Synthesen und Kristallstrukturen von Tris(di-*n*-propylamino)-*p*-brombenzylphosphonium-bromiden: [(C₃H₇)₂N]₃PCH₂C₆H₄Br⁺Br⁻ und [(C₃H₇)₂N]₃PCH₂C₆H₄Br⁺Br₃⁻

Syntheses and Crystal Structures of Tris(di-*n*-propylamino)-*p*-bromobenzyl-phosphonium Bromides: $[(C_3H_7)_2N]_3PCH_2C_6H_4Br^+Br^-$ and $[(C_3H_7)_2N]_3PCH_2C_6H_4Br^+Br_3^-$

J. Nolte, P. Neubauer, H.Vogt*, M. Meisel

Fachinstitut für Anorganische und Allgemeine Chemie, Institut für Chemie der Humboldt-Universität zu Berlin, Hessische Str. 1/2, D-10115 Berlin

Z. Naturforsch. 54 b, 113-116 (1999); eingegangen am 17. August 1998

Tris(di-*n*-propylamino)-*p*-bromobenzylphosphonium Bromides, Synthesis, Crystal Structure, Tris(di-*n*-propylamino)phosphine

Tris(di-*n*-propylamino)-*p*-bromobenzylphosphonium bromide $[(C_3H_7)_2N]_3PCH_2C_6H_4Br^+$ -Br⁻ (1) has been prepared by the reaction of tris(di-*n*-propylamino)phosphine with *p*-bromobenzylbromide in methylene chloride. The colorless crystals are monoclinic, space group P2₁, Z = 2, a = 930.2(3), b = 1501.2(3), c = 1093.5(2) pm, $\beta = 105.97(4)^{\circ}$. The lattice contains Br⁻ anions and $[(C_3H_7)_2N]_3PCH_2C_6H_4Br^+$ cations. $[(C_3H_7)_2N]_3PCH_2C_6H_4Br^+Br_3^-$ (2) has been obtained by treating 1 with equimolar quantities of elemental bromine in methylene chloride solution. The yellow-red crystals of 2 are triclinic, space group P1, Z = 2, a = 1069.5(3), b = 1267.7(7), c = 1273.7(3) pm, $\alpha = 87.27(3)$, $\beta = 82.67$, $\gamma = 67.15^{\circ}$, and consist of $[(C_3H_7)_2N]_3PCH_2C_6H_4Br^+$ cations and linear Br₃⁻ anions. The three N atoms in the cations of 2 are planar.

Einleitung

Experimenteller Teil

Im Zusammenhang mit unseren Untersuchungen der Kristallstrukturen von Phosphonium-halogeniden [1 - 6] interessieren wir uns insbesondere für die van der Waals-Wechselwirkungen zwischen den Halogenid-Anionen und den Phosphonium-Kationen. Mit der Aufklärung der Kristallstrukturen zweier Tris(dialkylamino)phosphonium-salze können folgende Fragen beantwortet werden: Sind im Kristall außer der Coulomb-Wechselwirkung auch van der Waals-Wechselwirkungen zwischen dem kationisch und anionisch gebundenen Brom zu beobachten und ist die P-N-Bindung durch die mesomere Grenzformel (I) oder (II) zu beschreiben?

N(C ₃ H ₇) ₂		N(C ₃ H ₇) ₂		
$(C_{3}H_{7})_{2}N - P^{+}-CH_{2}-C_{6}H_{4}Br$ $N(C_{3}H_{7})_{2}$	$\leftrightarrow \rightarrow$	$(C_{3}H_{7})_{2}N^{+}=P-CH_{2}-C_{6}H_{4}B_{1}$ $(C_{3}H_{7})_{2}$ $N(C_{3}H_{7})_{2}$		
(I)		(II)		

* Sonderdruckanforderungen an Dr. H. Vogt.

Darstellung des Tris(di-n-propylamino)phosphins

In Analogie zu [7] wurden unter einem schwachen N₂-Strom 0,2 mol PCl₃ in 100 ml sorgfältig getrocknetem Hexan unter Rühren und Kühlen (0 °C) zu 1,2 mol Di*n*-propylamin in 250 ml Hexan innerhalb 1 h zugetropft und anschließend innerhalb von 2 h unter Rühren auf R. T. erwärmt. Das ausgefallene Di-*n*-propylamino-hydrochlorid wurde abfiltriert und mehrfach mit Hexan unter Inertbedingungen gewaschen. Nach der Vereinigung von Filtrat und Waschlösung und dem Abziehen des Hexans erfolgte eine Vakuumdestillation über eine Dornkolonne. Tris(di-n-propylamino)phosphin fiel als farblose viskose Flüssigkeit an (Ausbeute: 60 %). Sdp.: 130 °C/1 Torr; ³¹P-NMR: δ = 121,4 (Hexan).

Darstellung des Tris(di-n-propylamino)-p-brombenzylphosphonium-bromids (1)

In Analogie zu [5] wurden zu einer Lösung von 15 mmol (3,75 g) p-Brombenzylbromid in 25 ml Methylenchlorid 15 mmol (5,0 g) Tris(di-n-propylamino)phosphin, in 25 ml Methylenchlorid gelöst, bei -30 °C unter Rühren zugetropft. Die Reaktionslösung wurde dann innerhalb von 2 h auf R. T. erwärmt und anschließend

0932–0776/99/0100–0113 \$ 06.00 (c) 1999 Verlag der Zeitschrift für Naturforschung, Tübingen · www.znaturforsch.com

K

7 h unter Rückfluß gekocht. Nach dem Einengen der Reaktionslösung auf die Hälfte ihres Volumens und der Zugabe von 30 ml getrocknetem Diethylether fiel **1** in Form farbloser Kristalle an. Das ausgefallene Rohprodukt wurde abfiltriert, mit Ether gewaschen und anschließend aus Methylenchlorid umkristallisiert (Ausbeute: 72 %). Schmp. 220 - 221 °C; ³¹P-NMR: δ = 56,26 (CH₂Cl₂).

Elementaranalyse	$: C_{25}H_{48}N_3PBr_2$
------------------	--------------------------

Ber.	C 51,64	H 8,32	N 7,23	Br 27,48	P 5,33 %,
Gef.	C 52,18	H 7,99	N 7,28	Br 27,87	P 5,50 %.

Darstellung des Tris(di-n-propylamino)-p-brombenzylphosphonium-tribromids (2)

Zu 3,84 mmol (2,23 g) **1**, gelöst in 10 ml Methylenchlorid, wurden 3,84 mmol (0,61 g) Brom in 10 ml Methylenchlorid unter Rühren bei 0 °C langsam zugetropft. Nach Erwärmen auf R. T. und Abziehen des Lösungsmittels im Vakuum konnte **2** als gelbroter Feststoff erhalten werden. Für die Kristallstrukturanalyse geeignete Kristalle waren nach vier Wochen aus der mit Diethylether überschichteten Methylenchlorid-Lösung bei 4 °C erhältlich (Ausbeute: 82 %). Schmp. 118 - 120 °C; ³¹P-NMR δ = 54,9 (CH₂Cl₂).

Elementaranalyse: C₂₅H₄₈N₃PBr₄

Ber. C 40,51 H 6,53 N 5,67 Br 43,12 P 4,18 %, Gef. C 40,57 H 6,25 N 5,69 Br 42,97 P 4,16 %.

Experimentelles zur Röntgenkristallstrukturanalyse der Verbindungen 1 und 2

Für die Strukturbestimmung wurden möglichst isometrisch gespaltene Kristallstücke von **1** und **2** mittels Silikonfett auf einen Glasfaden montiert und in den N₂-Kaltgasstrom (Cryostream Cooler, Oxford Cryosystems) des Diffraktometers (Stoe Stadi 4) gebracht. Die Datensammlung erfolgte unter Verwendung von monochromatischer MoK_{α}-Strahlung (50 kV, 30 mA, 71,073 pm), die zuvor einen Graphit-Monochromator durchlief. Absorptionskorrekturen wurden nach der Psi-scan-Methode [8] vorgenommen.

Die Metrik der Zellen wurde aus je 16 Reflexen ermittelt und mit 60 (1) bzw. 58 (2) Reflexen aus dem Meßbereich $12,0 < \Theta < 14,5$ (1) bzw $15,0 < \Theta < 17,0$ (2) verfeinert. Die Lagen der schweren Atome (Br, P) resultierten aus der Strukturlösung mit Direkten Methoden (SHELXS-86, G. M. Sheldrick, 1990). Sukzessive Differenz-Fourier-Synthesen (SHELXL-93, G. M. Sheldrick, 1993) lieferten die Positionen der leichteren C-Atome. Um während der least squares Verfeinerung von 1 Konvergenz zu erzielen, mußten die Splitlagen der Atome C(11), C(12), C(34) und C(35) fixiert werden. Die H-Atome wurden geometrisch an die entsprechenden

Tab. I. Daten zur Kristallstrukturbestimmung von 1 und 2.

Verbindung	1	2
Formel	C ₂₅ H ₄₈ N ₃ PBr ₂	C ₂₅ H ₄₈ N ₃ PBr ₄
Mr	581,45	741,27
Kristallhabitus	farbloser Block	gelbroter Block
Kristallgröße (mm)	$0,64 \times 0,48 \times 0,24$	$0,80 \times 0,61 \times 0,40$
Raumgruppe	P2 ₁	ΡĪ
Temperatur (K)	180(2)	180(2)
Gitterkonstanten:		
a (pm)	930,2(3)	1069,5(3)
b (pm)	1501,2(3)	1267,7(7)
<i>c</i> (pm)	1093,5(2)	1273,7(3)
α (°)	90	87,27(3)
eta (°)	105,97(4)	82,67(2)
γ (°)	90	67,15(2)
$V(nm^3)$	21,4680(6)	15,784(9)
Z	2	2
$D_x (Mg m^{-3})$	1,315	1,560
F(000)	608	748
$\mu \ (\mathrm{mm}^{-1})$	2,832	5.168
Zahl der Reflexe:		
gemessen	5571	5824
unabhängig	5359	5710
verwendet	5351	5710
R_{int}	0,0241	0,0980
Zahl der Parameter	252	298
S	1,083	1,041
Max. Δ/σ	< 0,001	< 0,001
R [F > 4(F)]	0,0606	0,0438
wR (F ₂ , alle Reflexe)	0,1669	0,11702
$\Delta \rho_{\rm max/min}$ (e nm ⁻³)	1399/-859	996/-778
Flack Parameter [11]	0,00(2)	

C-Atome angefügt und die C-H-Abstände parallel zur Bindungsachse mitverfeinert.

Tab. I enthält weitere Angaben zur Strukturbestimmung. Ausgewählte Bindungslängen und -winkel sind in der Tab. II zusammengestellt. Die vollständigen Kristallstrukturdaten können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummern CSD 410029 und CSD 410030 angefordert werden.

Diskussion

Tris(di-*n*-propylamino)-*p*-brombenzylphosphonium-bromid ist entsprechend Gl. (1) in hohen Ausbeuten erhältlich.

$$[(C_{3}H_{7})_{2}N]_{3}P + BrCH_{2}C_{6}H_{4}Br \rightarrow [(C_{3}H_{7})_{2}N]_{3}PCH_{2}C_{6}H_{4}Br^{+}Br^{-} (1)$$

$$[(C_{3}H_{7})_{2}N]_{3}PCH_{2}C_{6}H_{4}Br^{+}Br^{-} + Br_{2} \rightarrow [(C_{3}H_{7})_{2}N]_{3}PCH_{2}C_{6}H_{4}Br^{+}Br_{3}^{-} (2)$$

	1	2
C(1)-C(2)	152,5(10)	151,7(7)
P(1)-N(1)	163,1(6)	162,7(4)
P(1)-N(2)	163,0(6)	163,7(4)
P(1)-N(3)	161,4(3)	164, 2(5)
P(1)-C(1)	180,4(7)	181,2(5)
N(1)-C(11)	151,3(6)	147,8(6)
N(1)-C(14)	149,7(10)	149,9(6)
N(2)-C(21)	148,8(10)	148,0(6)
N(2)-C(24)	148,84(9)	148,6(6)
N(3)-C(31)	140.6(12)	148,0(7)
N(3)-C(34)	164,1(9)	145,7(8)
C(5)-Br(1)	192,2(7)	189,7(6)
Br(2)- $Br(3)$		252,53(15)
Br(3)- $Br(4)$		255,43(15)
N(1)-P(1)-N(2)	107,1(3)	109,0(2)
N(1)-P(1)-N(3)	111,4(4)	115,3(2)
N(2)-P(1)-N(3)	111,6(4)	105,8(2)
N(1)-P(1)-C(1)	110,9(3)	105,0(2)
N(2)-P(1)-C(1)	105,3(3)	113,2(2)
N(3)-P(1)-C(1)	110,3(2)	108,8(2)
C(11S)-N(1)-C(14)	115,6(6)	
C(11S)-N(1)-P(1)	124,6(5)	
C(11)-N(1)-P(1))	119,1(5)	126,8(3)
C(11)-N(1)-C(14)	120,7(6)	114,5(4)
C(14)-N(1)-P(1)	117,9(5)	118,7(3)
C(21)-N(2)-C(24)	114,34(6)	114,9(4)
C(21)-N(2)-P(1)	122,8(5)	122,9(3)
C(24)-N(2)-P(1)	118,5(5)	120,3(3)
C(31)-N(3)-C(34S)	105,4(6)	
C(34S)-N(3)-P(1)	124,4(5)	
C(31)-N(3)-P(1))	127,0(6)	121,4(4)
C(31)-N(3)-C(34)	112,2(6)	115,2(5)
C(34)-N(3)-P(1)	120, 3(4)	119,2(4)
Br(2)-Br(3)-Br(4)		177,19(3)

Tab.	II.	Ausgewählte	Bindungslängen	[pm]	und	-win-
kel [°] ir	1 und 2.	0 0	-		

Abb. 1. Molekülstruktur von 1.

Abb. 2. Molekülstruktur von 2.

Kursiv: Bindungsabstände und -winkel sind wegen Splitlagen nicht zu diskutieren.

Die weitere Umsetzung von 1 mit Brom entsprechend Gl.(2) führt unabhängig vom Molverhältnis Phosphoniumsalz zu Brom (1:0,5; 1:1) zum Tris(di-*n*-propylamino)benzylphosphoniumtribromid. Beide Verbindungen kristallisieren ohne Solvens (Abb. 1 u. 2) und sind luftstabil. Das bei einem Molverhältnis von Phosphoniumsalz zu Brom von 1:0,5 erwartete Doppelsalz mit Br⁻ - und Br₃⁻-Anionen im Festkörper kristallisierte nicht aus.

Die P-Atome in 1 und 2 sind nahezu tetraedrisch umgeben (Tab. II). Die P-C-Bindungen liegen im Erwartungsbereich für Einfachbindungen. Die P-N-Bindungen sind mit Abständen von 161,4(6) bis 164,2(5) pm (Tab. II) deutlich kürzer als die durchschnittliche Länge von P-N-Einfachbindungen (170 pm) [9]. Die Winkelsummen an den N-Atomen liegen im Bereich von 355,8 (N(3) in 2) und 360,0° (N(1) in 2) (Tab. II). Fun *et al.* [10] fanden, daß im Hexamethylphosphorsäureamid zwei der drei gebundenen N-Atome trigonal-planar und das dritte trigonal-pyramidal koordiniert sind.

Die planare Konfiguration der N-Atome in den Kationen 1 und 2 kann mit einer sp²-Hybridisierung der N-Atome erklärt werden. Das freie Elektronenpaar am jeweiligen N-Atom sollte demzufolge nahezu reinen *p*-Charakter aufweisen und kann mit unbesetzten d-Orbitalen des P-Atoms wechselwirken, was sich in der beobachteten Verkürzung der P-N-Bindung im Vergleich zu einer Einfachbindung widerspiegelt. Legt man die aus [9] entnommenen durchschnittlichen P-N-Bindungslängen zugrunde, wird das Tris(di-*n*-propylamino)-*p*-brombenzyl-phosphonium-Kation durch die Resonanzformel (II) besser beschrieben als durch (I).

Brought to you by | New York University Bobst Library Technical Services Authenticated Download Date I 6/21/15 10:04 PM In 2 sind die Br_3^- -Anionen fast linear (177,19(3)°) sowie nahezu symmetrisch (Br(2)-Br(3) 252,53(15); Br(3)-Br(4) 255,43(15) pm) gebaut und zeigen im Vergleich zu den bereits bekann-

ten Tribromiden [2 - 6] keine Besonderheiten. Van der Waals-Wechselwirkungen zwischen den Br⁻-bzw. Br₃⁻-Anionen und den Kationen sind in beiden Verbindungen nicht zu beobachten.

- H. Vogt, K. Lauritsen, L. Riesel, M. von Löwis, G. Reck, Z. Naturforsch. 48b, 1760 (1993).
- [2] H. Vogt, S. I. Trojanov, V. B. Rybakov, Z. Naturforsch. 48b, 258 (1993).
- [3] H. Vogt, C. Frauendorf, A. Fischer, P. G. Jones, Z. Naturforsch. 50b, 223 (1995).
- [4] H. Vogt, D. Wulff-Molder, M. Meisel, Z. Naturforsch. 51b, 1443 (1996).
- [5] H. Vogt, V. Quaschning, B. Ziemer, M. Meisel. Z. Naturforsch. **52b**, 1 (1997).
- [6] J. Hübner, D. Wulff-Molder, H. Vogt, M. Meisel, Z. Naturforsch. 52b, 1321 (1997).

- [7] R. Josten, Diplomarbeit, Universität Bonn (1985).
- [8] A. C. T. North, D. C. Phillips, F. S. Matthews, Acta Crystallogr. 24, 351 (1968).
- [9] D. E. C. Corbridge, in: Topics in Phosphorus Chemistry, Vol. 3, p. 349, Intersience, New York (1966).
- [10] H. -K. Fun, K. Chinnakali, B. -C. Yip, J. -Y. Niu, J. -P. Wang, X. -Z. You, Acta Crystallgr. C54, 327 (1998).
- [11] H. D. Flack, Acta Crystallogr. A39, 876 (1983).

Brought to you by | New York University Bobst Library Technical Services Authenticated Download Date | 6/21/15 10:04 PM