

Polyhedron 20 (2001) 2055-2062

Lanthanide nitrate complexes of diphenylmethylphosphine oxide: synthesis and spectroscopic studies. Crystal structures of [La(Ph₂MePO)₃(NO₃)₃], [La(Ph₂MePO)₄(NO₃)₃]·*x*Me₂CO and [Yb(Ph₂MePO)₄(NO₃)₂]PF₆

Matthew Bosson, William Levason *, Tajesh Patel, Michael C. Popham, Michael Webster

Department of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK

Received 26 February 2001; accepted 29 March 2001

Abstract

The reaction of $Ln(NO_3)_3$ · 6H_2O (Ln = lanthanide except Pm) with Ph₂MePO in a 1:3 or 1:4 ratio in acetone or ethanol produces $[Ln(Ph_2MePO)_3(NO_3)_3]$ which have been characterised by analysis, IR, ¹H and ³¹P{¹H} NMR spectroscopy and conductance measurements. The $[Ln'(Ph_2MePO)_3(NO_3)_3]$ (Ln' = Pr–Tb) exist only as tris complexes in solution and are unaffected by the presence of excess Ph_2MePO. In contrast the $[Ln'(Ph_2MePO)_3(NO_3)_3]$ (Ln" = Ho–Lu) partially decompose in CH₂Cl₂ solution into $[Ln''(Ph_2MePO)_4(NO_3)_2]^+$, and $[Ln''(Ph_2MePO)_4(NO_3)_2]PF_6$ are readily isolated from $Ln''(NO_3)_3$, Ph₂MePO and NH₄PF₆ in acetone. For lanthanum only, a neutral 1:4 complex $[La(Ph_2MePO)_4(NO_3)_3]$ · xMe_2CO contains a ten-coordinate metal centre. The structure of $[Yb(Ph_2MePO)_4(NO_3)_2]PF_6$ reveals an eight-coordinate cation and all complexes contain bidentate nitrato-groups. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Lanthanide; Phosphine oxide; X-ray structure

1. Introduction

Phosphine oxides have proved popular ligands for complexing with oxophilic metals like the lanthanides and actinides, and they have been widely used in solvent extraction and separation processes. The overwhelming majority of complexes isolated with the lanthanides have involved Ph₃PO, with very limited data on complexes of other R₃PO ligands [1]. We have recently reported [2] a detailed study of the reactions of Ln(NO₃)₃ (Ln = lanthanide except Pm) with Ph₃PO, and found subtle variations with the lanthanide concerned and the reaction conditions. Whilst nine-coordinate [Ln(Ph₃PO)₃(η^2 -NO₃)₃] are known for all the metals, nine-coordinate [Ln'(Ph₃PO)₄(η^2 -NO₃)₂(η^1 - NO_3] form only with Ln' = La, Ce, Pr or Nd, whilst for the elements Tb-Lu eight-coordinate $[Ln(Ph_3PO)_4(\eta^2-NO_3)_2]NO_3$ were isolated as solids. Solution speciation also varies with Ln. In related studies with Sc and Y [3], the complexes characterised included $[Sc(Ph_3PO)_2(\eta^2-NO_3)_3],$ $[Y(Ph_3PO)_3(\eta^2-NO_3)_3]$ and $[Y(Ph_3PO)_4(\eta^2-NO_3)_2]NO_3$. Here we report the complexes formed between Ln(NO₃)₃ and Ph₂MePO, which is expected to be a stronger donor and sterically less demanding than Ph₃PO. The synthesis and crystal structures $[Sc(Ph_2MePO)_4(NO_3)_2]NO_3$ of and $[Y(Ph_2MePO)_3(NO_3)_3]$ have been described [3].

2. Experimental

Lanthanide nitrates were obtained as before [2] and Ph₂MePO (Aldrich) was used as received. ³¹P{¹H} NMR spectra were recorded on a Bruker DPX400 at

^{*} Corresponding author. Tel.: +44-2380-595000; fax: +44-2380-593782.

E-mail address: wxl@soton.ac.uk (W. Levason).

161.9 MHz and referenced to external 85% H₃PO₄. Other physical measurements were carried out as described previously [2,3].

2.1. Synthesis

The complexes were prepared by similar methods, representative examples of which are described. For others only the physical data are noted.

2.1.1. $[La(Ph_2MePO)_3(NO_3)_3]$

A solution of La(NO₃)₃·6H₂O (0.43 g, 1.0 mmol) in acetone (10 cm³) was added to a solution of Ph₂MePO (0.54 g, 2.5 mmol) in acetone (10 cm³), and the mixture heated to boiling. After concentration to 5 cm³ the solution was refrigerated for 24 h. The white solid was filtered off and dried in vacuo. Yield: 0.46 g (47%). *Anal.* Found: C, 47.9; H, 4.0; N, 4.3. Calc. for C₃₉H₃₉LaN₃O₁₂P₃: C, 48.1; H, 4.0; N, 4.3%. IR (CsI, cm⁻¹) 3084w, 3005w, 1489br, 1474s, 1438m, 1361s, 1292s, 1165sh, 1144s, 1127m, 1097m, 1072m, 1029s, 998m, 895s, 854s, 819m, 782s, 732s, 718m, 698s, 503s, 397s. ¹H NMR (CDCl₃, 300 K): δ 1.95 (d, ²*J* = 16 Hz), 7.3–7.8 (m). $\Lambda_{\rm M}$ (10⁻³ mol dm⁻³ CH₂Cl₂) 1.5 Ω^{-1} cm² mol⁻¹.

2.1.2. [Ce(Ph₂MePO)₃(NO₃)₃]

Colourless solid. Yield: 59%. *Anal.* Found: C, 48.0; H, 3.7; N, 4.1. Calc. for $C_{39}H_{39}CeN_3O_{12}P_3$: C, 48.1; H, 4.0; N, 4.3%. IR (CsI, cm⁻¹) 3057w, 3005w, 2918w, 1594w, 1473br, 1438m, 1357s, 1340s, 1299s, 1165sh, 1149s, 1124s, 1096s, 1070m, 1029s, 997m, 895s, 888s, 820m, 782m, 748s, 717m, 695s, 511s, 445m. ¹H NMR (CDCl₃, 300 K): δ 4.1 (d, ²*J* = 16 Hz), 7.5–7.8 (m), 8.7 (m). $\Lambda_{\rm M}$ (10⁻³ mol dm⁻³ CH₂Cl₂) 1 Ω^{-1} cm² mol⁻¹.

2.1.3. $[Pr(Ph_2MePO)_3(NO_3)_3]$

Green powder. Yield: 49%. *Anal.* Found: C, 47.8; H, 3.3; N, 4.1. Calc. for $C_{39}H_{39}N_3O_{12}P_3Pr$: C, 48.0; H, 4.0; N, 4.3%. IR (CsI, cm⁻¹) 3056w, 3006w, 2920w, 1484br, 1456s, 1438m, 1300s, 1284s, 1165m, 1142s, 1123m, 1090m, 1069m, 1028s, 994m, 892s, 880s, 817m, 780m, 742s, 715m, 695s, 509s, 438m. ¹H NMR (CDCl₃, 300 K): δ 7.2 (br), 8.3 (br), 11.3 (br). Λ_M (10⁻³ mol dm⁻³ CH₂Cl₂) 1 Ω^{-1} cm² mol⁻¹.

2.1.4. $[Nd(Ph_2MePO)_3(NO_3)_3]$

Pale blue crystals. Yield: 50%. Anal. Found: C, 47.7; H, 4.0; N, 4.1. Calc. for $C_{39}H_{39}N_3NdO_{12}P_3$: C, 47.9; H, 4.0; N, 4.3%. IR (CsI, cm⁻¹) 3058w, 3006w, 2916w, 1475br, 1437s, 1338m, 1289s, 1167m, 1142s, 1126m, 1090m, 1071w, 1023m, 994w, 896s, 880s, 818m, 781m, 743s, 709m, 690s, 509s, 443m. ¹H NMR (CDCl₃, 300 K): δ 4.7 (d, ²*J* = 15 Hz), 7.9 (m), 9.4 (m). Λ_M (10⁻³ mol dm⁻³ CH₂Cl₂) 1 Ω^{-1} cm² mol⁻¹.

2.1.5. $[Sm(Ph_2MePO)_3(NO_3)_3]$

White crystals. Yield: 59%. *Anal.* Found: C, 47.2; H, 4.0; N, 4.3. Calc. for $C_{39}H_{39}N_3O_{12}P_3Sm$: C, 47.6; H, 4.0; N, 4.3%. IR (CsI, cm⁻¹) 3057w, 3006w, 2918w, 1484br, 1460m, 1438m, 1292s, 1169s, 1147s, 1126m, 1097m, 1071m, 1031m, 996w, 894s, 883s, 817m, 782m, 746s, 716m, 697s, 510s, 447m. ¹H NMR (CDCl₃, 300 K): δ 5.5 (br), 6.7 (m), 7.1 (m). Λ_M (10⁻³ mol dm⁻³ CH₂Cl₂) 3 Ω^{-1} cm² mol⁻¹.

2.1.6. [Eu(Ph₂MePO)₃(NO₃)₃]

White powder. Yield: 50%. *Anal.* Found: C, 47.0; H, 4.1; N, 4.2. Calc. for $C_{39}H_{39}EuN_3O_{12}P_3$: C, 47.5; H, 4.0; N, 4.3%. IR (CsI, cm⁻¹) 3031w, 2920w, 1497br, 1484s, 1438m, 1359s, 1302s, 1170m, 1148s, 1127m, 1099m, 1072w, 1033m, 996w, 895m, 885s, 818m, 783m, 746s, 694s, 508s, 450m. ¹H NMR (CDCl₃, 300 K): δ 3.3 (br), 4.7–5.6 (br). $\Lambda_{\rm M}$ (10⁻³ mol dm⁻³ CH₂Cl₂) 5 Ω^{-1} cm² mol⁻¹.

2.1.7. [Gd(Ph₂MePO)₃(NO₃)₃]

White powder. Yield 48%. *Anal.* Found: C, 47.5; H, 3.8; N, 4.2. Calc. for $C_{39}H_{39}GdN_3O_{12}P_3$: C, 47.2; H, 4.0; N, 4.2%. IR (CsI, cm⁻¹) 3096w, 3058w, 2913w, 1487br, 1438m, 1357s, 1304m, 1172m, 1154s, 1125m, 1106m, 1077w, 1033m, 995w, 896m, 888s, 818m, 779m, 743s, 695s, 511s, 449m. Λ_M (10⁻³ mol dm⁻³ CH₂Cl₂) 3 Ω^{-1} cm² mol⁻¹.

2.1.8. [Tb(Ph₂MePO)₃(NO₃)₃]

White powder. Yield: 66%. *Anal.* Found: C, 47.0; H, 3.8; N, 4.5. Calc. for $C_{39}H_{39}N_3O_{12}P_3Tb$: C, 47.2; H, 4.0; N, 4.2%. IR (CsI, cm⁻¹) 3053w, 3010w, 2918w, 1492br, 1438m, 1359s, 1304s, 1174m, 1149s, 1127m, 1099m, 1073w, 1035m, 999w, 896m, 884s, 818m, 784m, 746s, 717m, 697s, 511s, 450m. Λ_M (10⁻³ mol dm⁻³ CH₂Cl₂) 4 Ω^{-1} cm² mol⁻¹.

2.1.9. $[Dy(Ph_2MePO)_3(NO_3)_3]$

White powder. Yield: 65%. *Anal.* Found: C, 46.1; H, 3.8; N, 4.4. Calc. for $C_{39}H_{39}DyN_3O_{12}P_3$: C, 46.8; H, 3.9; N, 4.2%. IR (CsI, cm⁻¹) 3058w, 3006w, 2920w, 1475br, 1437m, 1318s, 1299s, 1171m, 1151s, 1123m, 1099m, 1071w, 1033m, 994w, 895m, 885s, 814m, 780m, 743s, 716m, 690s, 509s, 504s, 447w. Λ_M (10⁻³ mol dm⁻³ CH₂Cl₂) 7 Ω^{-1} cm² mol⁻¹.

2.1.10. [Ho(Ph₂MePO)₃(NO₃)₃]

Pink crystals. Yield: 43%. *Anal.* Found: C, 45.9; H, 4.2; N, 3.7. Calc. for $C_{39}H_{39}HoN_3O_{12}P_3$: C, 46.8; H, 3.9; N, 4.2%. IR (CsI, cm⁻¹) 3054w, 3007w, 2920w, 1474br, 1437m, 1325s, 1294s, 1175m, 1151s, 1123m, 1099m, 1071w, 1033m, 994w, 892s, 885s, 814m, 776m, 747s, 714m, 695s, 504s, 448m. ¹H NMR (CDCl₃, 300 K): δ 3.5 (br), 11.2–12.5 (m). Λ_M (10⁻³ mol dm⁻³ CH₂Cl₂) 11 Ω^{-1} cm² mol⁻¹.

2.1.11. $[Er(Ph_2MePO)_3(NO_3)_3]$

Pink crystals. Yield: 44%. *Anal.* Found: C, 46.8; H, 4.3; N, 3.8. Calc. for $C_{39}H_{39}ErN_3O_{12}P_3$: C, 46.7; H, 3.9; N, 4.2%. IR (CsI, cm⁻¹) 3058w, 3006w, 1480s, 1438m, 1304s, 1294s, 1171s, 1147s, 1127m, 1099m, 1066w, 1033m, 994w, 895m, 885s, 814m, 776m, 743s, 714m, 695s, 512s, 505s, 443m. ¹H NMR (CDCl₃, 300 K): δ 2.4 (d) 7.4 (m), 7.9 (m). Λ_M (10⁻³ mol dm⁻³ CH₂Cl₂) 10 Ω^{-1} cm² mol⁻¹.

2.1.12. $[Tm(Ph_2MePO)_3(NO_3)_3]$

White powder. Yield: 45%. *Anal.* Found: C, 46.7; H, 3.9; N, 3.7. Calc. for $C_{39}H_{39}N_3O_{12}P_3Tm$: C, 46.7; H, 3.9; N, 4.2%. IR (CsI, cm⁻¹) 3067w, 2963w, 1484br, 1438m, 1384s, 1304s, 1185s, 1150s, 1126m, 1098m, 1034m, 996w, 894m, 880s, 815m, 802m, 746s, 735m, 690s, 514s, 499s, 450m. ¹H NMR (CDCl₃, 300 K): δ 3.4 (d), 7.2 (br,m). $\Lambda_{\rm M}$ (10⁻³ mol dm⁻³ CH₂Cl₂) 11 Ω^{-1} cm² mol⁻¹.

2.1.13. $[Yb(Ph_2MePO)_3(NO_3)_3]$

White powder. Yield: 63%. Anal. Found: C, 46.7; H, 3.9; N, 4.2. Calc. for $C_{39}H_{39}N_3O_{12}P_3Yb$: C, 46.5; H, 3.9; N, 4.2%. IR (CsI, cm⁻¹) 3057w, 3013w, 1471br, 1342s, 1309s, 1161br, 1127m, 1098m, 1068w, 1030m, 994w, 886m, 875s, 816m, 781m, 749s, 716m, 698s, 512s, 503s, 440w. ¹H NMR (CDCl₃, 300 K): δ 4.3–6.0 (br). Λ_M (10⁻³ mol dm⁻³ CH₂Cl₂) 13 Ω^{-1} cm² mol⁻¹.

2.1.14. $[Lu(Ph_2MePO)_3(NO_3)_3]$

White powder. Yield: 55%. *Anal.* Found: C, 46.3; H, 3.8; N, 4.2. Calc. for $C_{39}H_{39}LuN_3O_{12}P_3$: C, 46.4; H, 3.9; N, 4.2%. IR (CsI, cm⁻¹) 3062w, 2963w, 1478m, 1439m, 1325s, 1262m, 1165s, 1150s, 1126m, 1100s, 1032m, 891m, 876w, 815m, 802m, 781w, 749s, 717m, 690s, 500s, 392m. ¹H NMR (CDCl₃, 300 K): δ 1.9 (d, ²*J* = 16 Hz), 7.3–7.6 (m). Λ_M (10⁻³ mol dm⁻³ CH₂Cl₂) 12 Ω^{-1} cm² mol⁻¹.

2.1.15. $[Ho(Ph_2MePO)_4(NO_3)_2]PF_6$

Ammonium hexafluorophosphate (0.08 g, 0.5 mmol) and holmium nitrate hydrate (0.22 g, 0.5 mmol) were dissolved separately in acetone (5 cm³) and the solutions mixed and stirred for 5 min. The solution was filtered and a solution of Ph₂MePO (0.55 g, 2.5 mmol) in acetone (15 cm³) added, and the mixture boiled. The solution was cooled, concentrated in vacuo until it became cloudy and refrigerated for 48 h. The pink crystals produced were filtered off, rinsed with diethyl ether (10 cm³) and dried in vacuo. The solid was recrystallised from CH₂Cl₂. Yield: 0.55 g (43%). Anal. Found: C, 48.1; H, 4.3; N, 2.2. Calc. for $C_{52}H_{52}F_{6}HoN_{2}O_{10}P_{5}$; C, 48.1; H, 4.0; N, 2.2%. IR (CsI, cm⁻¹) 3054w, 3007w, 1511s, 1485m, 1441m, 1362m, 1294m, 1186sh, 1152vs, 1129m, 1110w, 1076w, 1033m, 999m, 898m, 839vs, 779s, 754s, 747s, 717m, 696s, 559s,

510s. ¹H NMR (CDCl₃, 300 K): δ 15.4 (br), 10.6–10.1, 7.4. $\Lambda_{\rm M}$ (10⁻³ mol dm⁻³ CH₂Cl₂) 23 Ω^{-1} cm² mol⁻¹.

2.1.16. $[Er(Ph_2MePO)_4(NO_3)_2]PF_6$

Pink crystals. Yield: 48%. *Anal.* Found: C, 47.6; H, 4.3; N, 2.2. Calc. for $C_{52}H_{52}ErF_6N_2O_{10}P_5$: C, 48.1; H, 4.0; N, 2.2%. IR (CsI, cm⁻¹) 3058w, 3006w, 1506s, 1440m, 1358s, 1298s, 1188sh, 1153vs, 1127m, 1102m, 1074w, 1033m, 999w, 897m, 839vs, 779m, 755s, 746s, 719m, 696s, 559s, 510s, 443m. ¹H NMR (CDCl₃, 300 K): δ 4.5–5.5, 6.5–7.2. Λ_M (10⁻³ mol dm⁻³ CH₂Cl₂) 22 Ω⁻¹ cm² mol⁻¹.

2.1.17. [Tm(Ph₂MePO)₄(NO₃)₂]PF₆

White powder. Yield: 55%. *Anal.* Found: C, 47.7; H, 4.3; N, 2.0. Calc. for $C_{52}H_{52}F_6N_2O_{10}P_5Tm$: C, 47.9; H, 4.0; N, 2.2%. IR (CsI, cm⁻¹) 3067w, 2963w, 1505br, 1440m, 1362s, 1298s, 1185sh, 1153vs, 1127m, 1110m, 1074w, 1034m, 999w, 897m, 839vs, 780m, 777s, 719m, 697s, 559s, 510s. ¹H NMR (CDCl₃, 300 K): δ 2.5 (br) 4.0–4.8. A_M (10⁻³ mol dm⁻³ CH₂Cl₂) 25 Ω^{-1} cm² mol⁻¹.

2.1.18. $[Yb(Ph_2MePO)_4(NO_3)_2]PF_6$

White powder. Yield: 60%. *Anal.* Found: C, 48.3; H, 4.4; N, 2.3. Calc. for $C_{52}H_{52}F_6N_2O_{10}P_5Yb$: C, 47.8; H, 4.0; N, 2.1%. IR (CsI, cm⁻¹) 3057w, 3013w, 1484br, 1440m, 1357s, 1299s, 1154vs, 1127m, 1100m, 1074w, 1034m, 999w, 887m, 839vs, 782m, 749s, 719m, 679s, 559m, 510s, 474m. ¹H NMR (CDCl₃, 300 K): δ 3.0–3.5, 5.8–6.4. Λ_M (10⁻³ mol dm⁻³ CH₂Cl₂) 24 Ω^{-1} cm² mol⁻¹.

2.1.19. $[Lu(Ph_2MePO)_4(NO_3)_2]PF_6$

White powder. Yield: 65%. *Anal.* Found: C, 48.2; H, 4.4; N, 2.4. Calc. for $C_{52}H_{52}F_6LuN_2O_{10}P_5$: C, 47.7; H, 4.0; N, 2.1%. IR (CsI, cm⁻¹) 3062w, 2963w, 1482br, 1440m, 1365s, 1300s, 1155vs, 1127m, 1110m, 1074w, 1035m, 999w, 888m, 839vs, 783m, 749s, 719m, 697s, 559s, 514s, 475m. ¹H NMR (CDCl₃, 300 K): δ 1.75 (d, ²*J* = 16 Hz), 7.3–7.6 (m). Λ_M (10⁻³ mol dm⁻³ CH₂Cl₂) 24 Ω^{-1} cm² mol⁻¹.

2.1.20. $[La(Ph_2MePO)_4(NO_3)_3]$

Ph₂MePO (0.11 g, 0.50 mmol) was added to a solution of $[La(Ph_2MePO)_3(NO_3)_3]$ (0.098 g, 0.10 mmol) in CH₂Cl₂ (20 cm³) and the mixture heated to reflux, then cooled. A ³¹P{¹H} NMR spectrum of this solution at -80° C showed the tetrakis complex and free ligand as the only major species. The solvent was removed in vacuo, and the product dried, and then ground to a fine powder. The white powder was stirred with diethyl ether (50 cm³) for 48 h, the residual solid filtered off and dried in vacuo. Yield: 0.11 g (90%). *Anal.* Found: C, 52.0; H, 3.4; N, 4.0. Calc. for C₅₂H₅₂LaN₃O₁₃P₄: C, 52.5; H, 3.5; N, 4.4%. IR (CsI, cm⁻¹) 3066w, 3005w,

Table 1 Crystallographic data ^a

Compound	$[La(Ph_2MePO)_3(NO_3)_3]$	$[La(Ph_2MePO)_4(NO_3)_3]$ ·xMe ₂ CO	[Yb(Ph ₂ MePO) ₄ (NO ₃) ₂]PF ₆
Empirical formula	$C_{39}H_{39}LaN_3O_{12}P_3$	$C_{52}H_{52}LaN_{3}O_{13}P_{4} + xC_{3}H_{6}O$	$C_{52}H_{52}F_6N_2O_{10}P_5Yb$
M _r	973.55	1247.83 (x = 1)	1306.85
Crystal system	triclinic	monoclinic	triclinic
Space group	<i>P</i> 1 (no. 2)	C2/c (no. 15)	$P\overline{1}$ (no. 2)
Unit cell dimensions			
a (Å)	10.1697(2)	22.896(3)	13.1163(2)
b (Å)	10.2766(2)	25.231(4)	14.9535(2)
<i>c</i> (Å)	21.6636(3)	12.784(4)	15.7817(2)
α (°)	98.879(1)	90.0	103.064(1)
β (°)	99.412(1)	119.97(1)	101.265(1)
γ (°)	103.229(1)	90.0	106.621(1)
$V(Å^3)$	2130.52(7)	6397(2)	2774.9(1)
$D_{\text{calc}} (\text{g cm}^{-3})$	1.518	1.296	1.564
Ζ	2	4	2
Total number of observations	24884	5792	37259
Number of unique observations	9398 ($R_{\rm int} = 0.0604$)	5646 ($R_{\rm int} = 0.0397$)	9661 ($R_{\rm int} = 0.096$)
Absorption correction	sortav	psi-scan	sortav
Number of data in refinement	9398	5646	9661
Number of parameters/restraints	524/0	272/0	623/18
$\mu (\rm cm^{-1})$	11.78	8.27	19.07
S	1.04	1.14	0.96
$R (F_{o} > 2\sigma(F_{o}))$	0.0393 (7817 refls)	0.0962 (4675 refls)	0.0552 (8714 refls)
wR_2 (all data)	0.0915	0.2785	0.1598

^a In common, T = 150 K, λ (Mo K α) = 0.71073 Å. $R = \Sigma ||F_o| - |F_c|| / \Sigma ||F_o|; wR_2 = \left[\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w F_o^4 \right]^{1/2}$.

1484br, 1474s, 1438m, 1360s, 1288s, 1166sh, 1143s, 1127m, 1097m, 1072m, 1030s, 998m, 895s, 819m, 783s, 747s, 718m, 697s, 512s, 397s. ¹H NMR (CDCl₃, 300 K): δ 1.95 (d, ²*J* = 16 Hz), 7.3 – 7.8 (m).

2.2. Crystal structure determinations

2.2.1. $[La(Ph_2MePO)_3(NO_3)_3]$

Very thin small platy crystals were obtained from the NMR sample in CH₂Cl₂ by slow evaporation over several weeks. Data were collected on a Nonius CCD diffractometer at 150 K and corrected for absorption using the SORTAV procedure [4]. The default PATT and TREF calculations in SHELXS-86 [5] failed to give a solution and the La position was obtained by hand calculation from the Patterson map. Repeated structure factor and electron density calculations revealed the remaining non-H atoms. At a later stage most of the H atoms appeared and were added to the model in calculated positions. Full-matrix least-squares refinement on F^2 [6] converged to the final solution (see Table 1).

2.2.2. $[La(Ph_2MePO)_4(NO_3)_3]$ ·xMe₂CO

Repeated attempts to grow suitable crystals failed, but a few modest quality needle crystals were obtained directly from one synthesis with very dilute solutions over several weeks and used to collect data at 150 K on a Rigaku AFC7S diffractometer. The diffraction peaks were broad, and the systematic absences gave the space group as Cc or C2/c of which the latter was finally used for the solution. The trial solution came from SHELXS-86 (TREF) [5] with La(1), N(2) and O(6) located on a twofold axis. Refinement as in Section 2.2.1 [6] with geometrically fixed rings (AFIX 66), disorder in one phenyl ring with two images observed in the electrondensity map and a partially modelled, disordered acetone solvate molecule. No H atoms were included in the model (see Table 1).

2.2.3. $[Yb(Ph_2MePO)_4(NO_3)_2]PF_6$

Crystals were obtained by vapour diffusion of Et_2O into a CH_2Cl_2 solution on the compound with the sealed container held in the refrigerator. Data were collected as in Section 2.2.1 and corrected for absorption using the SORTAV procedure [4]. Structural solution and refinement are as given in Section 2.2.2. The PF_6 anion was disordered and although six F atoms were identified there were a number of potential F atom peaks in the electron-density map that were not modelled. Restraints (DFIX) were used on P–F and F…F distances and in the final cycle the PF_6 group was kept fixed. There was also evidence of disorder in one of the phenyl groups on P(4).

3. Results and discussion

3.1. $[Ln(Ph_2MePO)_3(NO_3)_3]$

The reaction of $Ln(NO_3)_3 \cdot 6H_2O$ with Ph_2MePO in a 1:2–1:4 molar ratio in hot acetone produced good

yields of $[Ln(Ph_2MePO)_3(NO_3)_3]$, which in contrast to $[Ln(Ph_3PO)_3(NO_3)_3]$ ·2Me₂CO are not solvated. The Xray structure of $[La(Ph_2MePO)_3(NO_3)_3]$ shows a ninecoordinate lanthanum centre coordinated to three phosphine oxides and three bidentate nitrate groups (below), and the very similar IR spectra indicate this

Fig. 1. Structure of $[La(Ph_2MePO)_3(NO_3)_3]$ showing the atom numbering scheme. H atoms have been omitted for clarity and thermal ellipsoids are drawn at the 50% probability level.

Table 2					
Selected bond	lengths (Å) and	angles (°)	for	[La(Ph2MePO)3(NO3)3]

Bond lengths			
La(1) - O(1)	2.418(2)	La(1)–O(8)	2.584(2)
La(1)–O(2)	2.407(2)	La(1)-O(9)	2.641(2)
La(1)–O(3)	2.436(2)	La(1)–O(11)	2.630(2)
La(1)–O(5)	2.634(2)	La(1)–O(12)	2.589(2)
La(1)–O(6)	2.629(2)		
P(1)–O(1)	1.507(2)	P(1)-C(1)	1.779(3)
P(2)–O(2)	1.503(2)	P(1)–C(2)	1.795(3)
P(3)-O(3)	1.505(2)	P(1)–C(8)	1.800(3)
P(2)-C(14)	1.785(3)	P(3)-C(27)	1.778(3)
P(2)-C(15)	1.794(3)	P(3)-C(28)	1.795(3)
P(2)-C(21)	1.798(3)	P(3)-C(34)	1.797(3)
N(1)-O(4)	1.223(3)	N(1)–O _c ^a	1.273(3),
			1.263(3)
N(2)–O(7)	1.227(3)	$N(2)-O_c$	1.279(3),
			1.256(3)
N(3)-O(10)	1.217(3)	$N(3)-O_c$	1.261(3),
			1.281(3)
Bond angles			
O(1)-La(1)-O(2)	82.03(7)	O(5)-La(1)-O(6)	48.50(6)
O(1)-La(1)-O(3)	85.60(7)	O(8)-La(1)-O(9)	48.84(6)
O(2)-La(1)-O(3)	88.84(7)	O(11)-La(1)-O(12)	48.96(6)
La(1)-O(1)-P(1)	144.8(1)	La(1)–O(2)–P(2)	165.1(1)
La(1)–O(3)–P(3)	147.0(1)		
O-P-C	110.0(1)-	C-P-C	106.3(1)-
	113.2(1)		108.9(1)

^a O_c are coordinated O atoms of the nitrate ligand.

structure is present in the other complexes. IR spectra were obtained in both Nujol mulls and in CsI discs, generally the CsI disc spectra were better resolved and the data quoted in the Section 2 refers to the latter.¹ Very strong features 1165-1140 cm⁻¹ are associated with v(PO) (compare 1172 cm⁻¹ in the 'free' ligand) and features at approximately 1475, 1325, 1030 and 815 cm^{-1} are attributable to the bidentate nitrate groups. The structure of [La(Ph₂MePO)₃(NO₃)₃] reveals a ninecoordinate La centre (Fig. 1, Table 2) with coordination from three phosphine oxide ligands and three symmetrically bonded bidentate nitrate groups. The three (P)O-La-O(P) angles (ca. 86°) shows that this complex may be described as *fac*-octahedral where the nitrate ligands have been replaced conceptually by monoatomic species. The nitrate groups are symmetrically bonded and show clearly the changes in geometry (bond lengths and angles) noted before [3]. The triphenylphosphine oxide analogue $[La(Ph_3PO)_3(NO_3)_3]$ has been reported [7] as the mer isomer but the La-O(P) (2.373-2.427) and La-O(N) (2.583-2.681 Å) are similar to the present compound.

As observed for Ph₃PO complexes [2], the solution behaviour varies along the Ln series, although that with Ph₂MePO differs in detail from that previously observed with Ph₃PO. The complexes [Ln'(Ph₂MePO)₃- $(NO_3)_3$ (Ln' = Pr, Nd, Sm, Eu, Gd and Tb) are nonconductors in 10^{-3} mol dm⁻¹ CH₂Cl₂² and the conductances do not increase upon addition of a fivefold molar excess of Ph₂MePO. The La and Ce complexes behave differently and are discussed in Section 3.2. The complexes $[Ln''(Ph_2MePO)_3(NO_3)_3]$ (Ln'' = Dy, Ho, Er,Tm, Yb or Lu) have small but significant conductances although mostly less than half those expected for 1:1 electrolytes, and these conductances increase upon addition of excess Ph₂MePO. We were unable to observe ³¹P NMR spectra for the Gd or Tb complexes no doubt due to extreme line broadening. Solutions of the complexes $[Ln''(Ph_2MePO)_3(NO_3)_3]$ (Ln'' = Ho, Er, Tm, Yb)or Lu) showed two ${}^{31}P{}^{1}H$ NMR resonances usually (Table 3) one significantly broader than the other. Addition of Ph₂MePO to these solutions produced (in addition to a free ligand resonance) a diminution in the broader resonance and an increased intensity in the sharper one. From our previous studies of $[Ln'(Ph_3PO)_3(NO_3)_3]$ [2], these data are readily interpreted as due to a mixture of [Ln'(Ph₂MePO)₃(NO₃)₃] (broader resonance) and $[Ln'(Ph_2MePO)_4(NO_3)_2]^+$

¹ In some cases KBr disc spectra showed weak features due to the presence of ionic nitrate ions, which appear to arise from reaction during the die pressing, particularly if the KBr is not thoroughly dry. These problems were not experienced using dry CsI.

 $^{^{2}}$ Although CH₂Cl₂ is not commonly used for conductivity measurements it was used here so that correlation could be made with the NMR data obtained from chlorocarbon solutions.

Table 3 ³¹P{¹H} NMR spectra ^a

Compound	δ (295 K)
[La(Ph ₂ MePO) ₃ (NO ₃) ₃]	39.2(25)
[Ce(Ph ₂ MePO) ₃ (NO ₃) ₃]	79(190) ^b
$[Pr(Ph_2MePO)_3(NO_3)_3]$	138(250) ^b
[Nd(Ph ₂ MePO) ₃ (NO ₃) ₃]	133(500) ^b
[Sm(Ph ₂ MePO) ₃ (NO ₃) ₃]	38.5(40)
$[Eu(Ph_2MePO)_3(NO_3)_3]$	-95(150)
$[Gd(Ph_2MePO)_3(NO_3)_3]$	not observed
[Tb(Ph ₂ MePO) ₃ (NO ₃) ₃]	not observed
[Dy(Ph ₂ MePO) ₃ (NO ₃) ₃]	-166(2000)
[Ho(Ph ₂ MePO) ₃ (NO ₃) ₃]	$-65(1200), -97(275)^{\circ}$
$[Er(Ph_2MePO)_3(NO_3)_3]$	-120(600) °, -165(1000)
[Tm(Ph ₂ MePO) ₃ (NO ₃) ₃]	-72(200) °, -135(1500)
[Yb(Ph ₂ MePO) ₃ (NO ₃) ₃]	14.5(220) °, -19.5(380)
$[Lu(Ph_2MePO)_3(NO_3)_3]$	42.1(30) °, 40.3(35)
[Ho(Ph ₂ MePO) ₄ (NO ₃) ₂]PF ₆	$-98(250), -145(quintet)^{d}$
[Er(Ph ₂ MePO) ₄ (NO ₃) ₂]PF ₆	$-120(500), -145(quintet)^{d}$
[Tm(Ph ₂ MePO) ₄ (NO ₃) ₂]PF ₆	$-72(200), -145(quintet)^{d}$
[Yb(Ph ₂ MePO) ₄ (NO ₃) ₂]PF ₆	14.5(190), -145 (quintet) ^d
[Lu(Ph ₂ MePO) ₄ (NO ₃) ₂]PF ₆	42.1(30), -145 (quintet) ^d

^a In CH₂Cl₂-10%CDCl₃; approximate line-widths at half-height in parentheses.

^b At 273 K.

- ^c Resonance assigned to [Ln(Ph₂MePO)₄(NO₃)₂]⁺ cation.
- ^d [PF₆]⁻ anion.

Fig. 2. Structure of the La residue in $[La(Ph_2MePO)_4(NO_3)_3]$ xMe₂CO showing the atom numbering scheme. Thermal ellipsoids are drawn at the 40% probability level. The molecule has crystallographic twofold symmetry.

(sharper resonance), which also correlates with the conductance data. Although $[Dy(Ph_2MePO)_3(NO_3)_3]$ shows a small conductance, only one very broad ³¹P{¹H} resonance was observed; if two species are present either the resonances are within the same broad envelope or one resonance is too broad to observe.

3.2. $[La(Ph_2MePO)_4(NO_3)_3]$

The ³¹P{¹H} NMR spectrum of [La(Ph₂MePO)₃- $(NO_3)_3$] in CH₂Cl₂ solution at ambient temperatures is a sharp line at δ 39.2 (Table 3), and on addition of Ph₂MePO (δ 29.0) an averaged signal is observed consistent with fast intramolecular exchange. Cooling the solution slows the exchange and at 195 K two resonances are present at δ 39.7 (tris) and 38.1 and the latter increases in relative intensity with more added Ph₂MePO. The second resonance is assigned to $[La(Ph_2MePO)_4(NO_3)_3]$ and notably the solution shows no significant increase in conductance at this stage. Many attempts to crystallise $[La(Ph_2MePO)_4(NO_3)_3]$ from these solutions resulted in isolation of only $[La(Ph_2MePO)_3(NO_3)_3]$. Serendipitously, from one such attempt using a very dilute acetone solution a very small number of crystals formed over about six weeks and one was submitted to X-ray crystallographic study. Although a poor quality crystal, the structure is clearly established as $[La(Ph_2MePO)_4(\eta^2-NO_3)_3]$ with ten-coordinate La (Fig. 2, Table 4). The structure is molecular and has crystallographic twofold symmetry with La(1), N(2) and O(6) positioned on the C_2 axis. Although the data are not of good quality, the La-O(P) distances (Table 4) are longer than in $[La(Ph_2MePO)_3(NO_3)_3]$ (Table 2). The corresponding triphenylphosphine oxide complex $[La(Ph_3PO)_4(NO_3)_3]$ is again molecular but has a nine-coordinate La due to the presence of one monodentate η^1 -NO₃ ligand [2]. A bulk (powdered) sample of $[La(Ph_2MePO)_4(\eta^2-NO_3)_3]$ was eventually obtained by rapidly evaporating to dryness a mixture of [La(Ph₂MePO)₃(NO₃)₃] and excess Ph₂MePO in CH₂Cl₂ (shown by low temperature ³¹P{¹H} NMR spectroscopy to be predominently the tetrakis complex), and removing the excess Ph₂MePO by prolonged extraction with diethyl ether. The IR spectrum has only small differences to that of $[La(Ph_2MePO)_3(\eta^2-NO_3)_3]$, whilst the ³¹P{¹H} NMR spectrum at 195 K shows, as expected, almost complete decomposition into the tris(complex) and Ph₂MePO. On further addition of Ph_2MePO to the ' $[La(Ph_2MePO)_4(NO_3)_3]$ ' in CH_2Cl_2 , the resonance at 39.7 diminishes further, a new resonance at 36.8 appears, and the solution now shows a significant conductance which we tentatively suggest is $[La(Ph_2MePO)_5(NO_3)_2]^+$. At very high due to $Ph_2MePO:La ratios (>15:1)$ the ${}^{31}P{}^{1}H{}$ NMR spectrum at 195 K contains the δ 36.8 resonance and free ligand as the major features, and has a molar conductance of approximately 20 Ω^{-1} mol⁻¹ cm² typical of a 1:1 electrolyte. However all attempts to isolate this complex as a solid have failed. A large excess (> 15:1)molar ratio) of Ph₂MePO added to [Ce(Ph₂MePO)₃-(NO₃)₃] solution also produces a significant conductance (limiting value ca. 10 Ω^{-1} cm² mol⁻¹). Studies of the cerium system are complicated by the effects of paramagnetism (f^1) where the ${}^{31}P{}^{1}H{}$ NMR resonance

is both contact shifted and broadened, and both effects vary markedly with temperature [8]. At 300 K fast exchange occurs with added Ph₂MePO, but on cooling to 220 K, the exchange is slow and the resonance of [Ce(Ph₂MePO)₃(NO₃)₃] is found at δ 115 ($W_{1/2} = 1500$ Hz). A large excess of added ligand produces a new sharper resonance δ 92 ($W_{1/2} = 800$ Hz) which we tentatively attribute to [Ce(Ph₂MePO)_x(NO₃)₂]⁺, although the reaction does not go to completion. Similar effects were not observed for Pr, Nd, Sm or Eu for which only a single broad (contact shifted) ³¹P resonance was observed, and this was unaffected by added ligand, exchange being slow even at near ambient temperatures.

3.3. $[Ln'(Ph_2MePO)_4(NO_3)_2]PF_6 (Ln' = Ho-Lu)$

The ${}^{31}P{}^{1}H$ NMR studies of $[Ln'(Ph_2MePO)_3-$

Table 4

Selected bond lengths (Å) and angles (°) for $[La(Ph_2MePO)_4-(NO_3)_3]\cdot xMe_2CO$ and $[Yb(Ph_2MePO)_4(NO_3)_2]PF_6$

[La(Ph ₂ MePO) ₄ (N	$VO_3)_3] \cdot x Me_2CC$)	
Bond lengths	5/54 2		
La(1) - O(1)	2.462(7)	La(1)–O(7)	2.650(7)
La(1) - O(2)	2.513(7)	P(1) - O(1)	1.480(8)
La(1)–O(4)	2.649(8)	P(2)–O(2)	1.502(7)
La(1)–O(5)	2.708(8)		
P–C	1.74(1)-	N–O	1.23(1)-
	1.89(1)		1.26(1)
Bond angles			
O(1)-La(1)-O(2)	74.9(2)	O(1)-La(1)-O(1') ^a	73.2(4)
O(1)-La(1)-O(4)	73.9(3)	O(2)-La(1)-O(4)	70.6(2)
O(4)-La(1)-O(5)	46.8(2)	O(7)–La(1)–O(7') ^a	47.9(3)
La(1)-O(1)-P(1)	154.9(5)	La(1)-O(2)-P(2)	149.3(4)
O–P–C	108.2(6)-	C-P-C	94.6(8)-
	114.4(6)		117.4(8)
[Yb(Ph2MePO)4(I	$NO_3)_2$]PF ₆		
Bond lengths	5,24 0		
Yb(1)-O(1)	2.221(4)	Yb(1)–O(6)	2.421(5)
Yb(1)-O(2)	2.186(5)	Yb(1)–O(7)	2.452(5)
Yb(1)–O(3)	2.193(4)	Yb(1)-O(9)	2.423(5)
Yb(1)–O(4)	2.222(4)	Yb(1)-O(10)	2.410(5)
P(n)-O(n)	1.490(5)-	P-C	1.792(7)-
	1.508(5)		1.809(9)
N–O _t ^b	1.221(8),	N–O _c ^b	1.256(8)-
	1.221(9)		1.280(7)
Bond angles			
O(1)-Yb(1)-O(2)	155.9(2)	O(2)-Yb(1)-O(3)	96.0(2)
O(1)-Yb(1)-O(3)	89.9(2)	O(2)-Yb(1)-O(4)	92.4(2)
O(1)-Yb(1)-O(4)	91.9(2)	O(3)-Yb(1)-O(4)	154.9(2)
O(6)-Yb(1)-O(7)	52.5(2)	O(9)-Yb(1)-O(10)	52.6(2)
Yb(1)-O(1)-P(1)	159.1(3)	Yb(1)-O(3)-P(3)	161.4(3)
Yb(1)–O(2)–P(2)	167.6(4)	Yb(1)-O(4)-P(4)	150.0(3)
O-P-C	108.6(3)-	C-P-C	106.3(3)-
	113.7(3)		111.0(3)
O(6)-N(1)-O(7)	116.5(5)	O(9)-N(2)-O(10)	115.9(6)

^a Symmetry operation: prime (') -x, y, 1/2-z.

 $^{\rm b}$ O_t and O_c are terminal and coordinated O atoms of the nitrate ligand, respectively.

 $(NO_3)_3$] described in Section 3.1 show two species in solution, the species producing the sharper resonance in each system is proposed as $[Ln'(Ph_2MePO)_4(NO_3)_2]^+$. However, in contrast to the Ln'(NO₃)₃-Ph₃PO systems, where the [Ln'(Ph₃PO)₄(NO₃)₂]NO₃ are readily isolated from ethanol solutions of 1:6 Ln'(NO₃)₃-Ph₃PO molar ratio [2], in the present case attempts to crystallise or precipitate solids from such solutions only produced $[Ln'(Ph_2MePO)_3(NO_3)_3]$, confirmed by a combination of IR spectroscopy and analysis. The [Y(Ph₂MePO)₄-(NO₃)₂]NO₃ (Y is of similar radius to the later lanthanides) behaves similarly [3]. Rather than attempt to find a solvent and Ln'-Ph2MePO ratio from which the tetrakis complexes could be isolated, we adopted an alternative approach. This involved the reaction of $Ln'(NO_3)_3$, NH_4PF_6 and Ph_2MePO in acetone in a 1:1:5 molar ratio, which deposited [Ln'(Ph₂MePO)₄(NO₃)₂]- PF_6 (Ln' = Ho-Lu) on concentration, and these were recrystallised without decomposition from CH₂Cl₂. The IR spectra of these complexes show single broad v(PO)approximately 1150 cm⁻¹ and strong PF₆⁻ vibrations at 840 and 560 cm⁻¹ [9]. The 10⁻³ mol dm⁻³ solutions in CH₂Cl₂ are 1:1 electrolytes and the ³¹P{¹H} NMR spectra show the characteristic septet of $[PF_{\delta}]^{-}$ at δ -145, and a second broader resonance attributable to $[Ln'(Ph_2MePO)_4(NO_3)_2]^+$ (Table 3). The crystal structure of [Yb(Ph₂MePO)₄(NO₃)₂]PF₆ showed an eight-coordinate Yb with approximately a planar YbO₄ group formed by the phosphine oxide ligands with bidentate nitrates above and below this plane (Fig. 3, Table 4). On our previous formalism this is a *trans*-octahedral geometry. The two nitrate groups are approximately perpendicular to each other.

Fig. 3. Structure of the cation in $[Yb(Ph_2MePO)_4(NO_3)_2]PF_6$ showing the atom numbering scheme. Thermal ellipsoids are drawn at the 40% probability level.

4. Conclusions

The results combined with our previous study of Ph₃PO complexes [2] show the subtle variations along the lanthanide series. Whilst nine-coordination is favoured early in the lanthanide series (as in $[Ln(R_3PO)_3 (NO_3)_3$ and nine or eight (as in $[Ln(R_3PO)_4(NO_3)_2]^+$) coordination later which correlates with the reducing Ln^{3+} radius along the series, the fine detail is less easily rationalised. For example the formation of eight-coordinate Ln as $[Ln(R_3PO)_4(\eta^2-NO_3)_2]^+$ rather than $[Ln(R_3PO)_2(\eta^2-NO_3)_3]$ shows a preference for R_3PO over NO₃ later in the series, whereas for La itself, the solid $[La(R_3PO)_4(NO_3)_3]$ lose one R_3PO in solution. Our assumption that Ph₂MePO should be a better donor than Ph₃PO (based upon the usual inductive effects between Me and Ph) may be supported by the somewhat shorter La-O(P) distances in the Ph₂MePO complexes compared with those of Ph₃PO. However the proposal that Ph₂MePO is sterically less demanding is uncertain in practice, since the Ln-O-P angles are highly variable ranging from approximately 145-170°. It should also be remembered that the solid and solution speciation may be different, several cases are described above where the major solution form is not the form which separates as a solid, obviously a consequence of solubility differences and fast equilibria interconverting the forms in solution.

5. Supplementary material

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC Nos. 158449, 158448, and 158450 for compounds ($[La(Ph_2MePO)_3(NO_3)_3]$), ($[La(Ph_2-MePO)_4(NO_3)_3]$ ·xMe₂CO), and (Yb), respectively. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www:http:// www.ccdc.cam.ac.uk).

Acknowledgements

We thank Professor M.B. Hursthouse for the X-ray data collection on the Nonius Kappa CCD diffractometer, and the EPSRC for support.

References

- T.S. Lobana, in: F.R. Hartley (Ed.), The Chemistry of Organophosphorus Compounds, vol. 2, Wiley, New York, 1992, p. 409.
- [2] W. Levason, E.H. Newman, M. Webster, Polyhedron 19 (2000) 2697.
- [3] L. Deakin, W. Levason, M.C. Popham, G. Reid, M. Webster, J. Chem. Soc., Dalton Trans. (2000) 2439.
- [4] R.H. Blessing, Acta Crystallogr., Sect. A 51 (1995) 33.
- [5] G.M. Sheldrick, SHELXS-86, Program for the Solution of Crystal Structures, University of Göttingen, 1985.
- [6] G.M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, 1997.
- [7] C. Huang, R. Xu, Y. Zhou, G. Xu, F. Guo, N. Zhu, Acta Phys.-Chim. Sin. 3 (1987) 491 (Chem. Abs. 108 (1988) 123246r).
- [8] G.N. LaMar, W.D. Horrocks Jr., R.H. Holm (Eds.), NMR of Paramagnetic Molecules, Academic Press, NY, 1973 (chaps 12 and 13).
- [9] G.M. Begun, A.C. Rutenberg, Inorg. Chem. 6 (1967) 2213.