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ABSTRACT: A PPh3-mediated multicomponent reaction 

between o-phthalaldehydes, nucleophiles, and monosubstituted 

allenes furnishes functionalized non–C2-symmetric naphthalenes 

in synthetically useful yields. When the o-phthalaldehydes were 

reacted with 1,3-disubstituted allenes in the presence of PPh2Et, 

naphthalene derivatives were also obtained, in up to quantitative 

yields. The mechanism of the latter transformation is 

straightforward: aldol addition followed by Wittig olefination and 

dehydration. The mechanism of the former is a tandem γ-

umpolung/aldol/Wittig/dehydration process, established through 

the preparation of putative reaction intermediates and mass 

spectrometric analysis. This transformation can be applied 

iteratively to prepare anthracenes and tetracenes when employing 

carboxylic acids as pronucleophiles. 

The reactivity of electron-deficient allenes under the conditions 

of phosphine catalysis has been investigated extensively.1 Many 

reports have appeared of the reactions of monosubstituted allenes 

with activated olefin2 and imine3 electrophiles to construct 

carbocyclic and azacyclic compounds. In contrast, few examples 

are known of the reactions between monosubstituted allenes and 

aldehyde electrophiles under the influence of phosphine 

catalysts.4 In general, the union of an allenoate and an aldehyde in 

the presence of a phosphine results in the formation of an olefin 

through a Wittig-like process.5 Interestingly, all such reports have 

described reactions between α- or γ-substituted allenoates and 

aldehydes. In contrast, Wittig reactions involving simple 

allenoates are rare. We are aware of only one example of the 

formation of a pyrrolizine, as a minor product (6%), through 

intramolecular Wittig olefination between ethyl allenoate (3a) and 

pyrrole-2-carboxaldehyde.6 Herein, we report Wittig olefination 

between monosubstituted allenes and o-phthalaldehydes to give 

highly functionalized naphthalenes and higher-order acenes. 

Functionalized naphthalenes are valuable building blocks for 

the synthesis of many important small molecules (e.g., 

pharmaceuticals, chiral reagents, liquid crystals, organic dyes).7 

Many recent syntheses of functionalized naphthalenes have 

employed costly transition metals or have required several steps to 

prepare the starting materials.8 Our phosphine-mediated 

multicomponent cascade reaction described herein—between o-

phthalaldehydes, nucleophiles, and monosubstituted allenes—is 

an efficient and mild method for synthesizing functionalized 

naphthalenes from readily available starting materials. 

We surveyed the reaction between ethyl allenoate (3a), o-

phthalaldehyde (1a), and p-toluenesulfonamide by varying the 

phosphine (stoichiometric), the solvent, the ratio between the 

reactants, the reaction temperature, and the concentration.9 The 

optimized reaction conditions featured PPh3 (1 equiv) as the 

mediator, an o-phthalaldehyde (1 equiv), a nucleophile (2 equiv), 

and ethyl allenoate (3 equiv) in CH3CN at 0 °C. 

Table 1. Arene homologation using ethyl allenoate 3a
a, b

 

 

aReaction performed by adding 3a (1.5 mmol) in CH3CN (8 mL) 

via syringe pump (rate: 2 mL/h) at 0 °C to a solution of an o-

phthalaldehyde (0.5 mmol), a nucleophile (1 mmol), and PPh3 

(0.5 mmol) in CH3CN (4 mL). bIsolated yields. cA sodium 

carboxylate (1 mmol) was added. 

Tables 1 and 2 reveal the scope of this three-component 

cascade reaction. As the nucleophilic component, 

benzenesulfonamides bearing electron-withdrawing or -donating 

substituents generated the naphthalene derivatives 4a–f in high 

yields. With acetic acid and benzoic acid as nucleophiles, the 

efficiencies of the reactions were poor, giving low yields of the 

naphthalene derivatives 4g and 4h, respectively. Adding an 

equimolar amount of sodium acetate or sodium benzoate as a 

buffer improved the yields of 4g and 4h dramatically.10 When 

using phenol and p-bromophenol as the nucleophiles, the 

naphthalene derivatives 4i and 4j, respectively, were formed 

quantitatively. Examining substituted phthalaldehydes, we found 

that 4,5-dichlorophthalaldehyde also participated in the reaction, 

furnishing the naphthalene derivatives 4k and 4l in good yields. 

Asymmetric 4-methylphthalaldehyde furnished the inseparable 

isomers 4m and 4m´ in 92% yield. When using 4-

nitrophthalaldehyde, we separated the two isomers 4n and 4n´ in 

50 and 46% yields, respectively.11 Lastly, the combination of 

benzene-1,2,4,5-tetracarbaldehyde and acetic acid resulted in the 

expected anthracenes 4o and 4o´ in a combined yield of 70%.12 
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Table 2. Arene homologation using phthalaldehyde 1a
a, b

 

        

aReaction performed by adding 3 (1.5 mmol) in CH3CN (8 mL) 

via syringe pump (rate: 2 mL/h) at 0 °C to a solution of 1a (0.5 

mmol), a nucleophile (1 mmol), and PPh3 (1 mmol) in CH3CN (4 

mL).  bIsolated yields. cNaOAc (1 mmol) was added. 

We further investigated the reaction scope by treating 1a with a 

suite of allenes and nucleophiles (Table 2). The reaction of p-

toluenesulfonamide and benzyl allenoate provided the 

naphthalene 4p quantitatively, while that of p-

nitrobenzenesulfonamide produced 4q in only 40% yield, 

presumably because of attenuated nucleophilicity. By adding 

NaOAc as a buffer, the yield of the naphthalene 4r improved from 

34 to 85%.10 The combinations of 2-(trimethylsilyl)ethyl buta-2,3-

dienoate/p-toluenesulfonamide and 2,6-dimethylphenyl buta-2,3-

dienoate/phenol produced the desired products 4s (87%) and 4t 

(73%), respectively. The reaction of penta-3,4-dien-2-one and 

phenol gave the naphthalene 4u in 98% yield. 

 

While phosphine-catalyzed γ-umpolung additions of 

nucleophiles to allenoates have been documented amply (eq 

1),10,13 reactions between monosubstituted allenes and aldehydes 

other than salicylaldehyde (derivatives) have been scarce.4a–e In 

those limited examples, the phosphonium dienolate A has added 

to the aldehyde at its γ-carbon (eq 2). Based on this prior 

knowledge, we postulated a credible process involving a sequence 

of γ-umpolung addition, aldol reaction, Wittig olefination, and 

dehydration (Scheme 1). Here, the ylide intermediate B from the 

initial γ-umpolung addition undergoes proton transfer to form the 

phosphonium enolate C, which adds to 1a to form the lactolate D. 

Upon proton transfer, the ylide E is formed and undergoes Wittig 

olefination. Subsequent dehydration provides the naphthalene 4i. 

Notably, only the γ-umpolung addition product was obtained 

when 1a was replaced with benzaldehyde, suggesting that the 

phthalaldehyde plays a crucial role in the progression of the 

cascade sequence by forming the lactol substructure. Indeed, 

when we attempted to prepare the adduct between 1a and 

allenoate, we isolated the corresponding lactol product (see 

compound 6 in eq 5). 

Scheme 1. γγγγ-Umpolung/aldol/Wittig/dehydration sequence 

 

Although γ-umpolung addition/aldol reaction/Wittig 

olefination/dehydration is the likely course of events for the 

phthalaldehyde-to-naphthalene conversion, we could not exclude 

the alternative sequence of aldol/γ-umpolung/Wittig/dehydration 

(Scheme 2). In this scenario, the phosphonium dienolate A adds to 

1a to form the phosphonium lactolate F. Deprotonation of phenol 

by lactolate provides the phenoxide nucleophile, γ-umpolung 

addition of which yields the lactol ylide E, ready for 

intramolecular Wittig olefination and eventual formation of the 

naphthalene 4i.  

Scheme 2. Aldol/γ-umpolung/Wittig/dehydration sequence   

 

To establish the greater likelihood between the two possible 

mechanisms, we prepared the phosphonium salt 5 (precursor to B) 

and the lactol 6 (precursor to F).9 Mixing 5 with NaH (1 equiv) 

and 1a (1 equiv) in toluene at room temperature for 4 h yielded 

the naphthalene 4i in 70% isolated yield (eq 3). Because the 

optimized conditions for the three-component reaction differed 

from those of the reaction described above, we also ran the 

coupling reaction between 1a, 1 equiv of phenol, 1 equiv of the 

allenoate, 1 equiv of PPh3, and 1 equiv of NaI as an additive (eq 

4). This reaction, in toluene at room temperature, went to 

completion within 6 h and produced the naphthalene 4i in 69% 

isolated yield. Alternatively, when we mixed the lactol allenoate 6 

with PPh3 (1 equiv) and phenol (1 equiv) in toluene at room 

temperature, we obtained the expected product 4i in 45% yield 

within only 30 min (eq 5). A control reaction between 1a, phenol 

(1 equiv), 3a (1 equiv), and PPh3 (1 equiv) in toluene at room 

temperature resulted in 4i in 70% isolated yield after 6 h (eq 6). 

Thus, the NaI additive in eq 4 had no effect on the coupling 

reaction. 
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Although inconclusive, the experiments in eqs 3–6 hinted at the 

following possibility. If the aldol reaction occurred before the 

umpolung reaction, the rate-limiting step for the scenario in 

Scheme 2 would be the addition of the phosphonium dienolate A 

to 1a because the conversion of the lactol 6 to the product took 

only 30 min. If the umpolung addition were the first event of the 

cascade reaction (i.e., Scheme 1), the conversion of the ylide B to 

the phosphonium enolate C or the addition of the enolate C to 1a 

would likely be the slowest step. Indeed, the pKa of the ylide B 

(21 in DMSO) is lower than that of the enolate C (30 in 

DMSO).14 Thus, despite unfavorable thermodynamics, the 

phosphonium dienolate A is likely to be funneled into the ylide B 

as a result of rapid protonation by acidic phenol and the 

subsequent γ-addition. 

Consequently, we envisioned a reaction between an allenoate 

and 1a in the absence of a pronucleophile. The presumed 

intermediate F´, we deduced, might form the ylide H, which 

should undergo facile intramolecular Wittig olefination and 

dehydration to form the naphthalene 7a (eq 7). Delightedly, the 

reaction between 1a, ethyl 2,3-pentadienoate (1 equiv), and PPh3 

(1 equiv) in toluene at room temperature for 50 min gave 7a in 75% 

isolated yield (eq 8). This outcome not only provides an 

alternative pathway for arene homologation but also discounts the 

aldol–before–γ-umpolung addition scenario. Considering that the 

γ-umpolung/Wittig/dehydration sequence of the lactol 6 took 30 

min and the aldol/Wittig/dehydration sequence of 1a and ethyl 

2,3-pentadienoate (through intermediate F´) took 50 min, the 

three-component arene homologation would have been complete 

within 1 h if the reaction had occurred through the aldol-first route. 

Therefore, the reaction likely proceeds through initial γ-umpolung 

addition, with the rate-limiting step being not the aldol addition of 

C to 1a but the conversion of the ylide B to the enolate C. 

 

Monitoring the reaction with high-resolution mass spectrometry 

(HRMS) confirmed our suspicions. After a reaction time of 3 min 

(8.3% 4i formation), the HRMS trace displayed A ([M + H]+, m/z 

375.1514) and B ([M + Na]+, m/z 491.1752), but no F ([M + H]+, 

m/z 509.1882).9 Although the reaction progressed steadily with 

the peak for B clearly present throughout, the peak corresponding 

to the phosphonium lactolate F was barely evident after 40 min 

(37.5% 4i formation) and was clearly visible only after 4 h (63.2% 

4i formation), suggesting that γ-addition–first is the dominant 

reaction pathway. 

Examination of a range of phosphines, solvents, and reaction 

temperatures revealed that addition of γ-substituted allenoates (2 

equiv) to a mixture of a phthalaldehyde and PPh2Et (1 equiv) in 

toluene at room temperature was optimal for arene homologation 

(Table 3). After stirring for 30 to 45 min, we obtained the desired 

arenes 7a–g in excellent yields. 4,5-Dichlorophthalaldehyde was 

converted quantitatively to the naphthalene 7b. When using 

naphthalene-2,3-dicarbaldehyde in this reaction, the anthracene 7c 

was obtained in 100% isolated yield. Ethyl hexa-2,3-dienoate and 

ethyl 4-cyclopentylbuta-2,3-dienoate were produced the 

naphthalenes 7d and 7e, respectively, as E-stereoisomers. tert-

Butyl penta-2,3-dienoate and benzyl penta-2,3-dienoate gave their 

expected products 7f (93%) and 7g (97%), respectively. 

 

Figure 1.  High-resolution mass spectra recorded during the 

reaction of eq 6 (m/z values for [M + H]+ or [M + Na]+ ions) 

Table 3. Two-component arene homologationa, b 

 

 
aReaction performed with a dialdehyde (0.4 mmol), an allenoate 

(0.8 mmol), and PPh2Et (0.4 mmol) in toluene (4 mL) at room 

temperature. bIsolated yields. 

The utility of the multicomponent reaction is further 

illustrated in the synthesis of the 2,3-disubstituted tetracene 11 

(Scheme 3). Reduction of the ester groups of the naphthalene 4g 

yielded a diol, which was oxidized to naphthalene-2,3-

dicarbaldehyde (8) with high efficiency. Repetition of the 

annulation, reduction, and oxidation sequence provided 

anthracene-2,3-dicarbaldehyde (10), which underwent another 

annulation to provide the tetracene 11. A variety of 2,3-substituted 

tetracenes should be readily obtainable from 11 through 

functional group manipulation, with potential applications in solar 

cells and light-emitting materials.15 
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Scheme 3. Iterative synthesis of anthracene and tetracene 

 

 

Figure 2. Excitation (solid lines) and emission (dashed lines) 

spectra of 4g (blue lines), 9 (green lines), and 11 (red lines). 

We obtained fluorescence excitation and emission spectra for 

compounds 4g, 9, and 11 (Figure 2). Stronger transitions appeared 

in the range 250–300 nm, with weaker transitions in the range 

300–500 nm. A bathochromic shift occurred upon proceeding 

from 4g (326 nm) to 9 (358 nm) to 11 (450 nm). A bathochromic 

shift also occurred in the fluorescence emissions from 4g to 9 to 

11, with 0–0 transitions at 342, 406, and 495 nm, respectively. 

The quantum yields for the substituted polyacenes 4g, 9, and 11 

were 0.18, 0.65, and 0.15, respectively. These observations match 

well with reported photophysical data of 2-carbonylpolyacenes.16 

In conclusion, we have developed a phosphine-mediated 

multicomponent reaction between allenes, o-phthalaldehydes, and 

nucleophiles that provides non–C2-symmetric naphthalene, 

anthracene, and tetracene derivatives. A mechanistic investigation 

involving the synthesis of putative intermediates and reaction 

monitoring through HRMS revealed that this conversion occurs 

through a γ-umpolung/aldol/Wittig/dehydration cascade. A 

combination of phthalaldehydes and 1,3-disubstituted allenes also 

produces naphthalenes through an aldol/Wittig/dehydration 

sequence. This arene homologation can also be applied iteratively 

to prepare higher-order acenes. 
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