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A series of sterically hindered o-(branched alkoxy)-tert-butoxybenzenes was efficiently prepared in good
yields owing to a new practical and simple preparation of o-tert-butoxyphenol starting from catechol and
isobutene. Use of DMF di-tert-butyl acetal reagent instead of isobutene/H2SO4 (cat.) for O-tert-butylation
was very convenient in case of ortho bulky phenols affording the corresponding tert-butyl ethers in high
yield and purity. This general route proved to be useful since no reliable access was available to o-di-t-
BuO-substituted arenes. Application to the synthesis of congested phosphorus-based compounds is
presented.

� 2012 Elsevier Ltd. All rights reserved.
Despite the availability of a variety of simple-to-perform syn-
thetic routes toward tert-butoxyarenes,1–3 still access to ortho con-
gested ones represents a particular challenge in organic
chemistry.4 Among the devised strategies to the former class of
compounds, the acid-catalyzed addition of phenols to isobutene
is the most economical and practical.2 By contrast, a comprehen-
sive literature survey revealed only a very limited number of
poorly characterized o-di-t-BuO-substituted arenes; as for
example, the fully peralkoxylated hexa-tert-butoxybenzene and a
densely substituted 2,3-di-tert-butoxynaphthalene which were
prepared though via aromatic cyclization reactions.5

Pursuing our study of bulky P-based compounds,6 we aimed to
increase the vicinal steric crowding of the appended P-o-RO-Ph
groups wherein R represents a branched alkyl. Therefore, it was
of special interest to prepare a series of o-(branched alkoxy)-tert-
butoxybenzenes.7

To the best of our knowledge, the preparation of o-di-tert-but-
oxybenzene and its further use in phosphines’ synthesis has been
only reported by Horner and Simons in 1983.8 They have also de-
scribed therein the para isomer claiming their both preparations
via the H2SO4-catalyzed addition of the corresponding diphenol
to isobutene at 70 �C. However, our repetitive attempts to prepare
the requisite o-di-tert-butoxybenzene according to their published
procedure were consistently unsuccessful as a variety of ring tert-
butylated catechols (variable yields) was being formed instead in
ll rights reserved.

enix SARL, 115, rue de l’Abbé
250; fax: +386 1 4760300.
. Stephan), barbara.mohar@

et al. Tetrahedron Lett. (2012
our hands (Scheme 1, Route A). A closer look at their published data
revealed that the corresponding 1H NMR9 does not match with the
expected compound profile compared to a well-known series of o-
dialkoxybenzenes.7,10 Facing this discrepancy,11 we ventured to
synthesize the symmetric o-di-tert-butoxybenzene and its closely
related o-(branched alkoxy)-tert-butoxybenzenes which results
are presented herein.

We initiated our investigation by studying the reaction of cate-
chol with isobutene under milder conditions (rt to 35 �C) employ-
ing a catalytic amount of H2SO4 in an aprotic solvent (PE 100–120,
heptane, or CH2Cl2) (Scheme 1, Route B). Such conditions were
Scheme 1. O-tert-Butylation of catechol under various conditions.
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Scheme 3. Oxidation of o-tert-butoxyphenyllithium.

Scheme 4. O-tert-Butylation of selected dihydroxyarenes using isobutene/H2SO4

(cat.) in CH2Cl2 at 35–40 �C and low-temperature acid neutralization with Et3N
(after 0.5–7 days).
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already recommended by Stevens back in 1955 for the preparation
of mono tert-butoxyarenes.12

While the rt reaction in CH2Cl2 of PhOH with excess isobutene
in the presence of a trace of H2SO4 (performed in a glass pres-
sure-bottle) led in our hands to the major formation of 4-tert-bu-
tyl- and 2,4-di-tert-butylphenol mixture wherein Friedel–Crafts
C-alkylation had taken place,12 interestingly enough starting from
catechol (reaction in CH2Cl2 at 35 �C) and neutralizing H2SO4 with
Et3N after 3 h, furnished o-tert-butoxyphenol (1) in 92% (86% iso-
lated yield) accompanied by 8% of the targeted O,O0-di-tert-butyl-
ated product 2 (by 1H NMR analysis). In the literature, 1 has
been prepared in 23–33% overall yield via a protection–etherifica-
tion–deprotection sequence from catechol.13 We have noticed that
a reaction equilibrium exists during O-tert-butylation of 1 (protec-
tion of catechol remaining free OH group) as prolonging reaction
time did not lead to a significant yield increase of O,O0-di-tert-
butylcatechol (2), but to isobutene polymerization. Advanta-
geously, neutralizing H2SO4 prior to reaction workup proved to
prevent C-tert-butylation as well as de-O-tert-butylation. Our
study showed that 1 rearranges readily into isomeric 4-tert-butyl-
and 3-tert-butylcatechols (4-TBC/3-TBC 9:1 ratio) in heptane at rt
in the presence of a trace of H2SO4. Also, employing CH2Cl2 instead
of heptane or petroleum ethers was beneficial for reaction rate due
to a better catechol solubilization. Further on, instead of the acid-
catalyzed O-tert-butylation of phenols using isobutene, the non-
acidic working conditions (toluene at 80–110 �C) provided by the
commercially available DMF di-tert-butyl acetal reagent14

(�8 equiv) permitted finally the formation of o-di-tert-butoxyben-
zene (2) from 1 in 72% isolated yield. Thus, following the above
optimized protocols, o-tert-butoxyphenol (1) and o-di-tert-butoxy-
benzene (2) were efficiently prepared from catechol on multigram-
scale (up to 20 g).

In parallel, alternative strategies to o-di-tert-butoxybenzene (2)
from catechol were explored but to no avail. Applying Bandgar’s
conditions (Zn in t-BuCl, rt)2f or Bartoli’s conditions (5 mol%
Sc(OTf)3 in excess Boc2O, rt)2g,2h resulted in the exclusive forma-
tion of 3,5-di-tert-butylcatechol (3,5-DTBC) in quantitative isolated
yield within 1 day for the former and in �20% isolated yield (30%
total conversion) after 2 days for the latter (Scheme 2).

Another potential stepwise route to o-di-tert-butoxybenzene
(2) was attempted inspired from the preparation of tert-butoxy-
benzene via PhMgBr addition to PhCO2Ot-Bu.3a Surprisingly, the
ortho-metallated tert-butoxybenzene (metal = Li or MgBr) reacted
with PhCO2Ot-Bu to yield 2-tert-butoxy-benzophenone (4) in 52%
isolated yield with concomitant formation of o-tert-butoxyphenol
(1) and PhCO2t-Bu (Scheme 3). Nevertheless, o-tert-butoxyphenol
could be prepared in 65% yield via o-tert-butoxyphenyllithium
addition to B(OMe)3 followed by oxidation.

Next, we were interested to extend this study to other phenols.
Thus, the mild O-tert-butylation conditions employing isobutene/
H2SO4 (cat.) in CH2Cl2 at <40 �C (with low-temperature H2SO4

neutralization using Et3N) were applied to o-tert-butylphenol,
3,5-di-tert-butylcatechol, 3-bromocatechol, 4,5-dibromocatechol,
2,3-dihydroxynaphthalene, 4,6-di-tert-butylresorcinol, and pyro-
gallol (Scheme 4). However, a complex mixture was obtained in
the case of o-tert-butylphenol and pyrogallol.
Scheme 2. Attempts to O-tert-butylate catechol under selected literature condi-
tions applied toward tert-butoxybenzene.
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Similarly as noted in the case of catechol, an equilibrium was
observed in the H2SO4-catalyzed addition of the examined series
to isobutene, especially during the second O-tert-butylation; pro-
longing reaction time did not favor a significant yield increase of
the O,O0-di-tert-butylated product. Fortunately, the latter could
be obtained in good yield reverting to the DMF di-tert-butyl acetal
reagent. Steric hindrance and electron-poor catechols had detri-
mental effect on O-tert-butylation using isobutene/H2SO4 in gen-
eral, and on O,O0-di-tert-butylation in particular. For example, 3 h,
3 days and 12 h were necessary for a reasonable conversion to
mostly mono O-tert-butylated products of catechol, 3-bromocate-
chol, and 4,5-dibromocatechol, respectively.

In particular, O-tert-butylation of 3-bromocatechol led to a mixture
of 2-bromo-6-tert-butoxyphenol (5), 3-bromo-2-tert-butoxyphenol
), http://dx.doi.org/10.1016/j.tetlet.2012.10.010
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Scheme 7. Preparation of congested P-based compounds calling upon ortho-(a-
branched alkoxy)-tert-butoxybenzenes.

Figure 1. ORTEP drawing of 22 at the 50% probability level.
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(6), and 2,3-di-tert-butoxy-bromobenzene (7) in 72:22:6 ratio, accom-
panied with an unreacted starting material. Noteworthy, forcing
O-tert-butylation under the same conditions of 2-bromo-6-tert-but-
oxyphenol (5) (prepared via another route, vide infra) resulted in no
conversion to the desired diether. Hence, it can be concluded that
O,O0-di-tert-butylated product 7 is derived from 6.

2,3-Dihydroxynaphthalene yielded after 7 days a mixture of
3-tert-butoxy-2-hydroxynaphthalene (10), 2,3-di-tert-butoxy-
naphthalene (11), and 3-tert-butoxy-1-tert-butylnaphthalen-2-
one (12)15 in 70:15:15 ratio. As H2SO4-catalyzed rearrangement
of 10 gave 6-tert-butyl-2,3-dihydroxynaphthalene (13), the forma-
tion of 12 could stem either from a possible C-tert-butylation of a
ketonic form of 2,3-dihydroxynaphthalene or a direct aromatic C-
tert-butylation followed by enol-keto tautomerization to accom-
modate the bulky tert-butyl group.

Pursuing the functionalization of o-tert-butoxyphenol (1), its
Williamson’s etherification in acetone using the reactive 3-bromo-
cyclohexene or i-PrI and K2CO3, furnished after 2–3 days the tar-
geted dissymmetric diethers in 85% and <5% yields, respectively
(Scheme 5). Using NaH in excess with i-PrI as the solvent and per-
forming the reaction in a glass pressure-tube at 75 �C for 2–3 days
afforded the o-tert-butoxy-iso-propoxybenzene (16) in up to 91%
yield. Further on, PtO2-catalyzed hydrogenation of o-tert-butoxy-
(2-cyclohexenyloxy)benzene (17) afforded o-tert-butoxy-cyclo-
hexyloxybenzene (18) in 78% isolated yield.

The high yield generation of ortho-lithiated 1,2-dialkoxyarene
species used in phosphines’ synthesis, can be conveniently facili-
tated under mild conditions via bromine–lithium exchange. More-
over, regioselective arene bromination is crucial when utilizing
unsymmetrical 1,2-dialkoxyarenes with two non-equivalent and
competing free ortho-positions. Thus, the contiguous bromine
atom-incorporated 2,3-di-tert-butoxybenzene 7 and analogue 20
(Scheme 6) were prepared in good yields by O-tert-butylation
using excess DMF di-tert-butyl acetal of the o-bromo-hydroxya-
renes derived in turn from ortho-regioselective ring bromination
(t-BuNH2/Br2)16 of o-(branched alkoxy)phenols. Unfortunately,
2-bromo-6-neopentoxyphenol (19) resisted O-tert-butylation un-
der these standard conditions. Noteworthy, O-tert-butylation with
DMF di-tert-butyl acetal of 1 or 5 proceeded with comparable reac-
tion rates.

Finally, incorporation of the bulky 3-(a-branched alkoxy)-2-
tert-butoxyphenyls onto P-based compounds was undertaken
(Scheme 7). Starting from the corresponding 3-(a-branched alk-
oxy)-2-tert-butoxy-bromobenzenes 7 and 20, (3-RO-2-tert-butoxy-
phenyl)diphenylphosphines 22 (R = t-Bu) and 23 (R = i-Pr) were
Scheme 6. Synthesis of 3-(branched alkoxy)-2-tert-butoxy-bromobenzenes.

Scheme 5. Williamson’s etherification of o-tert-butoxyphenol (1).
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obtained in 93–96% yields. In another synthetic variant for 22
(29% overall yield), the diphenylphosphino group was first intro-
duced starting from 5 followed by O-tert-butylation with DMF
di-tert-butyl acetal. 1H NMR of the P-(2,3-di-tert-butoxyphenyl)-
substituted phosphine 22 is in utter disagreement with the
corresponding one reported by Horner and Simons8 bringing an
additional proof against their misleading claim concerning prepa-
ration of both o-di-tert-butoxybenzene (2) and its P-derivative.
Our characterization of 22 is backed up by its X-ray crystal struc-
ture determination (Fig. 1).17 Progressing toward bulky P-stereo-
genic P-based compounds, we have prepared the stereomerically
pure P-(2,3-di-tert-butoxyphenyl)-appended aminophosphine-
P-borane 24 by ring-opening of enantiopure (–)-oxazaPB with
preformed 2,3-di-tert-butoxyphenyllithium.18,19 Such intermedi-
ate (24) serves as key-precursor in the Jugé–Stephan asymmetric
route to P-stereogenic phosphines.20 Preparation of derived bulky
phosphines and their application in asymmetric catalysis will be
presented elsewhere.

In summary, taking advantage of a new simple and straightfor-
ward preparation of o-tert-butoxyphenol, we have succeeded to
prepare in high yields the elusive o-di-tert-butoxybenzene along
with a series of congested o-RO-tert-butoxybenzenes wherein
R = i-Pr, 2-cyclohexenyl, and Cy. In addition, the DMF di-tert-butyl
acetal reagent proved to be quite effective for O-tert-butylation of a
variety of congested phenols. Thus, starting from catechols, isobu-
tene/H2SO4 (cat.) system can be applied for the preparation of
o-tert-butoxyphenols (major mono O-tert-butylation), while when
), http://dx.doi.org/10.1016/j.tetlet.2012.10.010
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targeting o-di-tert-butoxyarenes, DMF di-tert-butyl acetal reagent
can be practical starting from o-tert-butoxyphenols. Moreover,
successful use of the bulky ortho-(a-branched alkoxy)-tert-butoxy-
benzenes for the preparation of achiral and chiral P-based com-
pounds was accomplished.
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