, or mer-[RuIII (Cl)3(DMSO)3]6c with the formation of
H2O2 as the intermediate. In the catalytic oxidations of alkylaryl-
sulfides and chiral sulfides, [ReVII (CH3)(O)3]5a and [TiVI(i-
OC3H7)4],5b [VV(O)(i-OC3H7)3],5c [MoVI(O)2(acac)] (acac) acetyl-
acetonato), or [MoVI(O)(O2)2]5c must be used with H2O2 and tert-
BuO2H as the oxidants, respectively.

In addition, our sulfide oxidation study is also reminiscent of
those by James10a and Meyer.10b However, the aerobic sulfide
oxidation catalyzed by Ru(VI)-dioxo porphyrin reported by James
and co-workers was suppressed after 20 min with a turnover of
∼5 because the more labile O-bound sulfoxide RuII-(OSR2)2

2+

complex underwent isomerization to form the substitutionally inert
S-bound sulfoxide RuII(S(O)R2)2

2+ complex which terminated the
catalytic process. This is a typical problem for unhindered transition-
metal catalysts. Although the sulfide oxidation bycis-[RuIV(bpy)2-
(py)(O)]2+ reported by Meyer had a much faster rate of forming
the O-bound sufoxide RuII-OSR2

2+ product and a much slower
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Figure 1. ORTEP diagram of thefac-[RuII(H2O)(dpp)(tpmm)]2+ cation.
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rate of isomerization to the corresponding S-bound RuII-S(O)R2
2+

product, unfortunately, this Ru(IV)-oxo complex did not possess
the catalytic reactivity toward thioether oxidation.

In our study, methylp-tolyl sulfide was readily oxidized by [2B]-
(PF6)2 to methyl p-tolyl sulfoxide. The turnover number was
calculated as 53 after a period of 36 h, eq 2.9

Since the reaction in eq 2 occurs under mild conditions, it pre-
sumably proceeds via a mechanism involving the putativefac-[RuIV-
(dpp)(O)(tppm)]2+ intermediate, reminiscent of our aerobic oxida-
tion of cyclohexene catalyzed bycis-[RuII(H2O)(bpy)2(PR3)]2+.7b

Experimental facts in support of this mechanism are the absence
of detected H2O2

11 and the reactions in whichfac-[RuIV(dpp)(O)-
(tpmm)](PF6)2 ([3A](PF6)2) stoichiometrically oxidizes methyl
p-tolyl sulfide, 2-propanol, and allyl alcohol to methylp-tolyl
sulfoxide, acetone, and glycidol, respectively. The key feature in
the proposed mechanism is the extraordinary heteroscorpionate
effect of dpp that rapidly extrudes the O-bound sulfoxide ligand
before the isomerization can even occur.9

[3A](PF6)2 stoichiometrically reacts with methylp-tolyl sulfide
in CH3CN to form the solvento complex,fac-[RuII(NCCH3)(dpp)-
(tpmm)](PF6)2 ([4A](PF6)2) and methylp-tolyl sulfoxide as the
organic product. The reaction was studied under N2 by following
characteristic change in the absorption spectrum atλmax ) 352 nm
as [3A](PF6)2 was directly converted into [4A](PF6)2. As shown in
the Supporting Information (Figure 2) in the oxidation of methyl
p-tolyl sulfide by [3A](PF6)2, the extrusion of methylp-tolyl
sulfoxide is too fast for the O-bound RuII-OS(CH3)(p-CH3C6H4)2+

intermediate to be even observed. The spectra simply show the
direct conversion from [3A](PF6)2 to [4A](PF6)2.

Besides sulfide, [3A](PF6)2 also oxidizes 2-propanol to acetone12

and epoxidizes allyl alcohol to glycidol, eqs 3-4. The reactions
were studied in 0.1 M HNO3/NaNO3 solution (pH) 2.00) at 25.0
( 0.1 °C by UV-vis monitoring atλmax ) 360 nm for [2A]2+.

Methyl p-tolyl sulfide, acetone, and glycidol were extracted from
the reaction solutions with hexane and quantitatively analyzed by

GC-MS (90-95% yield). In both the catalytic and the stoichio-
metric oxidations, the number of moles of methylp-tolyl sulfide
consumed is equal to the number of moles of methylp-tolyl
sulfoxide produced. This mass balance studies show that sulfide is
not consumed as sacrificial co-reductant, and the absence of H2O2

supports the mechanism reported previuosly.7b Representatives of
calibration curves and details of product analyses for the catalysis
and oxidation of methylp-tolyl sulfide as well as 2-propanol are
provided in Supporting Information Figures 5-8 and Table 1.

From the crystallographic data on [2A](PF6)2, the absence of
H2O2, the lack of catalytic suppression, and the stoichiometric
oxidation of methylp-tolyl sulfide, 2-propanol, and allyl alcohol
by [3A](PF6)2, it can be concluded that the aerobic oxidation of
methyl p-tolyl sulfide to methylp-tolyl sulfoxide is catalyzed by

the heteroscorpionate RuII-H2O2+ complex possessing a remarkable
steric effect of the heteroscorpionate dpp ligand.
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(CH3)(p-CH3C6H4)S98
[O2] (11.4 psi), [2B](PF6)2 Cat.

ODCB, 25.0( 0.1°C

(CH3)(p-CH3C6H4)SO (2)

[RuIV(dpp)(O)(tpmm)]2+ + (CH3)2CHOH98
H2O

[RuII(H2O)(dpp)(tpmm)]2+ + (CH3)2CdO (3)
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