Special Collection of Papers

This article is dedicated to Professor Satoshi Ōmura in celebration of his 2015 Nobel Prize.

Regular Article

Enhanced Structural Variety of Nonplanar *N*-Oxyl Radical Catalysts and Their Application to the Aerobic Oxidation of Benzylic C–H Bonds

Yoichi Kadoh,^{*a,b*} Kounosuke Oisaki,^{*,*a*} and Motomu Kanai^{*,*a,c*}

^a Graduate School of Pharmaceutical Sciences, The University of Tokyo; 7–3–1 Hongo,

Bunkyo-ku, Tokyo 113–0033, Japan: ^bResearch B Unit, Sohyaku Innovative Research

Division, Mitsubishi Tanabe Pharma Corporation; 1000 Kamoshida-cho, Aoba-ku,

Yokohama 227–0033, Japan: and ^cKanai Life Science Catalysis Project, ERATO,

Japan Science Technology Agency; 7–3–1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan.

Received January 26, 2016; accepted February 3, 2016

The design and synthesis of structurally variable, nonplanar N-oxyl radical catalysts and their application to the aerobic oxidation, etherification, and acetoamidation of benzylic C-H bonds are described. The catalytic oxidation of C-H bonds represents a powerful tool to synthesize oxygenated functional molecules from simple hydrocarbons in a straightforward way. Electron-deficient N-oxyl radical catalysts, such as phthalimidoyl N-oxyl (PINO) radical, generated from N-hydroxyphthalimide (1), have attracted much attention because of their applications in the oxidation of C-H bonds with high bond dissociation energy (BDE). However, a few sites in 1 are available for structural modifications and improvements of the catalytic performance. By replacing one carbonyl group in 1 with a trifluoromethyl (CF_3)-substituted sp³-carbon, we generated an additional tunable site and a nonplanar backbone, while retaining the desirable electronwithdrawing properties and increasing the lipophilicity with respect to 1. We synthesized a variety of Nhydroxy precatalysts containing such a CF₃ moiety, and investigated their utility in the aerobic oxidation of benzylic C-H bonds. Precatalysts with electron-withdrawing substituents, such as trifluoroethoxy and the acetophenone moieties, afforded higher yields than a corresponding methoxy-substituted analogue. The introduction of substituents at the aromatic ring was also effective, as evident from the performance of $7-CF_{2}$ and 4,5,6,7-tetrafluoro precatalysts. Especially the combination of trifluoroethoxy- and 4,5,6,7-tetrafluoro substitution afforded a superior performance. These catalyst systems exhibited high functional group tolerance during the aerobic oxidation of C-H bonds, and benzylic etherification and Ritter-type reactions could be carried out at room temperature when a selected precatalyst and N-bromosuccinimide (NBS) were used.

Key words N-oxyl radical; aerobic oxidation; organocatalyst; C-H oxidation

The catalytic oxidation of C–H bonds is a valuable transformation in organic chemistry that leads to medicinally attractive oxygenated functional molecules in a small number of synthetic steps.^{1–3)} In the context of green chemistry, the use of molecular oxygen (O₂) for this conversion has recently attracted much attention, as it minimizes both the use of potentially hazardous oxidants and the generation of byproducts. However, C–H oxidations using O₂ are challenging, as the formation of reactive oxygen species from triplet O₂ is kinetically unfavorable. Therefore, bespoke initiators/catalysts that activate C–H bonds and/or O₂ are required, in order to perform aerobic C–H oxidations efficiently.^{3,4)}

Electron-deficient *N*-oxyl radicals, which are generated from the oxidation of *N*-hydroxy compounds, have been used to homolytically cleave the inert $C(sp^3)$ –H bonds of alkanes. The phthalimidoyl *N*-oxyl (PINO) radical, derived from *N*hydroxyphthalimide (1), is a representative example that has been applied to various aerobic or non-aerobic C–H oxidations.^{5–7} However, 1 suffers from serious limitations in such reactions, *e.g.* poor solubility in common organic solvents and rapid autodecomposition.^{8,9} reported to enhance its solubility and stability (Fig. 1). Thus, the group of Ishii was able to develop a lipophilic derivative of 1 (A), which is soluble in alkanes,¹⁰⁾ as well as derivatives **B** and **C**, which contain long fluorinated alkyl chains and are thus soluble in trifluorotoluene.¹¹⁾ The group of Einhorn synthesized tetraphenyl- (D)¹²⁾ and silyl-substituted¹³⁾ (E) analogues with enhanced stability, and the group of Xu reported the synthesis of tetrahalogenated derivatives of 1, whereby tetrachloro analogue **F** showed the best catalytic performance.¹⁴⁾ Nevertheless, the backbone of 1 remains characterized by its inherent planarity and its limited number of modification sites, which restrict a further improvement of the catalytic performance and the introduction of additional functional groups.

Herein, we report an unprecedented approach towards nonplanar, electron-deficient *N*-oxyl radicals, containing an additional tunable site, which provides these compounds with enhanced solubility, stability, and structural diversity. We furthermore explored the utility of these compounds in the catalytic oxidation, etherification, and acetoamidation of benzylic $C(sp^3)$ –H bonds.

Introducing substituents at the aromatic ring of 1 has been

^{*}To whom correspondence should be addressed. e-mail: oisaki@mol.f.u-tokyo.ac.jp; kanai@mol.f.u-tokyo.ac.jp

(Einhorn, J. et al., 2004)¹²⁾ (Einhorn, J. el al., 2012)¹³⁾ (Xu, J. et al., 2008)¹⁴⁾

Fig. 1. Chemical Structure of 1 and Previously Reported Derivatives

Results and Discussion

Structural Design of a Nonplanar, CF₃-Substituted N-Oxyl Radical Precursor

The high bond dissociation energy (BDE) of the NO–H bond in **1** (88.1 kcal/mol in *t*-BuOH), which is sufficient for cleaving benzylic, tertiary, and even secondary $C(sp^3)$ –H bonds, is due to the presence of two carbonyl groups adjacent to the *N*-OH moiety. These electron-withdrawing groups destabilize the resulting oxyl radical by rendering the delocalization of the nitrogen-lone pair inefficient therein.¹⁵

Due to the structural simplicity of 1, modifiable sites are limited, except for those of the aromatic ring. To overcome this limitation, we envisaged that the transformation of one carbonyl group into an sp^3 carbon should provide a feasible route to an additional tunable site in close proximity to the *N*-hydroxy moiety, which would simultaneously afford a nonplanar structure. This strategy should allow access to unprecedented structural tuning in order to improve catalytic performance, even though the elimination of a carbonyl group should lower the BDE.

The substitution of the carbonyl group at the R^5 position in 1 with the lipophilic and electron-withdrawing trifluoromethyl (CF₃) group should not only counterbalance such a decreased BDE, but also enhance the solubility of the resulting derivative.¹⁶ Simultaneous modifications of the aromatic substituents (R^1 – R^4) should further improve these properties (Fig. 2).

Preparation of N-Hydroxy Precatalysts

N-Hydroxy precatalysts **5**, **6**, and **9** were synthesized from **1** in five steps (Chart 1). Initially, **1** was converted into intermediate **2** in three steps, following our previously reported procedure.¹⁶ Then, the chloro group of **2** was substituted with methoxy, 2,2,2-trifluoroethoxy, or acetophenone moieties under silver-mediated S_N 1 conditions, using the corresponding alcohols or a silyl enol ether (7). The ensuing removal of the protecting benzyl group under hydrogenolysis conditions afforded *N*-hydroxy precatalysts **5**, **6**, and **9**.

We also synthesized *N*-oxyl radical precursors containing a CF_3 group at position 7 of the aromatic ring (**20** and **21**; Chart 2). For this purpose, commercially available 3-nitrophthalic anhydride (**10**) was reacted with H₂NOBn·HCl to afford **11**, whose nitro group was reduced with iron powder to yield amine **12**. Subsequently, **12** was converted into iodide **13** by a Sandmeyer reaction, and an ensuing Ruppert–Prakash

Fig. 2. Structural Design of a Novel N-Oxyl Radical Precursor Based on 1

trifluoromethylation¹⁷⁾ afforded the 7- and 4-iodo isomers **14a** (46%) and **b** (36%), which were separated after trituration with Et₂O and column chromatography.¹⁸⁾ Treatment of alcohol **14a** with methanesulfonyl chloride (MsCl) furnished chloride **15**, whose chloro group was removed by reaction with methanol or 2,2,2-trifluoroethanol (TFE) to afford ethers **16** and **17**, respectively. The iodo group of these compounds was substituted with a CF₃ group using (Ph₃P)₃CuCF₃,¹⁹⁾ and deprotection eventually afforded CF₃-substituted *N*-hydroxy precatalysts **20** and **21**.

Acetophenone-substituted 7-trifluoromethyl analogue **28** was prepared following a similar synthetic route, starting from **22**.²⁰⁾ As the removal of the benzyl group was unsuccessful in this case, the *p*-methoxybenzyl (PMB) group was selected as a protecting group for the *N*-hydroxy moiety (Chart 3). The PMB group could be removed successfully in the last step under trifluoroacetic acid (TFA)/C₆Me₅H conditions^{16,21)} to afford **28**.

Next, we tackled the synthesis of tetrafluoro analogues 34 and 35, starting from 29, *i.e.*, the 4,5,6,7-tetrafluoro derivative of 1^{22} as shown in Chart 4. As expected, protection of the *N*hydroxy moiety in 29 as a PMBether, followed by nucleophilic trifluoromethylation successfully furnished alcohol 31. However, our general protocol (Chart 1), consisting of chlorination (Et₃N–MsCl) followed by silver-mediated S_N 1 substitution,¹⁶ did not afford 32 or 33 from 30, most likely on account of the low reactivity of the chlorinated intermediate towards the silver salt. As an alternative, we chose to carry out a onepot mesylation-substitution reaction. After 31 was mesylated using Ms₂O–Et₃N at -78°C, methanol or TFE was added to the mixture, which was then warmed to room temperature. This protocol successfully furnished ethers 32 and 33, and

Chart 1. Preparation of N-Hydroxy Precatalysts 5, 6, and 9

Chart 2. Preparation of 7-Trifluoromethyl N-Hydroxy Precatalysts 20 and 21

their PMB groups could be removed with TFA– C_6Me_5H to afford 4,5,6,7-tetrafluoro *N*-hydroxy precatalysts **34** and **35**. Unfortunately, an acetophenone-substituted analogue could not be synthesized, presumably due to the low reactivity of the silyl enol ether towards the mesylated or chlorinated intermediates.

Aerobic Oxidation of Benzylic C-H Bonds with N-Oxyl Radical Catalysts

As a part of our ongoing research program directed towards N-oxyl radical-catalyzed aerobic oxidations,^{23–25)} we applied the newly synthesized N-hydroxy precatalysts to the aerobic

oxidation of benzylic C–H bonds. The results obtained are summarized in Table 1.

The oxygenation of the benzylic C–H bonds in **36a** was investigated using 5 mol% of the *N*-hydroxy precatalyst, 1 mol% of Co(OAc)₂, and 1 mol% of Mn(OAc)₃ \cdot 2H₂O in CH₃CN under an atmosphere of O₂ (1 atm) at 60°C. When **1** was used as a control catalyst, ketone **37a** was obtained in 92% yield after 12h (entry 1). Precatalyst **5**, containing a CF₃ and a methoxy substituent instead of a carbonyl group, afforded **37a** in lower yield (23%, entry 2). We found that substituting the methoxy group with more electron-deficient 2,2,2-trifluoroethoxy (**6**)

Chem. Pharm. Bull.

Chart 3. Preparation of 7-Trifluoromethyl N-Hydroxy Precatalyst 28

Chart 4. Preparation of 4,5,6,7-Tetrafluoro N-Hydroxy Precatalysts 34 and 35

or acetophenone (9) moieties led to improved yields of 45% and 39%, respectively (entries 3, 4). 7-Trifluoromethyl- and 4,5,6,7-tetrafluoro-substituted precatalysts **20** and **34** also afforded improved yields (entries 2 *vs.* 5, 8), probably on account of their increased electron-withdrawing properties. Whereas the combination of the 7-trifluoromethyl and the acetophenone moieties in **28** proved to be mismatched (entries 4 *vs.* 7), the combination of a 7-trifluoromethyl substitution pattern with a 2,2,2-trifluoroethoxy group (**21**) displayed an additive effect, resulting in the formation of ketone **37a** in 66% yield (entries 3, 5 *vs.* 6). The best performance (71% yield, entry 9) was obtained with *N*-hydroxy precatalyst **35**, which contained a 4,5,6,7-tetrafluoro-substituted aromatic ring and a 2,2,2-trifluoroethoxy group.

Subsequently, we examined the scope and limitations of the oxidation of benzylic C-H bonds using precatalyst 35 (Table 2). When 3-phenylpropyl benzoate (36b) was used as the substrate, the corresponding ketone 37b was obtained in 78% yield. p-Substituted alkylarenes, bearing either electrondonating or withdrawing substituents such as OMe (36c), CF₃ (36d), or F (36e), all reacted under these conditions to afford ketones 37c-e in moderate to high yields (42–69%). The high functional group tolerance of the present system is evident from the successful transformation of a variety of alkylbenzenes that bear different functional groups, e.g. a carboxylic acid (36f), a methyl ester (36g), a carboxamide (36h), an alkylbromide (36i), a nitrile (36i), or a methyl imidate (36k), into the corresponding ketones 37f-k in a chemoselective manner (39-80% yield). Interestingly, tetralin (361), xanthene (36m), or isochromane (36n) were oxidized more readily than alkylarenes, furnishing the corresponding ketones 371-n in 41-78% yield even at room temperature.

a) ¹H-NMR yield. b) The reaction time was 12h.

Benzylic Etherification and Acetoamidation Using *N*-Oxyl Radical Catalyst 35 and *N*-Bromosuccinimide (NBS)

During our investigations on the utility of *N*-hydroxy precatalyst **35**, we discovered novel conditions for the intermolecular benzylic etherification and a Ritter-type reaction that uses NBS as the oxidant (Chart 5). We were thus able to synthesize 2,2,2-trifluoroethylethers, whose preparation *via* the classical Williamson ether procedure is limited by their low nucleophilicity. The conventional synthetic method for the generation of benzylic 2,2,2-trifluoroethylethers involves the nucleophilic attack of TFE to the corresponding benzylic cation, which is generated from a prefunctionalized benzylic compound.^{26–28)} To the best of our knowledge, the direct transformation of a benzylic *sp*³ C–H bond into a C–OCH₂CF₃ moiety has not been reported so far. For that purpose, **36b** was treated with a catalytic amount of **35** to mediate this 2,2,2-trifluoroetherification, which afforded **38** in modest yield (54%).²⁹⁾

Ritter-type aminations of benzylic sp^3 C-H bonds usually require harsh conditions, *i.e.* heating and/or the presence of a strong oxidant such as *N*-fluoro-*N'*-(chloromethyl)triethylenediamine pentafluoro phosphate (F-TEDA-PF₆) or ceric ammonium nitrate.^{30–33}) We found that **36b** could be successfully aminated under mild conditions in CH₃CN to afford 2,2,2-trifluoroethylether **39** in 49% yield using **35**. These reactions may proceed *via* a carbocation intermediate generated by a two-electron oxidation process.³³)

Conclusion

We have developed a synthetic procedure to prepare highly tunable, nonplanar, and electron-deficient *N*-oxyl radical species that can be used for the catalytic aerobic oxidation of benzylic C–H bonds. This method is based on the introduction of a CF₃-substituted *sp*³-carbon as an additional functionalization site in close proximity to the *N*-hydroxy moiety of **1**. Subsequently, modulation of the catalyst activity was accomplished by changing the substituents at both the aromatic ring and at the α -position with respect to the CF₃ group. In general, the introduction of more electron-withdrawing groups led to a significant improvement of the catalyst activity, which is in

a) Percentage values in parentheses refer to isolated yields.

good agreement with previously reported results.³⁴⁾ Although the best precatalyst performance still remains inferior to that of **1** itself, these investigations provide fundamental information on the design of novel *N*-oxyl radical catalysts and effective radical directing activators.¹⁶⁾ Further studies on the functionalization of these compounds that may eventually lead to more active and selective catalysts are ongoing in our laboratory and results will be reported elsewhere in due course.

Experimental

General Method NMR spectra were recorded on JEOL JNM-LA500, JEOL ECX500 (500 MHz for ¹H-NMR and 125 MHz for ¹³C-NMR), and JEOL ECS400 (400 MHz for ¹H-NMR, 100 MHz for ¹³C-NMR, and 368 MHz for ¹⁹F-NMR) spectrometer. Chemical shifts were reported downfield from tetramethylsilane (TMS) (δ =0 ppm) for ¹H-NMR. For ¹³C-NMR, chemical shifts were reported in the scale relative to the solvent used as an internal reference. For ¹⁹F-NMR, chemical shifts were reported downfield from hexafluorobenzene (δ =-164.9 ppm). IR spectra were recorded on a JASCO FT/IR 410 Fourier transform IR spectrophotometer. Electrospray ionization (ESI)-MS spectra were measured on a Waters ZO4000 spectrometer (for low resolution (LR)-MS), and a JEOL JMS-T100LC AccuTOF spectrometer (for high resolution (HR)-MS). Column chromatographies were performed with silica gel Merck 60 (230-400 mesh ASTM). All reactions other than substrates synthesis were carried out in dry solvents (purchased from Aldrich, Kanto Chemical Co., Inc.

or Wako Pure Chemical Industries, Ltd.). Other reagents of which preparation is not described in this manuscript were purchased from Aldrich, Tokyo Chemical Industry Co., Ltd. (TCI), Kanto Chemical Co., Inc., and Wako Pure Chemical Industries, Ltd., and used without further purification. NMR yield was calculated by ¹H-NMR of crude product using an internal standard (1,3,5-trioxane).

Preparation of *N***-Hydroxy Precatalysts** Full spectroscopic data were described for new compounds. Compound 2,¹⁶ 22,²⁰ and 29²² were prepared following the reported procedures.

General Procedure for Etherification (Procedure A)

2-Benzyloxy-3-methoxy-3-trifluoromethylisoindolin-1-one (3) To a suspension of silver trifluoromethanesulfonate (AgOTf) (2.18 g, 8.50 mmol) in toluene (5 mL), chloride 2 (1.71 g, 5.00 mmol) in toluene (5 mL) and MeOH (243 μ L, 6.00 mmol) were added at 0°C. The reaction mixture was stirred for 1 h at 0°C, and for 3 h at room temperature (rt). Brine was added to the mixture, and the suspension was filtered over Celite. The filtered organic layer was separated, washed with H₂O and brine, dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The residue was purified with flash col-

a) Percentage values refer to ¹H-NMR yields using 2,4,6-trioxane as an internal standard. Percentage values in parentheses refer to isolated yields. Chart 5. Benzylic Etherification and Acetoamidation with *N*-Hydroxy Precatalyst **35**

umn chromatography (SiO₂, *n*-hexane–EtOAc=9:1→4:1) to afford methylether **3** (1.60 g, 95%). White powder; ¹H-NMR (400 MHz, CDCl₃) δ : 7.89 (d, *J*=7.2 Hz, 1H), 7.51–7.72 (m 5H), 7.32–7.42 (m, 3H), 5.30 (d, *J*=9.9 Hz, 1H), 5.13 (d, *J*=9.9 Hz, 1H), 2.99 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ : 165.56, 134.55, 134.47, 133.52, 131.75, 130.10, 129.45 (2C), 128.86, 128.41 (2C), 124.28, 124.19, 122.07 (q, *J*=285.6 Hz), 91.37 (q, *J*=32.9 Hz), 79.09, 51.28; ¹⁹F-NMR (368 MHz, CDCl₃) δ : -77.92 (s, 3F); IR (KBr, cm⁻¹) *v*: 3586, 3443, 2939, 1742, 1654, 1559, 1541, 1185, 671; LR-MS (ESI): *m/z* 360 [M+Na]⁺; HR-MS (ESI): *m/z* Calcd for C₁₇H₁₄F₃NO₃Na [M+Na]⁺ 360.0818. Found 360.0831.

General Procedure for Hydrogenolysis of Benzyl Ether (Procedure B)

2-Hydroxy-3-methoxy-3-trifluoromethylisoindolin-1-one (5)

A suspension of benzylether **3** (1.48 g, 4.39 mmol) and 10 wt% Pd/C (319 mg, 0.300 mmol) in EtOH (12.0 mL) was stirred for 2h under H₂ atmosphere (1 atm, balloon). The mixture was purged with Ar and filtered over Celite. The filtrate was evaporated under reduced pressure. The residue was purified with flash column chromatography (SiO₂, *n*-hexane–EtOAc=2:1→1:1) to afford **5** (1.02 g, 94%). White powder; ¹H-NMR (500 MHz, CDCl₃) δ : 7.82 (d, *J*=7.6Hz, 1H), 7.57–7.70 (m, 3H), 3.13 (s, 3H); ¹³C-NMR (125 MHz, CDCl₃) δ : 165.92, 134.58, 131.69, 130.06, 124.16, 124.05, 121.88 (q, *J*=286.2Hz), 91.40 (q, *J*=33.1Hz), 51.58; ¹⁹F-NMR (368 MHz, CDCl₃) δ : -78.41 (s, 3F); IR (KBr, cm⁻¹) v: 3136, 2952, 2887, 1711, 1471, 1315, 1195, 1124, 1086, 1007, 878, 731; LR-MS (ESI): *m/z* 270 [M+Na]⁺; HR-MS (ESI): *m/z* Calcd for C₁₀H₈F₃NO₃Na [M+Na]⁺ 270.0348. Found 270.0341.

2-Benzyloxy-3-(2,2,2-trifluoroethoxy)-3-trifluoromethylisoindolin-1-one (4)

According to the procedure A in which 2,2,2-trifluoroenthanol was used as the alcohol instead, chloride 2 (1.71 g, 5.00 mmol) was converted into ether 4 (1.57 g, 78%). Colorless oil; ¹H-NMR (500 MHz, CDCl₃) δ : 7.92 (d, J=7.5 Hz, 1H), 7.74 (dd, J=7.4, 7.4 Hz, 1H), 7.69 (dd, J=7.4, 7.4 Hz, 1H), 7.60 (d, J=6.9 Hz, 1H), 7.54 (d, J=7.4 Hz, 2H), 7.35-7.44 (m, 3H), 5.30 (d, $J=9.8\,\text{Hz}$, 1H), 5.16 (d, $J=9.8\,\text{Hz}$, 1H), 3.40–3.50 (m, 1H), 3.19–3.29 (m, 1H); ¹³C-NMR (125 MHz, CDCl₂) δ : 165.63, 134.37, 134.23 (2C), 133.53, 132.54 (2C), 129.78, 129.42, 129.07, 128.56, 124.62, 124.58, 122.72 (q, J=277.1 Hz), 121.57 (q, J=286.7 Hz), 91.0 (q, J=33.6 Hz), 79.31, 61.3 (q, J=36.0 Hz);¹⁹F-NMR (368 MHz, CDCl₃) δ : -74.02 (s, 3F), -77.52 (s, 3F); IR (neat, cm⁻¹) v: 3433, 2917, 2848, 1750, 1470, 1293, 1190, 984, 766, 635; LR-MS (ESI): m/z 428 [M+Na]⁺; HR-MS (ESI): m/z Calcd for $C_{18}H_{13}F_6NO_3Na$ $[M+Na]^+$ 428.0692. Found 428.0690.

2-Hydroxy-3-(2,2,2-trifluoroethoxy)-3-trifluoromethylisoindolin-1-one (6)

According to the procedure B, benzyl ether 4 (1.45 g, 3.58 mmol) was converted into 6 (1.07 g, 95%). White powder; ¹H-NMR (400 MHz, acetone- d_6) δ : 7.71–7.90 (m, 4H),

3.97–4.10 (m, 1H), 3.64–3.78 (m, 1H); ¹³C-NMR (125 MHz, acetone- d_6) δ : 164.68, 134.69, 134.11, 133.45, 131.47, 125.54, 124.73, 124.43 (q, J=277.1 Hz), 122.59 (q, J=285.5 Hz), 91.49 (q, J=33.6 Hz), 61.95 (q, J=36.0 Hz); ¹⁹F-NMR (368 MHz, acetone- d_6) δ : -74.80 (s, 3F), -78.38 (s, 3F); IR (KBr, cm⁻¹) v: 3426, 3137, 2942, 1719, 1616, 1508, 1473, 1427, 1378, 1305, 1172, 1125, 1087, 1038, 993, 968, 882, 766; LR-MS (ESI): m/z 338 [M+Na]⁺; HR-MS (ESI): m/z Calcd for C₁₁H₇F₆NO₃Na [M+Na]⁺ 338.0222. Found 338.0223.

2-Benzyloxy-3-(2-oxo-2-phenylethyl)-3-trifluoromethylisoindolin-1-one (8)

To a suspension of AgOTf (437 mg, 1.70 mmol) in toluene (1.0 mL), chloride 2 (342 mg, 1.00 mmol), Et₃N (279 μ L, 2.00 mmol) and [(1-phenyl-1-ethenyl)oxy]trimethylsilane (7) (385 mg, 2.00 mmol) in toluene (1.0 mL) were added at 0°C. The reaction mixture was stirred for 1h at 0°C, and for 35h at rt. Brine was added to the mixture and the suspension was filtered over Celite. The organic layer was separated, washed with H₂O and brine, dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The residue was purified with flash column chromatography (SiO₂, *n*-hexane-EtOAc= 9:1 \rightarrow 4:1) to afford 8 (264 mg, 62%). White powder; ¹H-NMR $(400 \text{ MHz}, \text{ CDCl}_3) \delta$: 7.90–7.96 (m, 1H), 7.72 (dd, J=7.2, 1.3 Hz, 2H), 7.71–7.59 (m 6H), 7.27–7.37 (m, 5H), 5.43 (d, J=9.9 Hz, 1H), 5.05 (d, J=9.9 Hz, 1H), 4.00 (d, J=17.5 Hz, 1H), 3.74 (d, J=17.5 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ : 195.56, 168.49, 137.90, 136.05, 134.61, 133.46, 132.91, 130.56, 130.12, 129.43 (2C), 128.65, 128.45 (2C), 128.30 (2C), 127.80, 124.58 (q, J=284.7 Hz), 124.15 (2C), 122.31, 79.20, 67.20 (q, J=29.1 Hz), 34.31; ¹⁹F-NMR (368 MHz, CDCl₃) δ : -76.46 (s, 3F); IR (KBr, cm⁻¹) v: 3450, 3061, 3035, 2968, 2926, 1733, 1698, 1594, 1469, 1374, 1275, 1185, 991, 751; LR-MS (ESI): m/z 448 [M+Na]⁺; HR-MS (ESI): m/z Calcd for C₂₄H₁₈F₃NO₃Na [M+Na]⁺ 448.1131. Found 448.1140.

2-Hydroxy-3-(2-oxo-2-phenylethyl)-3-trifluoromethylisoindolin-1-one (9)

According to the procedure B, benzyl ether **8** (740 mg, 1.74 mmol) was converted into **9** (530 mg, 91%). Colorless oil; ¹H-NMR (500 MHz, CDCl₃) δ : 7.77 (d, J=7.4 Hz, 2H), 7.70 (d, J=7.5 Hz, 1H), 7.42–7.55 (m, 4H), 7.38 (dd, J=7.5, 7.5 Hz, 2H), 4.02–4.21 (m, 1H), 3.75–3.93 (m, 1H); ¹³C-NMR (125 MHz, CDCl₃) δ : 193.39, 168.14, 137.61, 136.23, 133.71, 132.66, 130.41, 130.07 (2C), 128.62 (2C), 128.01, 124.14, 124.13 (q, J=285.5 Hz), 122.41, 67.98 (q, J=34.8 Hz), 34.21; ¹⁹F-NMR (368 MHz, CDCl₃) δ : -76.68 (s, 3F); IR (KBr, cm⁻¹) v: 3422, 2926, 1696, 1643, 1278, 1185, 754; LR-MS (ESI): m/z 358 [M+Na]⁺; HR-MS (ESI): m/z Calcd for $C_{17}H_{12}F_3NO_3Na$ [M+Na]⁺ 358.0661. Found 358.0677.

2-Benzyloxy-4-nitroisoindoline-1,3-dione (11)

A suspension of 3-nitrophthalic anhydride **10** (1.00 g, 5.18 mmol) and H₂NOBn·HCl (827 mg, 5.18 mmol) in xylene (19 mL) was heated to reflux for 3 h with Dean–Stark apparatus. The mixture was evaporated under reduced pressure. The residue was triturated with EtOH to afford **11** (1.39 g, 90%). Pale yellow powder; ¹H-NMR (500 MHz, DMSO- d_6) δ : 8.30 (d, J=8.0Hz, 1H), 8.15 (d, J=8.0Hz, 1H), 8.06 (dd, J=8.0, 8.0Hz, 1H), 7.50–7.55 (m, 2H), 7.38–7.45 (m, 3H), 5.17 (s, 2H); ¹³C-NMR (125 MHz, DMSO- d_6) δ : 161.17, 158.81, 144.11, 136.42, 134.02, 130.53, 129.66 (2C), 129.18, 128.69, 128.52 (2C), 127.03, 120.62, 79.48; IR (KBr, cm⁻¹) v: 3449, 3109, 3048, 2952, 2896, 1793, 1732, 1545, 1350, 1144, 1005, 865, 699; LR-MS (ESI): m/z 321 [M+Na]⁺; HR-MS (ESI): m/z Calcd for C₁₅H₁₁N₂O₅Na [M+Na]⁺ 321.0482. Found 321.0497.

4-Amino-2-benzyloxyisoindoline-1,3-dione (12)

A suspension of 11 (34.0 g, 0.114 mol), Fe powder (63.7 g, 1.14 mol), and NH₄Cl (3.66 g, 0.0684 mol) in H₂O (380 mL) was heated to reflux for 2h. The mixture was diluted with H₂O and CH₂Cl₂, and filtered over Celite. The organic layer was separated. The aqueous layer was extracted with CH₂Cl₂. The combined organic layer was washed with H₂O and brine, dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The residue was triturated with Et₂O to afford amine 12 (15.4 g, 51%). Yellow powder; ¹H-NMR (400 MHz, DMSO- d_6) δ: 7.32-7.57 (m, 6H), 6.89-7.04 (m, 2H), 6.50 (brs, 2H), 5.11 (s, 2H); ¹³C-NMR (125 MHz, DMSO- d_6) δ : 164.58, 163.36, 146.56, 135.43, 134.32, 129.56 (2C), 128.98 (2C), 128.41 (2C), 122.14, 111.05, 105.05, 79.07; IR (KBr, cm⁻¹) v: 3479, 3336, 3032, 1759, 1715, 1630, 1481, 1385, 1181, 1026, 903, 730; LR-MS (ESI): m/z 291 [M+Na]+; HR-MS (ESI): m/z Calcd for C₁₅H₁₂N₂O₃Na [M+Na]⁺ 291.0740. Found 291.0732.

2-Benzyloxy-4-iodoisoindoline-1,3-dione (13)

To a suspension of amine **12** (15.4 g, 57.4 mmol) and $3 \times$ HCl aq. (165 mL) in CH₃CN (674 mL), NaNO₂ (4.75 g, 68.9 mmol) in H₂O (57.4 mmol) was added dropwise at 0°C, and the mixture was stirred for 0.5 h at the same temperature. To the mixture, KI (14.3 g, 86.1 mmol) in H₂O (57.4 mL) was added at 0°C, and the mixture was stirred for 1 h at the same temperature. To the

mixture, CH_2Cl_2 was added, and the phases were separated. The aqueous layer was extracted with CH_2Cl_2 . The combined organic layer was washed with 20% Na₂S₂O₃ aq., H₂O, and brine, dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The residue was triturated with *n*-hexane– EtOAc=2:1 to afford iodide **13** (16.1 g, 74%). white powder; ¹H-NMR (400 MHz, CDCl₃) δ : 8.09 (d, *J*=8.1 Hz, 1H), 7.78 (d, *J*=7.2 Hz, 2H), 7.49–7.54 (m, 2H), 7.32–7.42 (m, 3H), 5.19 (s, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ : 162.34, 161.39, 145.55, 134.94, 133.44, 130.82, 129.80 (2C), 129.53, 129.33, 128.52 (2C), 123.21, 88.76, 79.94; IR (KBr, cm⁻¹) *v*: 3501, 3079, 3033, 1790, 1742, 1455, 1391, 1146, 984, 876, 718; LR-MS (ESI): *m/z* 402 [M+Na]⁺; HR-MS (ESI): *m/z* Calcd for C₁₆H₁₁F₃INO₃Na [M+Na]⁺ 401.9598, Found 401.9590.

2-Benzyloxy-3-hydroxy-7-iodo-3-trifluoromethylisoindolin-1-one (14a) and 4-Iodo Isomer (14b)

To a solution of phthalimide 13 (16.0g, 42.2 mmol) and CsF (8.34 g, 54.9 mmol) in N,N-dimethylformamide (DMF) (422 mL), trimethyl(trifluoromethyl)silane₃ (TMSCF₃) (8.13 mL, 54.9 mmol) was added dropwise at 0°C. The mixture was stirred for 0.5 h at 0°C, then for 12 h at rt. To the mixture, H₂O was added at 0°C, and the whole was extracted with EtOAc for 3 times. The combined organic layer was washed with 1 N HCl aq., H₂O for 3 times, and brine, dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The residue was triturated with Et₂O to afford alcohol 14a (6.54g, 35%). The mother liquor was evaporated under reduced pressure, and the residue was purified with flash column chromatography (SiO₂, *n*-hexane–EtOAc=9:1 \rightarrow 1:1) to afford alcohol 14a (2.11 g, 11%) and 14b (6.86 g, 36%). Compound 14a: White powder; ¹H-NMR (400 MHz, acetone- d_6) δ : 8.16 (dd, J=7.6, 0.9 Hz, 1H), 7.81 (dd, J=7.6, 0.9 Hz, 1H), 7.51-7.60 (m, 3H), 7.35-7.46 (m, 3H), 5.31 (d, J=9.4Hz, 2H), 5.19 (d, J=9.4Hz, 2H); ¹³C-NMR (100MHz, acetone- d_6) δ : 163.88, 143.81, 141.61, 135.89, 135.52, 130.22 (2C), 129.57 (2C), 129.19 (2C), 124.96 (q, J=1.9 Hz), 123.57 (q, J=286.6 Hz), 89.65, 86.33 (q, J=33.8 Hz), 80.52; ¹⁹F-NMR (368 MHz, acetone- d_6) δ : -79.43 (s, 3F); IR (KBr, cm⁻¹) v: 3254, 3031, 1717, 1460, 1376, 1198, 989, 946, 794, 714; LR-MS (ESI): m/z 472 [M+Na]⁺; HR-MS (ESI): m/z Calcd for $C_{16}H_{11}F_3INO_3Na$ $[M+Na]^+$ 471.9628. Found 471.9618. Compound 14b: white powder; ¹H-NMR (400 MHz, acetone- d_4) δ : 8.25 (d. J=7.6 Hz, 1H), 7.85 (d. J=7.6 Hz, 1H), 7.56 (d, J=7.2 Hz, 2H), 7.34-7.49 (m 4H), 5.29 (d, J=9.9 Hz, 1H), 5.22 (d, J=9.9 Hz); ¹³C-NMR (100 MHz, acetone- d_6) δ : 162.90, 146.79, 139.73, 136.00, 133.77, 132.91, 130.10 (2C), 129.49, 129.12 (2C), 124.14, 123.93 (q, J=290.3 Hz), 90.14 (q, J=32.9 Hz), 90.10, 80.84; ¹⁹F-NMR (368 MHz, acetone- d_6) δ : -75.41 (s, 3F); IR (KBr, cm⁻¹) v: 3169, 2956, 2885, 1702, 1574, 1461, 1372, 1251, 1191, 1092, 870, 760, 700; LR-MS (ESI): m/z 472 [M+Na]⁺; HR-MS (ESI): m/z Calcd for $C_{16}H_{11}F_{3}INO_{3}Na$ $[M+Na]^{+}$ 471.9628. Found 471.9624.

2-Benzyloxy-3-chloro-7-iodo-3-trifluoromethylisoindolin-1one (15)

To a suspension of alcohol 14a (8.64g, 19.2mmol) in CH₂Cl₂ (192 mL), Et₃N (4.26 mL, 28.8 mmol) and MsCl (2.23 mL, 30.7 mmol) were added at 0°C, and the mixture was stirred for 0.5h at 0°C, then for 13h at rt. To the mixture, Et₃N (798 μ L, 5.76 mmol) and MsCl (446 μ L, 5.76 mmol) were added at rt, and the mixture was stirred for 1h at rt. To the mixture, H₂O was added and the phases were separated. The aqueous layer was extracted with CH2Cl2. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The residue was purified with flash column chromatography (SiO₂, n-hexane-EtOAc=19:1 \rightarrow 9:1) to afford chloride 15 (8.46 g, 94%). white powder; ¹H-NMR (400MHz, acetone- d_6) δ : 8.28 (dd, J=9.3, 0.9 Hz, 1H), 7.93 (dd, J=7.7, 0.9 Hz, 1H), 7.67 (dd, J=7.6, 7.6 Hz, 1H), 7.57-7.62 (m, 2H), 7.41-7.49 (m, 3H), 5.42 (d, J=9.4 Hz, 1H), 5.27 (d, J=9.4 Hz, 1H); ¹³C-NMR $(100 \text{ MHz}, \text{ acetone-} d_6) \delta$: 163.85, 144.63, 140.68, 136.46, 135.07, 130.46 (2C), 129.93, 129.33 (2C), 128.34, 125.13 (q, J=1.9 Hz), 122.46 (q, J=283.8 Hz), 90.85, 80.48, 79.00 (q, J=36.6 Hz); ¹⁹F-NMR (368 MHz, acetone- d_6) δ : -76.34 (s, 3F); IR (KBr, cm⁻¹) v: 3484, 3069, 3033, 2960, 2897, 1752, 1456, 1264, 1171, 977, 903, 713; LR-MS (ESI): m/z 490 [M+Na]⁺; HR-MS (ESI): m/z Calcd for $C_{16}H_{10}ClF_3INO_2Na$ [M+Na]⁺ 489.9289. Found 489.9300.

2-Benzyloxy-7-iodo-3-methoxy-3-(trifluoromethyl)isoindolin-1-one (16)

According to the procedure A, the chloride **15** (4.09 g, 8.75 mmol) was converted into ether **16** (2.09 g, 52%). white powder; ¹H-NMR (400 MHz, acetone- d_6) δ : 8.23 (d, J=8.1 Hz, 1H), 7.76 (d, J=7.6 Hz, 1H), 7.56–7.63 (m, 3H), 7.35–7.46 (m, 3H), 5.29 (d, J=10.0 Hz, 1H), 5.20 (d, J=10.0 Hz, 1H), 3.13 (s, 3H); ¹³C-NMR (100 MHz, acetone- d_6) δ : 164.68, 144.40, 137.53, 135.84, 135.68, 131.27, 130.16 (2C), 129.65, 129.24 (2C), 125.44, 122.93 (q, J=285.6 Hz), 90.82 (q, J=32.9 Hz), 90.32, 79.88, 51.83; ¹⁹F-NMR (368 MHz, acetone- d_6) δ : -78.29 (s, 3F); IR (KBr, cm⁻¹) v: 3466, 3077, 3029, 2965, 2898, 1742, 1456, 1276, 1187, 986, 869, 724, 697; LR-MS (ESI): m/z 486 [M+Na]⁺; HR-MS (ESI): m/z Calcd for C₁₇H₁₃F₃INO₃Na [M+Na]⁺ 485.9784. Found 485.9781.

2-Benzyloxy-3-methoxy-3,7-bistrifluoromethylisoindolin-1one (18)

The mixture of iodide 16 (100 mg, 0.216 mmol), (PPh₃)₃CuCF₃ (218 mg, 0.237 mmol) and 4,4'-di-tert-butyl-2,2'bipyridyl (4,4'-dtbpy) (63.6 mg, 0.237 mmol) in toluene (2.2 mL) was stirred for 20h at 80°C. To the mixture, $(PPh_3)_3CuCF_3$ (39.7 mg, 0.0432 mmol) and 4,4'-di-tertbutyl-2,2'-bipyridyl (11.6 mg, 0.0432 mmol) were added and the mixture was stirred for 4h at 80°C. The mixture was diluted with EtOAc, washed with H₂O, 28% NH₃ ag., H₂O and brine, dried over Na2SO4, filtered and evaporated under reduced pressure. The residue was purified with flash column chromatography (SiO₂, *n*-hexane–EtOAc=19:1 \rightarrow 9:1) to afford trifluoromehylated compound 18 (41.7 mg, 48%). White powder; ¹H-NMR (400 MHz, CDCl₃) δ : 7.94 (dd, J=4.3 Hz, 1H), 7.81 (d, J=4.3 Hz, 2H), 7.54 (d, J=5.9 Hz, 2H), 7.32-7.44 (m, 3H), 5.32 (d, J=9.7Hz, 1H), 5.13 (d, J=9.7Hz, 1H); ¹³C-NMR (100 MHz, CDCl₂) δ: 162.44, 137.00, 134.30, 133.52, 129.63 (2C), 129.23 (q, J=4.8 Hz), 129.04 (2C), 128.53, 127.74, 127.83, (q, J=28.8 Hz), 127.81, 122.00 (q, J=274.8 Hz), 121.86 (q, J=274.8 Hz), 121.8 (q, J=274.8 Hz), 121.8 (q, J=274.8 Hz), 121.8 (q, J=274.8 Hz), 121J=286.7 Hz), 97.78 (q, J=36.0 Hz), 79.20, 51.49; ¹⁹F-NMR $(368 \text{ MHz}, \text{ CDCl}_3) \delta$: -60.96 (s, 3F), -77.67 (s, 3F); IR (KBr, cm⁻¹) v: 3584, 3388, 2918, 2847, 1755, 1604, 1325, 1173, 989, 760, 641; LR-MS (ESI): m/z 428 [M+Na]⁺; HR-MS (ESI): m/z Calcd for C₁₈H₁₃F₆NO₃Na [M+Na]⁺ 428.0692. Found 428.0701.

2-Hydroxy-3-methoxy-3,7-bistrifluoromethylisoindolin-1-one (20)

According to the procedure B, the benzyl ether **18** (38.0 mg, 0.0938 mmol) was converted into **20** (29.4 mg, 99%). White powder; ¹H-NMR (400 MHz, CDCl₃) δ : 7.76–7.92 (m, 3H), 3.17 (s, 3H); ¹³C-NMR (125 MHz, CDCl₃) δ : 162.91, 137.07, 133.36, 129.11, 127.78 (q, *J*=36.0 Hz), 127.61, 127.56, 121.89 (q, *J*=273.5 Hz), 121.55 (q, *J*=286.7 Hz), 90.60 (q, *J*=33.6 Hz), 51.65; ¹⁹F-NMR (368 MHz, CDCl₃) δ : -60.86 (s, 3F), -78.04 (s, 3F); IR (KBr, cm⁻¹) *v*: 3426, 3178, 2954, 1734, 1610, 1509, 1329, 1195, 1135, 1016, 983, 878, 812, 704; LR-MS (ESI): *m/z* 338 [M+Na]⁺; HR-MS (ESI): *m/z* Calcd for C₁₁H₇F₆NO₃Na [M+Na]⁺ 338.0222. Found 338.0226.

2-Benzyloxy-7-iodo-3-(2,2,2-trifluoroethoxy)-3-trifluoromethylisoindolin-1-one (**17**)

According to the procedure A in which 2,2,2-trifluoroenthanol was used as the alcohol instead, the chloride **15** (0.935 g, 2.00 mmol) was converted into ether **17** (1.04 g, 98%). White powder; ¹H-NMR (400 MHz, acetone- d_6) δ : 8.27 (dd, J=7.6, 0.9 Hz, 1H), 7.84 (d, J=8.1 Hz, 1H), 7.64 (dd, J=7.6, 7.6 Hz, 1H), 7.63 (dd, J=7.6, 1.8 Hz, 2H), 7.37–7.48 (m, 3H), 5.26–5.33 (m, 2H), 4.00–4.11 (m, 1H), 3.82–3.94 (m, 1H); ¹³C-NMR

(100 MHz, acetone- d_6) δ : 164.82, 145.00, 136.40, 136.08, 135.67, 131.28, 130.14, 129.77, 129.34, 125.76 (q, J=1.9 Hz), 124.36 (q, J=276.3 Hz), 122.50 (q, J=286.6 Hz), 90.86, 90.59 (q, J=32.9 Hz), 80.23, 62.20 (q, J=35.7 Hz); ¹⁹F-NMR (368 MHz, acetone- d_6) δ : -74.61 (s, 3F), -77.85 (s, 3F); IR (KBr, cm⁻¹) v: 3482, 3034, 2941, 2873, 1754, 1584, 1463, 1283, 1190, 1002, 953, 874, 798, 727; LR-MS (ESI): m/z 554 [M+Na]⁺; HR-MS (ESI): m/z Calcd for C₁₈H₁₂F₆INO₃Na [M+Na]⁺ 553.9658. Found 553.9634.

2-Benzyloxy-3-(2,2,2-trifluoroethoxy)-3,7-bistrifluoromethylisoindolin-1-one (19)

According to the procedure described for the preparation of the trifluoromehyl compound 18 from iodide 16, the iodide 17 (444 mg, 0.837 mmol) was converted into trifluoromethyl compound 19 (346 mg, 87%). White powder; ¹H-NMR (400 MHz, CDCl₃) *b*: 7.98 (d, *J*=4.5 Hz, 1H), 7.86 (d, *J*=4.5 Hz, 1H), 7.52 (d, J=5.4 Hz, 2H), 7.37–7.41 (m, 3H), 5.32 (d, J=9.9 Hz, 1H), 5.16 (d, J=9.9 Hz, 1H), 3.40–3.52 (m, 1H), 3.13–3.24 (m, 1H); ¹³C-NMR (125 MHz, CDCl₃) δ: 162.45, 136.03, 134.25, 134.15, 129.98 (q, J=6.0 Hz), 129.56 (2C), 129.23 (2C), 128.65 (2C), 128.3 (q, J=34.8 Hz), 128.04, 122.59 (q, J=277.1 Hz), 121.85 (q, J=274.7 Hz), 121.38 (q, J=286.7 Hz), 90.18 (q, J=34.8 Hz), 79.40, 61.51 (q, J=36.0 Hz); ¹⁹F-NMR (368 MHz, CDCl₃) δ : -61.05 (s, 3F), -74.06 (s, 3F), -77.24 (s, 3F); IR (KBr, cm⁻¹) v: 3512, 3439, 3043, 2967, 2898, 1770, 1611, 1330, 1182, 980, 873, 820, 693; LR-MS (ESI): m/z 496 [M+Na]⁺; HR-MS (ESI): m/z Calcd for $C_{19}H_{12}F_{9}NO_{3}Na$ $[M+Na]^{+}$ 496.0566. Found 496.0546.

2-Hydroxy-3-(2,2,2-trifluoroethoxy)-3,7-bistrifluoromethylisoindolin-1-one (21)

According to the procedure B, the benzyl ether **19** (300 mg, 0.634 mmol) was converted into **21** (233 mg, 95%). White powder; ¹H-NMR (500 MHz, CDCl₃) δ : 7.94 (d, *J*=8.0 Hz, 1H), 7.83–7.91 (m, 2H), 4.01–4.12 (m, 1H), 3.31–3.38 (m, 1H); ¹³C-NMR (125 MHz, CDCl₃) δ : 163.18, 136.15, 134.12, 129.82 (q, *J*=6.0 Hz), 128.07 (q, *J*=36.0 Hz), 127.96, 127.15, 122.71 (q, *J*=277.1 Hz), 121.73 (q, *J*=273.5 Hz), 121.10 (q, *J*=286.7 Hz), 90.13 (q, *J*=33.6 Hz), 61.86 (q, *J*=37.2 Hz); ¹⁹F-NMR (368 MHz, CDCl₃) δ : -61.14 (s, 3F), -74.33 (s, 3F), -77.55 (s, 3F); IR (KBr, cm⁻¹) v: 3419, 3207, 2968, 1724, 1332, 1296, 1178, 984, 885, 811, 689; LR-MS (ESI): *m/z* 406 [M+Na]⁺; HR-MS (ESI): *m/z* Calcd for C₁₂H₆F₉NO₃Na [M+Na]⁺ 406.0096. Found 406.0103.

2-Benzyloxy-3-chloro-4-iodo-3-trifluoromethylisoindolin-1one (**40a**) and 2-Benzyloxy-4-iodo-3-methoxy-3-trifluoromethylisoindolin-1-one (**40b**)

To a solution of alcohol 14b (1.00g, 2.23 mmol) in CH₂Cl₂ (22 mL), MsCl (259 μ L, 3.35 mmol) and Et₂N (495 μ L, 3.57 mmol) were added dropwise at 0°C, and the mixture was stirred for 1 h at 0°C, then for 24 h at rt. To the mixture, MsCl $(173 \,\mu\text{L}, 2.23 \,\text{mmol})$ and Et₂N $(340 \,\mu\text{L}, 2.45 \,\text{mmol})$ were added at rt and stirred for 3h at the same temperature. To the mixture, LiCl (189mg, 4.46mmol) was added, and stirred for 12h at rt. To the mixture, MeOH (5.0mL) was added, stirred for 12h at rt, then H₂O was added. The phases were separated. The aqueous layer was extracted with CH₂Cl₂. The combined organic layer was washed with H2O, and brine, dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The residue was purified with flash column chromatography (SiO₂, *n*-hexane–EtOAc=19:1 \rightarrow 9:1) to afford chloride 40a (630 mg, 59%) and ether 40b (335 mg, 32%). Chloride 40a: White powder; ¹H-NMR (400 MHz, acetone- d_6) δ : 8.44 (dd, J=8.1, 1.4 Hz, 1H), 7.99 (dd, J=8.1, 0.9 Hz, 1H), 7.53-7.63 (m, 3H), 7.40-7.48 (m, 3H), 5.42 (d, J=9.4Hz, 1H), 5.35 (d, J=9.4Hz, 1H); ¹³C-NMR (100MHz, acetone- d_6) δ : 162.90, 146.79, 139.73, 136.00, 133.77, 132.92, 130.10 (2C), 129.49, 129.12 (2C), 124.14, 123.93 (q, J=290.1 Hz), 90.14 (q, J=32.9 Hz), 90.10, 80.84; ¹⁹F-NMR (368MHz, CDCl₃) δ: -72.02 (s, 3F); IR (KBr, cm⁻¹) v: 3462, 3065, 2930, 2878, 1752, 1454, 1173, 1000, 915, 720; LR-MS (ESI): m/z 490 [M+Na]⁺; HR-MS (ESI): m/z Calcd for C₁₆H₁₀ClF₃INO₂Na [M+Na]⁺ 489.9289. Found 489.9283. Ether 40b: Colorless oil; ¹H-NMR (400 MHz, $CDCl_3$) δ : 8.12 (dd, J=7.6, 0.9 Hz, 1H), 7.88 (dd, J=7.6, 0.9 Hz, 1H), 7.53 (dd, J=7.2, 1.3 Hz, 2H), 7.32-7.42 (m, 2H), 7.30 (dd, J=7.6, 7.6 Hz, 1H), 5.25 (d, J=10.3 Hz, 1H), 5.19 (d, J=10.3 Hz, 1H), 3.15 (s, 3H); ¹³C-NMR (100MHz, CDCl₃) δ: 164.17, 145.94, 136.28, 134.73, 133.15, 132.84, 129.19 (2C), 128.87, 128.46 (2C), 124.12, 122.12 (q, J=289.4Hz), 93.80 (q, J=32.9 Hz), 89.95, 78.97, 51.54; ¹⁹F-NMR (368 MHz, CDCl₃) δ: -73.41 (s, 3F); IR (neat, cm⁻¹) v: 3433, 1748, 1640, 1457, 1186, 1122, 1000, 733; LR-MS (ESI): m/z 486 [M+Na]⁺; HR-MS (ESI): m/z Calcd for $C_{17}H_{13}F_{3}INO_{3}Na$ [M+Na]⁺ 485.9784. Found 485.9791.

2-Benzyloxy-3-methoxy-4-methyl-3-trifluoromethylisoindolin-1-one (41)

The mixture of iodide **40b** (330 mg, 0.712 mmol), trimethylboroxine (0.299 mL, 2.14 mmol), Pd(OAc)₂ (16.0 mg, 0.0712 mmol), PPh₃ (37.3 mg, 0.142 mmol), and K_2CO_3 (197 mg, 1.42 mmol) in dioxane (7.1 mL) and H_2O (0.71 mL) was heated to reflux for 18h. The mixture was diluted with H_2O and extracted with EtOAc twice. The combined organic layer was washed with H_2O and

747

brine, dried over Na₂SO₄, filtered and evaporated under reduced pressure. The residue was purified with flash column chromatography (SiO₂, *n*-hexane–EtOAc=19:1 \rightarrow 9:1) to afford compound **41** (217 mg, 87%). Colorless oil; ¹H-NMR (400 MHz, CDCl₃) δ : 7.72 (d, *J*=7.2 Hz, 1H), 7.30–7.56 (m, 7H), 5.26 (d, *J*=10.3 Hz, 1H), 5.18 (d, *J*=10.3 Hz, 1H), 3.05 (s, 3H), 2.46 (s, 3H); ¹³C-NMR (125 MHz, CDCl₃) δ : 165.83, 136.41, 136.30, 134.95, 131.56, 131.52, 130.86, 129.26, 128.79, 128.44, 122.55 (q, *J*=287.9 Hz), 121.97, 93.59 (q, *J*=32.4 Hz), 78.92, 51.05, 17.80 (q, *J*=3.6 Hz); ¹⁹F-NMR (368 MHz, CDCl₃) δ : -75.41 (s, 3F); IR (neat, cm⁻¹) *v*: 3426, 2916, 1746, 1637, 1282, 1193, 1114, 1020, 735; LR-MS (ESI): *m/z* 374 [M+Na]⁺; HR-MS (ESI): *m/z* Calcd for C₁₈H₁₆F₃NO₃Na [M+Na]⁺ 374.0974. Found 374.0978.

4-Iodo-2-(4-methoxybenzyloxy)isoindoline-1,3-dione (23)

To a solution of 4-iodo-NHPI (22) (5.03 g, 17.4 mmol) in DMF (35 mL), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (2.60 mL, 19.1 mmol) and PMBCl (2.80 mL, 19.1 mmol) were added at 0°C and the mixture was stirred for 2h at the same temperature. H₂O was added to the mixture and the resulted suspension was filtered. The collected precipitate was triturated with *i*Pr₂O to afford ether 23 (6.88 g, 97%). Brown powder; ¹H-NMR $(500 \text{ MHz}, \text{ acetone-} d_6) \delta$: 8.24 (d, J=7.5 Hz, 1H), 7.85 (d, J=7.5 Hz, 1H), 7.58 (dd, J=7.5, 7.5 Hz, 1H), 7.49 (d, J=8.6 Hz, 2H), 6.95 (d, J=8.6Hz, 2H), 5.15 (s, 2H), 3.80 (s, 3H); ¹³C-NMR $(125 \text{ MHz}, \text{ acetone-}d_6) \delta$: 163.02, 162.14, 161.40, 146.40, 136.18, 132.37 (2C), 132.15, 130.83, 127.23, 123.76, 114.62 (2C), 88.94, 80.05, 55.54; IR (KBr, cm⁻¹) v: 3444, 3078, 2961, 2933, 2837, 1789, 1739, 1611, 1515, 1390, 1252, 1144, 982, 876, 814, 717; LR-MS (ESI): m/z 432 [M+Na]⁺; HR-MS (ESI): m/z Calcd for C₁₆H₁₂INO₄Na [N+Na]⁺ 431.9703. Found 431.9722.

3-Hydroxy-7-iodo-2-(4-methoxybenzyloxy)-3-trifluoromethylisoindolin-1-one (**24a**) and 4-Iodo Isomer (**24b**)

According to the procedure described for the preparation of the alcohol 14a and b from phthalimide 13, the phthalimide 23 (6.60 g, 16.1 mmol) was converted into alcohol 24a (1.77 g, 23%) and 24b (1.74g, 23%). Alcohol 24a: White powder; ¹H-NMR (400 MHz, acetone- d_c) δ : 8.15 (dd, J=8.1, 0.9 Hz, 1H), 7.80 (d, J=8.1 Hz, 1H), 7.54 (dd, J=8.1, 8.1 Hz, 1H), 7.50 (d, J=8.5 Hz, 2H), 6.97 (d, J=8.5 Hz, 2H), 5.24 (d, J=9.0 Hz, 1H), 5.12 (d, J=9.0 Hz, 1H), 3.81 (s, 3H); ¹³C-NMR (100 MHz, acetone- d_6) δ : 163.87, 161.15, 143.81, 141.61, 135.49, 132.03 (2C), 130.30, 127.88, 124.94, 123.57 (q, J=286.6 Hz), 114.53 (2C), 89.64, 86.25 (q, J=32.9 Hz), 80.22, 55.53; ¹⁹F-NMR $(368 \text{ MHz}, \text{ CDCl}_2) \delta$: -79.34 (s, 3F); IR (KBr, cm⁻¹) v: 3420, 3186, 2956, 2836, 1717, 1697, 1613, 1517, 1254, 1194, 1092, 976, 827, 708; LR-MS (ESI): m/z 502 [M+Na]⁺; HR-MS (ESI): m/z Calcd for C₁₇H₁₃F₃INO₄Na [M+Na]⁺ 501.9734. Found 501.9740. Alcohol **24b**: White powder; ¹H-NMR (400 MHz, acetone- d_6) δ : 8.24 (dd, J=8.1, 0.9 Hz, 1H), 7.84 (dd, J=7.6, 1.4 Hz, 1H), 7.41-7.88 (m 3H), 6.95 (d, J=9.0Hz, 2H), 5.21 (d, J=9.9Hz,

1H), 5.13 (d, J=9.9 Hz, 1H), 3.81 (s, 3H); ¹³C-NMR (100 MHz, acetone- d_6) δ : 162.87, 161.05, 146.72, 139.74, 133.74, 133.00, 131.93 (2C), 127.96, 124.11, 123.92 (q, J=290.4 Hz), 114.46 (2C), 90.09, 90.07 (q, J=32.9 Hz), 80.56, 55.48; ¹⁹F-NMR (368 MHz, acetone- d_6) δ : -75.38 (s, 3F); IR (KBr, cm⁻¹) v: 3181, 2960, 2836, 1702, 1612, 1516, 1254, 1196, 1131, 983, 833, 756; LR-MS (ESI): m/z 502 [M+Na]⁺; HR-MS (ESI): m/z Calcd for C₁₇H₁₃F₃INO₄Na [M+Na]⁺ 501.9734. Found 501.9732.

3-Chloro-7-iodo-2-(4-methoxybenzyloxy)-3-trifluoromethylisoindolin-1-one (25)

According to the procedure described for the preparation of the chloride **15** from alcohol **14a**, the alcohol **24a** (1.72 g, 3.59 mmol) was converted into chloride **25** (1.55 g, 87%). White powder; ¹H-NMR (400 MHz, acetone- d_6) δ : 8.27 (dd, J=8.1, 0.9 Hz, 1H), 7.92 (d, J=7.6 Hz), 7.66 (dd, J=7.6, 7.6 Hz, 1H), 7.43 (d, J=8.5 Hz, 2H), 6.99 (d, J=8.5 Hz, 2H), 5.34 (d, J=9.0 Hz, 1H), 5.19 (d, J=9.0 Hz, 1H), 3.83 (s, 3H); ¹³C-NMR (100 MHz, acetone- d_6) δ : 163.78, 161.36, 144.58, 140.68, 136.38, 132.28, 128.40, 127.03, 125.11 (q, J=1.9 Hz), 122.45 (q, J=283.8 Hz), 114.65, 90.79, 80.18, 78.85 (q, J=35.7 Hz), 55.54; ¹⁹F-NMR (368 MHz, acetone- d_6) δ : -76.31 (s, 3F); IR (KBr, cm⁻¹) v: 3422, 2959, 2834, 1742, 1515, 1459, 1249, 974, 706; LR-MS (ESI): m/z 520 [M+Na]⁺; HR-MS (ESI): m/z Calcd for $C_{17}H_{12}CIF_{3}INO_{3}Na$ [M+Na]⁺ 520.9395. Found 519.9382.

7-Iodo-2-(4-methoxybenzyloxy)-3-(2-oxo-2-phenylethyl)-3trifluoromethylisoindolin-1-one (26)

According to the procedure described for the preparation of the phenylketone 8 from chloride 2, the chloride 25 (498 mg, 1.00 mmol) was converted into acetophenone 26 (464 mg, 80%). White powder; ¹H-NMR (400 MHz, acetone- d_6) δ : 8.09 (d, J=7.6 Hz, 1H), 7.86 (d, J=8.5 Hz, 2H), 7.76 (d, J=7.6 Hz, 1H), 7.56 (dd, J=7.6, 7.6 Hz, 1H), 7.34-7.46 (m, 5H), 6.86 (d, J=8.5 Hz, 2H), 5.27 (d. J=9.4 Hz, 1H), 5.03 (d. J=9.4 Hz, 1H), 4.24 (s, 1H), 4.23 (s, 1H), 3.73 (s, 3H); ¹³C-NMR (100 MHz, acetone- d_6) δ : 193.71, 167.72, 161.04, 142.37, 142.15, 137.05, 134.86, 134.33, 134.95, 131.95 (2C), 129.39 (2C), 128.73 (2C), 127.99 (q, J=217.1 Hz), 127.80, 123.77, 114.51 (2C), 90.18, 79.49, 66.83 (q, J=29.1 Hz), 55.44, 35.03; ¹⁹F-NMR (368 MHz, acetone- d_6) δ : -76.93 (s, 3F); IR (KBr, cm⁻¹) v: 3436, 3066, 2998, 2955, 2836, 1730, 1695, 1611, 1517, 1259, 1195, 1156, 1002, 822, 688; LR-MS (ESI): m/z 604 [M+Na]⁺; HR-MS (ESI): m/z Calcd for C₂₅H₁₉F₃INO₄Na [M+Na]⁺ 604.0203. Found 604.0228.

2-(4-Methoxybenzyloxy)-3-(2-oxo-2-phenylethyl)-3,7bistrifluoromethylisoindolin-1-one (**27**)

According to the procedure described for the preparation of the trifluoromethylated compound 18 from iodide 16, the iodide 26 (440 mg, 0.757 mmol) was converted into trifluoromethylated compound 27 (141 mg, 36%). White powder; ¹H-NMR (400 MHz, acetone- d_6) δ : 8.05 (d, J=7.2 Hz, 1H), 8.01 (d, $J=7.6\,\mathrm{Hz}, 1\mathrm{H}$), 7.86–7.95 (m, 3H), 7.57 (dd, $J=7.4, 7.4\,\mathrm{Hz}, 1\mathrm{H}$), 7.38-7.61 (m, 4H), 6.86 (d, J=8.5 Hz, 2H), 5.27 (d, J=9.4 Hz, 1H), 5.04 (d, J=9.4 Hz, 1H), 3.74 (s, 3H); ¹³C-NMR (100 MHz, acetone-d₆) &: 193.78, 165.85, 161.08, 141.87, 136.95, 134.40, 134.20, 131.98 (2C), 129.40 (2C), 129.25, 128.74 (2C), 128.32 (q, J=5.6 Hz), 127.88, 127.66, 127.27, 125.51 (q, J=284.7 Hz), 123.11 (q, J=272.5 Hz), 114.53 (2C), 79.52, 67.85 (q, J=29.1 Hz), 55.43, 34.97; ¹⁹F-NMR (368 MHz, acetone- d_6) δ : -60.90 (s, 3F), -76.96 (s, 3F); IR (KBr, cm⁻¹) v: 3442, 2957, 1742, 1693, 1612, 1518, 1323, 1255, 1193, 1140, 1006, 812, 867; LR-MS (ESI): m/z 546 [M+Na]⁺; HR-MS (ESI): m/z Calcd for C₂₆H₁₉F₆NO₄Na [M+Na]⁺ 546.1110. Found 546.1097.

2-Hydroxy-3-(2-oxo-2-phenylethyl)-3,7-bistrifluoromethylisoindolin-1-one (28)

To a solution of PMBether 27 (52.3 mg, 0.100 mmol) and pentamethyl benzene (44.4 mg, 0.300 mmol) in CH₂Cl₂ (2.0 mL), TFA (1.0 mL) was added at 0°C, and the mixture was stirred for 0.5h at 0°C, then for 2h at rt. The mixture was neutralized with sat. NaHCO₃ aq. at 0°C, then the phases were separated. The organic layer was washed with H₂O and brine, dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The residue was purified with flash column chromatography (SiO₂, *n*-hexane–EtOAc=4:1 \rightarrow 2:1) to afford **28** (36.8 mg, 91%). Pale vellow powder; ¹H-NMR (400 MHz, acetone- d_6) δ : 7.81–8.09 (m, 5H), 7.39–7.66 (m, 3H), 4.20–4.39 (m, 2H); ¹³C-NMR (100 MHz, acetone- d_6) δ : 193.90, 164.41, 141.69, 137.19, 134.40, 133.50, 129.94, 129.48 (2C), 128.79 (2C), 128.06 $(q, J=5.6 \text{ Hz}), 127.73, 127.43, 125.44 (q, J=284.7 \text{ Hz}), 123.74 (q, J=284.7 \text{$ J=273.4 Hz), 67.93 (q, J=28.2 Hz), 34.68; ¹⁹F-NMR (368 MHz, acetone- d_6) δ : -60.74 (3F), -77.48 (3F); IR (KBr, cm⁻¹) v: 3422, 3187, 2926, 1720, 1691, 1598, 1327, 1279, 1172, 814, 688; LR-MS (ESI): m/z 426 [M+Na]⁺; HR-MS (ESI): m/z Calcd for C₁₈H₁₁F₆NO₃Na [M+Na]⁺ 426.0535. Found 426.0531.

4,5,6,7-Tetrafluoro-2-(4-methoxybenzyloxy)isoindoline-1,3dione (**30**)

To a solution of phthalimide 29 (1.51 g, 6.42 mmol), 4-methoxylbenzylalcohol (1.06g, 7.70 mmol) and PPh₃ (2.02g, 7.70 mmol) in tetrahydrofuran (THF) (13 mL), diisopropyl azodicarboxylate in toluene (4.05 mL, 7.70 mmol) was added at 0°C, and the reaction mixture was stirred for 1h at 0°C and for 12h at rt. The reaction mixture was evaporated under reduced pressure. The residue was triturated with EtOAc to afford benzylether **30** (1.40 g, 61%). Pale yellow powder; ¹H-NMR (400 MHz, acetone- d_6) δ : 7.47 (d, J=8.5 Hz, 2H), 6.95 (d, J=8.5 Hz, 2H), 5.13 (s, 2H), 3.81 (s, 3H); ¹³C-NMR (125 MHz, DMSO-d₆) δ: 160.04, 158.19 (2C), 143.09-145.45 (m, 2C), 141.49-143.79 (m, 2C), 131.63 (2C), 125.80, 113.92 (2C), 111.11 (d, J=8.4 Hz, 2C), 79.33, 55.19; ¹⁹F-NMR $(368 \text{ MHz}, \text{ acetone-} d_6) \delta$: -139.54 (s, 2F), -146.37 (s, 2F); IR (KBr, cm⁻¹) v: 3513, 3039, 2984, 2850, 1736, 1610, 1499, 1406, 1254, 1154, 942, 860, 733; LR-MS (ESI): m/z 378 [M+Na]⁺; HR-MS (ESI): m/z Calcd for $C_{16}H_9F_4NO_4Na$ [M+Na]⁺ 378.0360. Found 378.0345.

4,5,6,7-Tetrafluoro-3-hydroxy-2-(4-methoxybenzyloxy)-3trifluoromethylisoindolin-1-one (**31**)

According to the procedure described for the preparation of alcohol 14a and b from phthalimide 13, the phthalimide 30 (1.29 g, 3.63 mmol) was converted into alcohol 31 (1.43 g, 93%). White powder; ¹H-NMR (400 MHz, acetone- d_6) δ : 7.46 (d, J=8.5 Hz, 2H), 6.96 (d, J=8.5 Hz, 2H), 5.22 (d, J=9.4 Hz, 1H), 5.12 (d, J=9.4 Hz, 1H), 3.81 (s, 3H); ¹³C-NMR (125 MHz, acetone- d_6) δ : 161.32, 159.48, 145.46 (ddd, J=259.1, 15.6, 15.6 Hz), 144.65 (dd, J=260.3, 12.0 Hz), 144.62 (dd, J=260.3, 12.0 Hz), 143.97 (ddd, J=257.9, 13.2, 13.2 Hz), 132.17 (2C), 127.47, 123.13 (q, J=286.7 Hz), 120.29 (d, J=13.2 Hz), 114.60 (2C), 113.67 (d, J=12.0 Hz), 87.65 (q, J=34.8 Hz), 80.75, 55.54; ¹⁹F-NMR (368 MHz, acetone- d_6) δ : -79.03 (s, 3F), -139.73 (s, 1F), -142.66 (s, 1F), -148.13 (s, 1F), -150.75 (s, 1F); IR (KBr, cm⁻¹) v: 3255, 3010, 2970, 2943, 2843, 1560, 1613, 1519, 1254, 1181, 978, 904, 823, 730; LR-MS (ESI): m/z 448 $[M+Na]^+$; HR-MS (ESI): m/z Calcd for $C_{17}H_{10}F_7NO_4Na$ [M+Na]⁺ 448.0390. Found 448.0368.

4,5,6,7-Tetrafluoro-3-methoxy-2-(4-methoxybenzyloxy)-3trifluoromethylisoindolin-1-one (**32**)

To a solution of Ms₂O (110mg, 0.635 mmol) in CH₂Cl₂ (1.0mL), a solution of alcohol **31** (180mg, 0.423 mmol) and Et₃N (94 μ L, 0.677 mmol) in CH₂Cl₂ (1.0mL) was added at -78° C, and the mixture was stirred for 0.5 h at the same temperature. To the mixture, MeOH (2.0mL) was added, and the mixture was stirred for 0.5 h at -78° C, then for 18 h at rt. H₂O was added to the mixture and the whole was extracted with

CH₂Cl₂. The organic layer was washed with H₂O and brine, dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The residue was purified with flash column chromatography (SiO₂, *n*-hexane-EtOAc=9:1) to afford ether 32 (100 mg, 54%). White powder; ¹H-NMR (400 MHz, CDCl₃) δ : 7.43 (d, J=9.0Hz, 2H), 6.90 (d, J=9.0Hz, 2H), 5.18 (d, J=9.9 Hz, 1H), 5.05 (d, J=9.9 Hz, 1H), 3.80 (s, 3H), 3.12 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ: 160.35, 159.91, 144.58 (dddd, J=264.0, 14.1, 14.1, 1.9 Hz), 144.13 (ddd, J=266.9, 12.2, 1.9 Hz), 141.82–144.94 (m, 2C), 131.28 (2C), 126.18, 121.29 (g, J=286.6 Hz), 115.81 (dd, J=13.2, 2.8 Hz), 113.89 (2C), 113.48 (q, J=12.2, 2.8 Hz), 91.40 (q, J=35.7 Hz), 79.21, 55.26, 52.16; ¹⁹F-NMR (368 MHz, CDCl₃) δ : -77.21 (3F), -136.30 (1F), -137.66 (1F), -143.80 (1F), 146.03 (1F); IR (KBr, cm⁻¹) v; 3503, 2959, 2846, 1766, 1613, 1505, 1391, 1206, 1029, 914, 733; LR-MS (ESI): m/z 462 [M+Na]+; HR-MS (ESI): m/z Calcd for $C_{18}H_{12}F_7NO_4Na [M+Na]^+$ 462.0547. Found 462.0558.

4,5,6,7-Tetrafluoro-2-hydroxy-3-methoxy-3-trifluoromethylisoindolin-1-one (**34**)

According to the procedure described for the preparation of *N*-oxyl **28** from PMBether **27**, PMBether **32** (30.0 mg, 0.0591 mmol) was converted into **34** (1.3 mg, 6%). White powder; ¹H-NMR (400 MHz, acetone- d_6) δ : 3.31 (s, 3H); ¹³C-NMR (100 MHz, acetone- d_6) δ : 159.39, 142.83–146.66 (m, 4C), 122.64 (q, *J*=287.5 Hz), 116.57 (d, *J*=11.3 Hz), 114.91 (d, *J*=10.3 Hz), 91.71 (q, *J*=32.0 Hz), 52.52; ¹⁹F-NMR (368 MHz, acetone- d_6) δ : -78.04 (s, 3F), -139.84 (s, 1F), -142.44 (s, 1F), -148.50 (s, 1F), -150.57 (s, 1F); IR (KBr, cm⁻¹) *v*: 3434, 2935, 1735, 1508, 1198, 1109, 918, 803, 731; LR-MS (ESI): *m/z* 318 [M–H]⁻; HR-MS (ESI): *m/z* Calcd for C₁₀H₃F₇NO₃ [M–H]⁻ 318.0007. Found 318.0021.

4,5,6,7-Tetrafluoro-2-(4-methoxybenzyloxy)-3-(2,2,2trifluoroethoxy)-3-trifluoromethylisoindolin-1-one (**33**)

According to the procedure described for the preparation of ether 32 from alcohol 31 in which 2,2,2-trifluoroenthanol was used as the alcohol instead, alcohol **31** (1.00 g, 2.35 mmol) was converted into ether 33 (0.593 g, 50%). White powder; ¹H-NMR (400 MHz, acetone- d_6) δ : 7.47 (d, J=8.5 Hz, 2H), 6.98 (d, J=8.5 Hz, 2H), 5.20 (s, 2H), 4.17-4.30 (m, 1H), 4.05-4.17 (m, 1H), 3.82 (s, 3H); ¹³C-NMR (100 MHz, DMSO- d_6) δ : 160.04, 159.39, 141.90-146.29 (m, 4C), 131.16 (2C), 128.59 (d, J=195.4 Hz), 125.93, 123.38 (q, J=279.2 Hz), 120.93 (q, $J=286.6\,\mathrm{Hz}$, 114.04 (2C), 113.20 (ddd, $J=78.0, 12.2, 2.8\,\mathrm{Hz}$), 90.24 (q, J=34.8 Hz), 79.36, 61.87 (q, J=35.7 Hz), 55.18; ¹⁹F-NMR (368 MHz, acetone- d_6) δ : -74.48 (s, 3F), -77.29 (s, 3F), -137.71 (s, 1F), -140.71 (s, 1F), -145.83 (s, 1F), -149.04 (s, 1F); IR (KBr, cm⁻¹) v: 3435, 2967, 2851, 1750, 1615, 1516, 1290, 1175, 1032, 997, 917, 731; LR-MS (ESI): m/z 530 $[M+Na]^+$; HR-MS (ESI): m/z Calcd for $C_{19}H_{11}F_{10}NO_4Na$ [M+Na]⁺ 530.0421. Found 530.0434.

4,5,6,7-Tetrafluoro-2-hydroxy-3-(2,2,2-trifluoroethoxy)-3-trifluoromethylisoindolin-1-one (**35**)

According to the procedure with that described for the preparation of **28** from PMBether **27**, PMBether **33** (53.0 mg, 0.104 mmol) was converted into **35** (26.8 mg, 67%). White powder; ¹H-NMR (400 MHz, acetone- d_6) δ : 4.17–4.29 (m, 1H), 4.00–4.11 (m, 1H); ¹³C-NMR (100 MHz, acetone- d_6) δ : 159.46, 145.78 (ddd, J=259.3, 13.9, 13.9 Hz), 143.23–146.48 (m, 3C), 124.29 (q, J=275.3 Hz), 122.29 (q, J=284.8 Hz), 115.64 (d, J=11.2 Hz), 114.82 (q, J=12.2 Hz), 91.09 (q, J=34.8 Hz), 62.76 (q, J=36.6 Hz); ¹⁹F-NMR (368 MHz, acetone- d_6) δ : -74.77 (s, 3F), -77.64 (s, 3F), -138.55 (s, 1F), -141.89 (s, 1F), -147.54 (s, 1F), -149.86 (s, 1F); IR (KBr, cm⁻¹) v: 3425, 3126, 2926, 1722, 1519, 1502, 1410, 1297, 1173, 927, 807, 733; LR-MS (ESI): m/z 386 [M–H]⁻; HR-MS (ESI): m/z Calcd for C₁₁H₂F₁₀NO₃ [M–H]⁻ 385.9880. Found 385.9882.

Preparation of Substrates for Aerobic Benzylic C–H Oxidation Full spectroscopic data were described for new compounds. Compound 36a,³⁵⁾ b,³⁶⁾ g,³⁷⁾ h,³⁸⁾ j,³⁹⁾ and k^{40} were prepared following the reported procedures.

General Procedure for Benzoate from Alcohol (Procedure C)

3-(4-Methoxyphenyl)propyl Benzoate (**36c**)

To a solution of 3-(4-methoxyphenyl)-1-propanol 42c (1.66 g, 10.0 mmol) in CH₂Cl₂ (20 mL), BzCl (1.39 mL, 12.0 mol) and pyridine (1.93 mL, 24.0 mmmol) were added at 0°C. The reaction mixture was stirred for 1 h at the same temperature, and for 2h at rt. The mixture was cooled to 0°C, and sat. NaHCO₃ aq. was added. The phases were separated. The organic layer was washed with H2O, 1N HCl aq., H2O, and brine, dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The residue was purified with flash column chromatography (SiO₂, *n*-hexane–EtOAc=19:1 \rightarrow 9:1) to afford benzoate **36c** (1.69 g, 63%). Colorless oil ; ¹H-NMR (500 MHz, $CDCl_{2}$) δ : 8.02 (d. J=7.5 Hz, 2H), 7.55 (dd. J=7.5, 7.5 Hz, 1H), 7.43 (dd, J=7.5, 7.5 Hz, 2H), 7.12 (d, J=8.6 Hz, 2H), 6.82 (d, J=8.6 Hz, 2H), 4.31 (t, J=7.5 Hz, 2H), 3.77 (s, 3H), 2.72 (t, J=7.5 Hz, 2H), 2.05 (tt, J=7.5, 7.5 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₂) δ: 166.36, 157.74, 132.99, 132.69, 130.21, 129.36 (2C), 129.15 (2C), 128.16 (2C), 113.69 (2C), 64.06, 54.99, 31.18, 30.32; IR (neat, cm⁻¹) v: 3434, 1716, 1637, 1513, 1274, 1116, 711; LR-MS (ESI): m/z 293 [M+Na]⁺; HR-MS (ESI): *m/z* Calcd for C₁₇H₁₈O₃Na [M+Na]⁺ 293.1148. Found 293.1147.

3-(4-Fluorophenyl)propyl Benzoate (36d)

According to the procedure C, 3-(4-fluorophenyl)-1-propanol **42d** (1.34 g, 8.89 mmol) was converted into benzoate **36d** (1.97 g, 86%). Colorless oil; ¹H-NMR (500 MHz, CDCl₃) δ : 8.01 (dd, *J*=7.5. 1.2 Hz, 2H), 7.55 (dd, *J*=7.5, 7.5 Hz, 1H), 7.43 (dd, *J*=7.5, 7.5 Hz, 2H), 7.15 (dd, *J*=8.6, 5.3 Hz, 2H), 6.96 (dd, *J*=10.9, 10.9 Hz, 2H), 4.32 (t, *J*=6.9 Hz, 2H), 2.75 (t, *J*=8.1 Hz, 2H), 2.06 (tt, *J*=7.5, 6.9 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ : 166.33, 161.19 (d, *J*=243.4 Hz), 136.63 (d, *J*=14.3 Hz), 132.76, 129.86 (d, *J*=55.4 Hz), 129.51 (d, *J*=28.2 Hz), 128.20, 115.12, 114.91, 63.90, 31.31, 30.21; ¹⁹F-NMR (368 MHz, CDCl₃) δ : -117.79 (s, 1F); IR (neat, cm⁻¹) *v*: 3421, 1717, 1644, 1509, 1274, 1221, 1116, 711; LR-MS (ESI): *m*/*z* 281 [M+Na]⁺; HR-MS (ESI): *m*/*z* Calcd for C₁₆H₁₅FO₂Na [M+Na]⁺ 281.0948. Found 281.0960.

3-(4-Trifluoromethylphenyl)propyl Benzoate (36e)

According to the procedure C, 3-(4-trifluoromethylphenyl)-1-propanol **42e** (1.59 g, 7.79 mmol) was converted into benzoate **36e** (1.99 g, 83%). Colorless oil; ¹H-NMR (500 MHz, CDCl₃) δ : 7.98 (d, *J*=8.1 Hz, 2H), 7.51–7.58 (m, 3H), 7.43 (dd, *J*=7.5, 7.5 Hz, 2H), 7.31 (d, *J*=8.0 Hz, 2H), 4.33 (t, *J*=6.3 Hz, 2H), 2.84 (t, *J*=7.5 Hz, 2H), 2.11 (tt, *J*=6.9, 6.9 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ : 166.28, 145.26, 132.78, 130.04, 129.32 (2C), 128.58 (2C), 128.18, 128.17 (q, *J*=32.0 Hz, 2C), 125.17 (q, *J*=3.8 Hz, 2C), 124.21 (q, *J*=271.6 Hz), 63.83, 32.05, 29.75; ¹⁹F-NMR (368 MHz, CDCl₃) δ : -62.69 (s, 3F); IR (neat, cm⁻¹) *v*: 3431, 1643, 1327, 1274, 1118, 1067, 708; LR-MS (ESI): *m/z* 331 [M+Na]⁺; HR-MS (ESI): *m/z* Calcd for C₁₇H₁₅F₃O₂Na [M+Na]⁺ 331.0916. Found 331.0908.

Aerobic Benzylic C–H Oxidation, Etherification, and Acetamidation Full spectroscopic data were described for new compounds. Compound $37b_{,}^{(41)} f_{,}^{(42)} g_{,}^{(43)} h_{,}^{(44)} i_{,}^{(45)} j_{,}^{(46)} l_{,}^{(47)}$ m,⁴⁸⁾ and n⁴⁹⁾ are known compounds.

General Procedure for the Oxidation of Benzylic C-H (Procedure D)

3-Oxo-3-phenylpropyl 4-trifluoromethylbenzoate (37a)

To a solution of benzoate **36a** (72.1 mg, 0.300 mmol) in **35** (5.8 mg, 0.015 mmol), TFE (0.15 mL), Co(OAc)₂ (0.53 mg, 0.00300 mmol) and Mn(OAc)₃·H₂O (0.80 mg, 0.00300 mmol) were added. The reaction mixture was stirred for 48 h at 60°C under O₂ atmosphere. The mixture was evaporated under reduced pressure, and the residue was purified with flash column chromatography (SiO₂, *n*-hexane–EtOAc=9:1) to afford ketone **37a** (59.8 mg, 75%). White powder; ¹H-NMR (500 MHz, CDCl₃) δ : 8.08 (d, *J*=8.6 Hz, 2H), 7.98 (d, *J*=8.6 Hz, 2H), 7.66 (d, *J*=8.6 Hz, 2H), 7.58 (dd, *J*=7.4, 7.4 Hz, 1H), 7.48 (dd, *J*=8.0 Hz, 2H), 4.80 (t, *J*=6.3 Hz, 2H), 3.46 (t, *J*=6.3 Hz, 2H); ¹³C-NMR (125 MHz, CDCl₃) δ : 196.80, 165.31, 136.49, 134.47

(q, J=32.4Hz, 2C), 133.55, 133.20, 130.01 (2C), 128.76, 128.10 (2C), 125.37 (q, J=4.8Hz, 2C), 123.58 (q, J=273.5Hz), 60.77, 37.33; ¹⁹F-NMR (368MHz, CDCl₃) δ : -63.46 (s, 3F); IR (KBr, cm⁻¹) v: 3431, 3072, 2979, 1719, 1683, 1324, 1269, 1169, 1100, 1064, 958, 866, 741; LR-MS (ESI): m/z 345 [M+Na]⁺; HR-MS (ESI): m/z Calcd for C₁₇H₁₃F₃O₃Na [M+Na]⁺ 345.0709. Found 345.0707.

3-(4-Methoxyphenyl)-3-oxopropyl Benzoate (37c)

According to the procedure D, benzoate **36c** (81.1 mg, 0.300 mmol) was converted into ketone **37c** (36.0 mg, 42%). Colorless oil; ¹H-NMR (500 MHz, CDCl₃) δ : 7.93–7.99 (m, 4H), 7.52 (dd, *J*=7.5, 7.5 Hz, 1H), 7.39 (dd, *J*=7.4, 7.4 Hz, 2H), 6.93 (d, *J*=9.2 Hz, 2H), 4.74 (t, *J*=6.3 Hz, 2H), 3.85 (s, 3H), 3.38 (t, *J*=6.3 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ : 195.60, 166.55, 163.71, 132.94 (2C), 130.41, 130.02, 129.74, 129.58 (2C), 128.29 (2C), 113.81 (2C), 60.51, 55.47, 37.16; IR (neat, cm⁻¹) v: 3433, 1637, 1508, 1458, 1275, 1174, 1110, 669; LR-MS (ESI): *m/z* 307 [M+Na]⁺; HR-MS (ESI): *m/z* Calcd for C₁₇H₁₆O₄Na [M+Na]⁺ 307.0941. Found 307.0929.

3-Oxo-3-(4-trifluoromethylphenyl)propyl Benzoate (37d)

According to the procedure D, benzoate **36d** (92.5 mg, 0.300 mmol) was converted into ketone **37d** (42.6 mg, 44%). White powder; ¹H-NMR (500 MHz, CDCl₃) δ : 8.08 (d, J=8.0 Hz, 2H), 7.96 (d, J=6.9 Hz, 2H), 7.73 (d, J=8.0 Hz, 2H), 7.53 (dd, J=7.5 Hz, 1H), 7.39 (dd, J=7.5, 7.5 Hz, 2H), 4.77 (t, J=6.3 Hz, 2H), 3.47 (t, J=6.3 Hz, 2H); ¹³C-NMR (125 MHz, CDCl₃) δ : 196.16, 166.49, 139.16, 134.71 (q, J=32.4 Hz, 2C), 133.11, 129.82, 129.58, 128.46 (2C), 128.36 (2C), 125.81 (q, J=3.6 Hz, 2C), 123.49 (q, J=272.3 Hz), 59.96, 37.85; ¹⁹F-NMR (368 MHz, CDCl₃) δ : -63.49 (s, 3F); IR (neat, cm⁻¹) v: 3412, 3078, 2957, 1716, 1685, 1414, 1322, 1273, 1123, 1065, 857, 710; LR-MS (ESI): *m/z* 345 [M+Na]⁺; HR-MS (ESI): *m/z* Calcd for C₁₇H₁₃F₃O₃Na [M+Na]⁺ 345.0709. Found 345.0705.

3-(4-Fluorophenyl)-3-oxopropyl Benzoate (37e)

According to the procedure D, benzoate **36e** (77.5 mg, 0.300 mmol) was converted into ketone **37e** (56.7 mg, 69%). White powder; ¹H-NMR (400 MHz, CDCl₃) δ : 7.95–8.04 (m, 4H), 7.53 (dd, *J*=7.2, 7.2 Hz, 1H), 7.40 (dd, *J*=7.6, 7.6 Hz, 2H), 7.13 (dd, *J*=8.5 Hz, 2H), 4.75 (t, *J*=6.7 Hz, 2H), 3.41 (t, *J*=6.7 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ : 195.43, 166.45, 165.87 (d, *J*=254.7 Hz), 132.99, 130.73 (d, *J*=9.4 Hz, 2C), 129.89, 129.53 (2C), 128.29 (2C), 115.78 (d, *J*=21.6 Hz, 2C), 60.17, 37.39; ¹⁹F-NMR (368 MHz, CDCl₃) δ : -104.88 (s, 1F); IR (neat, cm⁻¹) *v*: 3415, 3072, 2955, 1717, 1677, 1598, 1507, 1332, 1274, 1215, 1120, 976, 850, 713; LR-MS (ESI): *m/z* 295 [M+Na]⁺; HR-MS (ESI): *m/z* Calcd for C₁₆H₁₃FO₃Na [M+Na]⁺ 295.0741. Found 295.0731.

Methyl 5-Oxo-5-phenylpentanimidate (37k)

According to the procedure D, benzoate **36k** (17.1 mg, 0.0894 mmol) was converted into ketone **37k** (14.3 mg, 78%). White powder; ¹H-NMR (400 MHz, CDCl₃) δ : 7.94 (dd, *J*=9.9, 1.8 Hz, 2H), 7.53 (dd, *J*=9.0, 9.0 Hz, 1H), 7.44 (dd, *J*=7.6 Hz, 2H), 3.66 (s, 3H), 3.03 (t, *J*=7.2 Hz, 2H), 2.43 (t, *J*=7.2 Hz, 2H), 2.05 (tt, *J*=7.2, 7.2 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ : 199.39, 173.72, 136.76, 133.07, 128.58 (2C), 128.00 (2C), 51.57, 37.41, 33.09, 19.29; IR (KBr, cm⁻¹) *v*: 3433, 1636, 1563, 1507, 1265, 1101, 664; LR-MS (ESI): *m/z* 228 [M+Na]⁺; HR-MS (ESI): *m/z* Calcd for C₁₂H₁₅NO₂Na [M+Na]⁺ 228.0995. Found 228.1002.

3-Phenyl-3-(2,2,2-trifluoroethoxy)propyl Benzoate (38)

To a solution of benzoate **36b** (72.1 mg, 0.300 mmol) in **35** (5.8 mg, 0.015 mmol), TFE (3.0 mL), NBS (106.8 mg, 2.0 eq) was added. The reaction mixture was stirred for 20h at rt. To the mixture, 10% Na₂S₂O₃ aq. was added, and the whole was extracted with EtOAc. The organic layer was washed with H₂O and brine, dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The residue was purified with flash column chromatography (SiO₂, *n*-hexane–EtOAc=97:3→4:1) to afford ether **38** (37.3 mg, 37%). Colorless oil; ¹H-NMR (400 MHz, CDCl₃) δ : 7.94 (d, *J*=7.2 Hz, 2H), 7.49 (dd, *J*=7.6, 7.6 Hz, 1H), 7.22–7.40 (m, 7H), 4.55 (dd, *J*=8.5, 5.4 Hz, 1H), 4.36–4.45 (m, 1H), 4.24–4.34 (m, 1H), 3.50–3.71 (m, 2H), 2.20–2.31 (m, 1H), 2.01–2.12 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ : 166.41, 139.74, 132.95, 130.17, 129.52 (2C), 128.88

(2C), 128.51, 128.35 (2C), 126.61 (2C), 123.99 (q, J=278.1 Hz), 80.49, 65.88 (q, J=33.8 Hz), 61.45, 37.19; ¹⁹F-NMR (368 MHz, CDCl₃) δ : -74.33 (s, 3F); IR (neat, cm⁻¹) v: 3427, 1723, 1634, 1446, 1274, 1117, 1071, 798; LR-MS (ESI): m/z 361 [M+Na]⁺; HR-MS (ESI): m/z Calcd for C₁₈H₁₇F₃O₃Na [M+Na]⁺ 361.1022. Found 361.1019.

 $F + F_{3}C + CF_{3}$ $F + F_{3}C + CF_{3}$

3-Acetamido-3-phenylpropyl Benzoate (39)

To a solution of benzoate 36b (72.1 mg, 0.300 mmol) 35 (5.8 mg, 0.015 mmol) in CH₂CN (3.0 mL), NBS (106.8 mg, 2.0 eq) was added. The reaction mixture was stirred for 24h at rt. To the mixture, 10% Na₂S₂O₃ aq. was added, and the whole was extracted with EtOAc. The organic layer was washed with H₂O and brine, dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The residue was purified with preparative TLC (SiO₂, n-hexane-EtOAc=4:1) to afford ether **39** (38.9 mg, 44%). White powder; ¹H-NMR (500 MHz, $CDCl_3$) δ : 7.96 (d, J=8.6 Hz, 2H), 7.54 (dd, J=8.1, 8.1 Hz, 1H), 7.38-7.44 (m, 2H), 7.22-7.35 (m, 5H), 5.97 (brs, 1H), 5.19 (td, J=8.0, 8.0 Hz, 1H), 4.29 (t, J=6.3 Hz, 2H), 2.18–2.36 (m, 2H), 1.96 (s, 3H); ¹³C-NMR (100 MHz, CDCl₂) δ : 169.29, 166.45, 141.13, 133.02, 129.53 (2C), 128.88 (2C), 128.37 (2C), 128.25, 127.70, 126.51 (2C), 61.99, 51.05, 34.86, 23.41; IR (KBr, cm⁻¹) v: 3277, 3075, 1718, 1653, 1558, 1271, 1115, 714; LR-MS (ESI): m/z 320 [M+Na]⁺; HR-MS (ESI): m/z Calcd for C₁₀H₁₀NO₂Na [M+Na]⁺ 320.1257. Found 320.1254.

Conflict of Interest The authors declare no conflict of interest.

References and Notes

- Newhouse T., Baran P. S., Angew. Chem. Int. Ed., 50, 3362–3374 (2011).
- 2) White M. C., Science, 335, 807-809 (2012).
- Roduner E., Kaim W., Sarkar B., Urlacher V. B., Pleiss J., Gläser R., Einicke W.-D., Sprenger G. A., Beifuß U., Klemm E., Liebner C., Hieronymus H., Hsu S.-F., Plietker B. P., Laschat S., *ChemCatChem*, 5, 82–112 (2013).
- Chen K., Zhang P., Wang Y., Li H., Green Chem., 16, 2344–2374 (2014).
- Ishii Y., Sakaguchi S., Iwahama T., Adv. Synth. Catal., 343, 393– 427 (2001).
- 6) Recupero F., Punta C., Chem. Rev., 107, 3800-3842 (2007).
- 7) Melone L., Punta C., Beilstein J. Org. Chem., 9, 1296–1310 (2013).
- Ueda C., Noyama M., Ohmori H., Masui M., Chem. Pharm. Bull., 35, 1372–1377 (1987).
- Koshino N., Saha B., Espenson J. H., J. Org. Chem., 68, 9364–9370 (2003).
- Sawatari N., Yokota T., Sakaguchi S., Ishii Y., J. Org. Chem., 66, 7889–7891 (2001).
- Guha S. K., Obora Y., Ishihara D., Matsubara H., Ryu I., Ishii Y., Adv. Synth. Catal., 350, 1323–1330 (2008).
- Nechab M., Einhorn C., Einhorn J., Chem. Commun., 2004, 1500– 1501 (2004).
- 13) Michaux J., Bessières B., Einhorn J., Tetrahedron Lett., 53, 48-50

(2012).

- 14) Zhang Q., Chen C., Ma H., Miao H., Zhang W., Sun Z., Xu J., J. Chem. Technol. Biotechnol., 83, 1364–1369 (2008).
- Amorati R., Lucarini M., Mugnaini V., Pedulli G. F., Minisci F., Recupero F., Fontana F., Astolfi P., Greci L., J. Org. Chem., 68, 1747–1754 (2003).
- 16) Ozawa J., Tashiro M., Ni J., Oisaki K., Kanai M., Chem. Sci., 7, 1904–1909 (2016).
- 17) Prakash G. K. S., Yudin A. K., Chem. Rev., 97, 757-786 (1997).
- 18) Regioisomers 14a and b, obtained after the trifluoromethylation of 13, were characterized by the conversion of 14b into 41, whose structure was determined by nuclear Overhauser effect (NOE) analysis. The structure of 14a was subsequently deduced from the structure of 14b.

- Tomashenko O. A., Escudero-Adán E. C., Martínez Belmonte M., Grushin V. V., Angew. Chem. Int. Ed., 50, 7655–7659 (2011).
- Jacq J., Berthiol F., Einhorn C., Einhorn J., Synlett, 15, 2263–2266 (2010).
- Yoshino H., Tsuchiya Y., Saito I., Tsujii M., Chem. Pharm. Bull., 35, 3438–3441 (1987).
- Coe P. L., Croll B. T., Patrick C. R., *Tetrahedron*, 23, 505–508 (1967).
- 23) Sonobe T., Oisaki T., Kanai M., Chem. Sci., 3, 3249-3255 (2012).
- 24) Seki Y., Tanabe K., Sasaki D., Sohma Y., Oisaki K., Kanai M., Angew. Chem. Int. Ed., 53, 6501–6505 (2014).
- 25) Kadoh Y., Tashiro M., Oisaki K., Kanai M., Adv. Synth. Catal., 357, 2193–2198 (2015).
- 26) Li J., Zhang X., Shen H., Liu Q., Pan J., Hu W., Xiong Y., Chen C., Adv. Synth. Catal., 357, 3115–3120 (2015).
- 27) Roberts J. C., Pincock J. A., Can. J. Chem., 81, 709-722 (2003).
- 28) Rothenberg M. E., Richard J. P., Jencks W. P., J. Am. Chem. Soc., 107, 1340–1346 (1985).
- 29) When 1 was used as the catalyst instead of 35, 82% (¹H-NMR yield) and 54% (¹H-NMR yield) were observed for the trifluoro-etherification and the acetoamidation, respectively.
- Michaudel Q., Thevenet D., Baran P. S., J. Am. Chem. Soc., 134, 2547–2550 (2012).
- Nair V., Suja T. D., Mohanan K., *Tetrahedron Lett.*, 46, 3217–3219 (2005).
- 32) Sakaguchi S., Hirabayashi T., Ishii Y., Chem. Commun., 2002, 516–517 (2002).
- 33) Kotani E., Kobayashi S., Ishii Y., Tobinaga S., Chem. Pharm. Bull., 32, 4281–4291 (1984).
- 34) Annunziatini C., Gerini M. F., Lanzalunga O., Lucarini M., J. Org. Chem., 69, 3431–3438 (2004).
- 35) Shiina I., Kubota M., Oshiumi H., Hashizume M., J. Org. Chem., 69, 1822–1830 (2004).
- 36) Sano T., Ohashi K., Oriyama T., Synthesis, 1999, 1141-1144 (1999).
- 37) Kainmüller E. K., Bannwarth W., Helv. Chim. Acta, 89, 3056–3070 (2006).
- 38) Yoshimura A., Middleton K. R., Luedtke M. W., Zhu C., Zhdankin V. V., J. Org. Chem., 77, 11399–11404 (2012).
- 39) Iida S., Ohmura R., Togo H., Tetrahedron, 65, 6257-6262 (2009).
- 40) Detert H., Hagelüken A., Seifert R., Schunack W., Eur. J. Med. Chem., 30, 271–276 (1995).
- Beets M. G. J., Heeringa L. G., Recl. Trav. Chim. Pays Bas, 74, 1085–1099 (1955).
- 42) Tyagi V., Gupta A. K., Synth. Commun., 42, 843-848 (2012).
- 43) Kamijo S., Amaoka Y., Inoue M., Chem. Asian J., 5, 486-489

(2012).

(2010).

- 44) Cotarca L., Delogu P., Nardelli A., Maggioni P., Bianchini R., Sguassero S., Alini S., Dario R., Clauti G., Pitta G., Duse G., Goffredi F., Org. Process Res. Dev., 5, 69–76 (2001).
- 45) Casey B. M., Eakin C. A., Flowers R. A. II, *Tetrahedron Lett.*, **50**, 1264–1266 (2009).
- 46) Moriyama K., Takemura M., Togo H., Org. Lett., 14, 2414-2417

47) Meng L., Su J., Zha Z., Zhang L., Zhang Z., Wang Z., Chem. Eur. J., 19, 5542–5545 (2013).

- 48) Hu J., Adogla E. A., Ju Y., Fan D., Wang Q., Chem. Commun., 48, 11256–11258 (2012).
- 49) Kumar R. A., Maheswari C. U., Ghantasala S., Jyothi C., Reddy K. R., Adv. Synth. Catal., 353, 401–410 (2011).