P(*n*-Bu)₃ Catalyzed Reactions of Salicyl *N*-Thiophosphinyl Imines with Allenylphosphonates: Synthesis of Phosphono-Chromans

School of Chemistry, University of Hyderabad, Hyderabad 500 046, Andhra Pradesh, India *E-mail: kckssc@uohyd.ernet.in Received March 14, 2013 DOI 10.1002/jhet.2071 Published online 3 December 2013 in Wiley Online Library (wileyonlinelibrary.com). $NHP(S)Ph_2$ H_{+} $H_{$

A phosphine $[P(n-Bu)_3]$ -catalyzed reaction for the synthesis of phosphono-chromans from allenylphosphonates and salicyl *N*-thiophosphinyl imines has been described and compared with reactions for phosphorus-free allenes. The products are (β,γ) -cyclized and are obtained in good yields (57–83%). A key product is characterized by X-ray crystallography.

J. Heterocyclic Chem., 51, 760 (2014).

INTRODUCTION

Lewis base catalysis exploiting phosphines and amines has emerged as a prominent area in organic synthesis [1]. In particular, phosphine catalysis in the reactions using allenes has been demonstrated for the development of new annulation providing various carbo- and hetero-cycles [1,2]. Addition of a Lewis base to allenoates results in the generation of a zwitterionic species (1,3-dipole), which can react with aldehydes, α , β -unsaturated ketones, imines, activated alkenes, salicylaldehydes, and so on to give diverse products depending on the nature of nucleophile and the substituent on the allenoate [2]. Chromenes and chromans are widespread in natural products and have attracted much attention in diverse areas including physical chemistry (photochromism) and medicinal chemistry (anti HIV, anticancer, antimicrobial, inhibitory effect on histamine release, antihypertensive, and antiviral activity [3]). Thus, a number of research groups have developed different methodologies to synthesize these compounds [4]. Recently, Huang reported the phosphine catalyzed domino reactions of salicyl-N-thiophosphinyl imines with allenoate to afford cis-2,3-dihydrobenzofurans or functionalized chroman derivatives in good yields under mild conditions [5]. Our research group has recently reported that allenylphosphonates react with substituted salicylaldehydes in the presence of DBU to afford phosphono-chromenes in good yields [6]. We envisioned that allenylphosphonates on reaction with salicyl-N-thiophosphinyl imines could lead to functionalized phosphono-chromans [7]. In our earlier papers on allene chemistry [8], on several occasions, we had found that the allenylphosphonates differ in terms of reactivity compared with phosphorus-free allenes. Whether this is so in phosphine catalyzed reactions also or not was one of the things that we were interested in. Herein, we report phosphine catalyzed reaction of allenylphosphonates with salicyl-*N*-thiophosphinyl imines in the presence of phosphine also gives chromans.

NHP(S)Ph

RESULTS AND DISCUSSION

We first treated the allenylphosphonate 2a with N-thiophosphinyl imine 1a (cf. Scheme 1) in the presence of various bases and in different solvents to optimize the reaction conditions. The results are summarized in Table 1. It was found that the reaction of allenylphosphonate 2a with N-thiophosphinyl imine 1a led to the expected product 3a in poor yield by using PPh₃ (20 mol %) as the base and DMSO as the solvent (Table 1 entry 1). The reaction was not complete, and the ³¹P NMR of the reaction mixture showed approximately 50% of the allene 1a remaining. When the reaction was performed under the conditions previously reported from our laboratory [6], instead of the expected product 3a, phosphono-chromenes 4 (E and Z) were obtained (entry 2). Use of K_2CO_3 or P $(n-Bu)_3$ as the base also afforded the chromene 4 [³¹P NMR evidence] (Table 1, entries 3 and 4). No desired product was observed by using the base PPh₃, and dichloromethane or dimethylformamide as the solvent (entries 5 and 6); also the product formation was negligible in toluene or THF (entries 7 and 8). Interestingly, the reaction proceeded well in CH₃CN to lead to the expected product Scheme 1. Reaction of 1a and 2a to form phosphono-chroman 3a.

 Table 1

 Screening of reaction conditions for the optimization of product 3a.

Entry	Catalyst	Solvent	Temperature (°C)/time (h)	Yield % ^a
1	PPh ₃	DMSO	80/16	50
2	DBU	DMSO	80/12	b
3	K_2CO_3	DMSO	80/8	b
4	$P(n-Bu)_3$	DMSO	80/10	b
5	PPh ₃	DCM	40/18	n.r.
6	PPh ₃	DMF	80/18	n.r.
7	PPh ₃	Toluene	80/18	8
8	PPh ₃	THF	50/12	6
9	PPh ₃	CH ₃ CN	80/12	56
10	$P(n-Bu)_3$	THF	60/12	78
11	$P(n-Bu)_3$	Toluene	60/12	36

^aYield of **3a** (E+Z) based on ³¹P NMR spectra of the reaction mixtures. ^bIn these cases, chromene **4** (quantitative yield) was obtained.

3a (E+Z) in moderate yields (entry 9). It is noteworthy that use of P(*n*-Bu)₃ as the base in *toluene* medium also led to the product **3a** [³¹P NMR] with lower yield (entry 11); however, there were some side products also. Hence, we continued with P(*n*-Bu)₃ in THF as the medium. Thus, these phosphine-catalyzed reactions of allenylphosphonates follow the same pathway as the phosphorus-free allenes. The chroman product **3a** shows two sets of dominant signals corresponding to the *E* and *Z* isomers, the first one at 58.8/10.1 (*Z*-isomer) and the second set at 58.9/14.1 (*E*-isomer). There are also additional signals at the thiophosphinate region [$\delta \sim 48, 57$], but these do not correspond to the products from the allene; an unassigned minor signal at δ 16.5 is also seen.

By using the previous conditions, we then conducted the reaction of *N*-thiophosphinyl imines **1a** and **1b** with allenylphosphonates **2a–e** and allenylphosphine oxide **5** for the synthesis of different phosphono-chromans **3a–j** and phosphinoyl-chromans **6a–b**, respectively, and also for checking the scope and limitations of the reaction (Scheme 2 (a and b)). The yields and *E/Z* ratio of the compounds based on the ³¹P NMR spectra of the reaction mixtures were presented in Table 2. We separated the *individual isomers in*

all the cases except for 6a and b. The major isomer had the Z-configuration (vide infra). In the case of **6a–b**, the Z-isomer was isolated in pure state. For the identification of E- and Zisomers, ¹H and ¹³C NMR spectra were quite useful. In the ¹H NMR, signals for the $CH_2(CHNP(S)Ph_2)$ protons appear as a multiplet in the region δ 3.02–3.14 for the *E*-isomer, whereas for the Z-isomer, the signals appear up-field at $\delta \sim 2.78-2.88$ (cf. Figure 1). In the ¹³C NMR spectra, the ¹J(P–C) value for the *E*-isomer [~195.6 Hz] was higher than that for the Z-isomer [~173.4 Hz]. The structure of Z-isomer of 3a was determined by X-ray crystallography (Figure 2) [9]. The double bond between C6 and C7 was confirmed by the distance [C(6)-C(7) 1.346(8) Å], whereas the Z-stereochemistry at this double bond was clearly shown by the attached substituents. On the basis of these data, we could assign the ³¹P NMR chemical shifts for all the other compounds. Thus, the signal for the *E*-isomer [$\delta(P) = 14.5$] appeared downfield compared with that for the Z-isomer [$\delta(P) = 10.4$].

In continuation of the previous work, we also treated the allenylphosphonate **2a** with 2-hydroxybenzaldehyde phenylhydrazone **7** (cf. Scheme 3) in the presence of P $(n-Bu)_3$ as the base and THF as the solvent. No desired product was observed in this reaction; instead, we obtained the phosphono-chromenes **4** (*E*/*Z*), which were previously reported in our laboratory [6].

CONCLUSIONS

In conclusion, we have demonstrated the synthesis of various phosphono-chromans catalyzed by $P(n-Bu)_3$ from the corresponding allenylphosphonates and salicyl-*N*-thiophosphinyl imines in moderate to good yields.

EXPERIMENTAL

Solvents were dried according to known methods General. as appropriate [10]. ¹H, ¹³C, and ³¹P NMR spectra (¹H-400 or ¹³C-100 or 125 MHz, and ³¹P-162 MHz) were 500 MHz, recorded using a 400 or 500-MHz spectrometer in CDCl₃ (unless stated otherwise) with shifts referenced to $SiMe_4$ ($\delta = 0$) or 85% H_3PO_4 (δ =0). IR spectra were recorded on an FTIR spectrophotometer. Melting points were determined by using a local hot-stage melting point apparatus and are uncorrected. Elemental analyses were carried out on a CHN analyzer. Mass spectra were recorded using GCMS or LCMS instruments. High resolution mass spectra (HR-MS) were performed using a Bruker MaXis mass spectrometer (Bruker Daltonik GmbH, Bremen, Germany) with ESI-QTOF-II method. Single crystal X-ray diffraction was collected on OXFORD diffractometer by using Mo-Ka (1=0.71073 Å) radiation. The structure was solved and refined by standard methods [9b-d]. The allenylphosphonates and allenylphosphine oxide were prepared by literature procedures [11]. Salicyl N-thiophosphinyl imines **1a-b** were synthesized by the reported method [6a].

General procedure for the formation of chromans. To a 25-mL round–bottom flask containing allene **2a–e/5** (0.2–0.5 mmol)

³¹ P NMR data and isolated yields of the compounds 3a–j and 6a–b .								
			δ(P)					
	Reactant	Product	E	Ζ	Yield $\%^{a}(E:Z)$			
	1a + 2a	3a	14.5; 59.1	10.4; 59.3	70 (17:53)			
	1a + 2b	3b	14.7; 59.1	10.7; 59.3	75 (26:49)			
	1a + 2c	3c	14.8; 59.1	10.8; 59.3	67 (23:44)			

14.4; 59.1

11.0, 59.0

14.1; 59.0

14.3; 59.0

14.3; 59.0

14.0; 59.2

9.3, 10.2

28.6; 58.1

3d

3e

3f

3g

3h

3i

3j

6a

Table 2

Scheme 2. Synthesis of various phosphono/phosphinoyl-chromans (cf. Table 2).

^aIsolated yields of the pure compounds.

^bIsomers were not separated.

Entry

2 3

4

5

6

7

8

9

10

11

^cZ-isomer was only separated.

and salicyl *N*-thiophosphinyl imine (**1a**) or (**1b**) (0.22-0.55 mmol) was added THF (0.1 M with respect to allene, 2.5–5.0 mL). The contents were stirred at RT for 5 min. To this solution, P(*n*-Bu) ₃ (0.04–0.1 mmol) was added, and the round-bottom flask was sealed after flushing three times with N₂. The reaction mixture was stirred at 60°C for 12 h. After that, the solvent was removed by rotary evaporator and the residue subjected to

1a + 2d

1a + 2e

1b + 2a

1b + 2b

1b + 2c

1b + 2d

1b + 2e

1a + 5

column chromatography (hexane/EtOAc; 1.5:1) to obtain the pure product. Compounds **3a–j** and **6a–b** were prepared by this procedure. Both Z and E isomers were formed in most cases. Details on the combined yield of Z and E isomers are given in Table 2 and in the succeeding discussion.

10.8; 59.2

10.1, 59.9

10.0; 59.5

10.3; 59.5

10.3; 59.4

9.5; 59.5

59.3, 60.2

24.0; 58.9

76 (21:55)

83^b

61 (26:35)

62 (17:45)

57 (24:33)

62 (17:45) 78^b

41^c

Compound (E)-3a (higher R_f). Yield: 0.210 g (70%, E+Z); 0.051 g (*E*, isolated, 17%) (using 0.50 mmol of allene **2a**). Mp:

226–232°C. IR (KBr): 3189, 1630, 1482, 1258, 1231, 1057, 835 cm⁻¹. ¹H NMR: δ 0.65 (s, 3H, CH₃), 0.98 (s, 3H, CH₃), 3.02–3.14 (m, 2H, =CCH₂), 3.48 (dd \rightarrow t, ³*J*(P-H)=²*J*(H-H)=12.2 Hz, 1H, OCH_AH_B), 3.62 (dd \rightarrow t, ³*J*(P-H)=²*J*(H-H)~12.0 Hz, 1H,

Figure 1. ¹H NMR spectra in the region δ 2.0–5.0 for phosphonochromans: (a) (*E*)-3a and (b) (*Z*)-3a.

Figure 2. Molecular structure of compound (*Z*)-**3a**. Selected bond lengths [Å] with esds in parentheses. O(4)–C(7) 1.365(6), C(8)–C(9) 1.516(8), N (1)–C(9) 1.472(7), C(7)–C(8) 1.488(8), C(6)–C(7) 1.346(8), P(1)–C(6) 1.800(6) and C(6)–C(16) 1.504(7).

OCH₄H_B), 3.95-4.06 (m, 3H, NH+OCH₂), 4.73-4.80 (m, 1H, CHNH), 6.63 (d, ${}^{3}J$ (H–H) = 8.0 Hz, 1H, Ar-H), 6.84 (dd \rightarrow t, ${}^{3}J$ (H– H) ~ 7.4 Hz, 1H, Ar-H), 7.05 (dd \rightarrow t, ³*J*(H-H) ~ 7.8 Hz, 1H, Ar-H), 7.27-7.41 (m, 8H, Ar-H), 7.51-7.55 (m, 4H, Ar-H), 7.92-7.97 (m, 2H, Ar-H), 8.14-8.19 (m, 2H, Ar-H). ¹³C NMR (125 MHz, CDCl₃): δ 21.2, 21.7, 32.4 (d, J(P-C) = 6.3 Hz, C(CH₃)₂), 33.5 (dd, J(P-C) ~ 7.3 Hz, 1.6 Hz, CH₂), 45.4 (NHCH), 75.4 (d, J(P-C) = 5.9 Hz, OCH₂(A)), 75.5 (d, J(P-C) = 6.3 Hz, OCH₂(B)), 109.3 (d, ${}^{1}J(P-C) = 195.6 \text{ Hz}$, PC = C), 116.4, 122.9, 124.5, 127.4 (d, J(P-C) = 1.6 Hz), 128.1, 128.3 (d, J(P-C) = 13.0 Hz), 128.7 (d, J(P-C) = 13.0 Hz), 129.5 (d, J(P-C) = 28.3 Hz), 130.7 (d, J(P-C) = 4.6 Hz), 131.5 (d, J(P-C) = 2.9 Hz), 131.7 (d C) = 11.1 Hz), 131.8 (d, J(P-C) = 2.8 Hz), 132.0 (d, J(C) = 11.5 Hz), 133.9 (d, J(P-C) = 4.8 Hz), 134.0 (d, J(P-C) =C = 22.9 Hz), 134.8 (d, J(P-C) = 25.0 Hz), 151.3, 161.0, 161.1. ³¹P NMR: δ 14.5 and 59.1. LC-MS: m/z 602 $[M+1]^+$. Anal. Calcd. for C₃₃H₃₃NO₄P₂S: C, 65.88; H, 5.53; N, 2.33. Found: C, 65.76; H, 5.61; N, 2.30.

Compound (Z)-3a (lower R_f). Yield: 0.210 g (70%, E+Z);0.051 g (Z, isolated, 53%). Mp: 188-190°C. IR (KBr): 3069, 2926, 1645, 1460, 1226, 1055, 826 cm⁻¹. ¹H NMR (500 MHz): δ 0.82 (s, 3H, CH₃), 1.20 (s, 3H, CH₃), 2.78–2.88 (m, 2H, CCH₂), 3.11–3.15 (m, 1H, NH), 3.53–3.56 (m, 1H, OCH_AH_B), 3.75-4.01 (m, 3H, OCH_AH_B+OCH₂), 4.70-4.77 (m, 1H, CHNH), 6.97–7.00 (m, 1H, Ar-H), 7.08 (d, ${}^{3}J$ (H-H) = 8.0 Hz, 1H, Ar-H), 7.24-7.48 (m, 13H, Ar H), 7.71-7.75 (m, 2H, Ar H), 7.82–7.86 (m, 2H, Ar H). ¹³C NMR (125 MHz): δ 21.1, 22.0, 32.4 (d, J(P-C) = 6.0 Hz, $C(CH_3)_2$), 33.4 (dd, J $(P-C) \sim 10.2 \text{ Hz}, J(P-C) \sim 4.2 \text{ Hz}, CH_2), 44.9 \text{ (NHCH)}, 76.0 \text{ (d, } J \text{ (P-C)} = 6.5 \text{ Hz}, \text{ OCH}_2(\text{A})), 76.1 \text{ (d, } ^2J(P-C) = 6.1 \text{ Hz}, \text{ OCH}_2(\text{B})),$ 109.1 (d, ${}^{1}J(P-C) = 173.4 \text{ Hz}, PC = C$), 117.0, 123.2, 124.3 (d, J (P-C) = 4.5 Hz, 127.9, 128.4 (d, J(P-C) = 2.5 Hz), 128.5 (d, J (P-C) = 2.4 Hz, 128.7, 128.9, 129.7, 130.8 (d, J(P-C) = 4.8 Hz), 131.5 (d, J(P-C) = 4.3 Hz), 131.6 (d, J(P-C) = 4.4 Hz), 131.7 (d, J(P-C) = 2.8 Hz, 131.8 (d, J(P-C) = 2.8 Hz), 133.9, 134.0 (d, J (P-C) = 22.5 Hz, 134.8 (d, J(P-C) = 28.0 Hz), 151.4, 160.2. ³¹P NMR: δ 10.4 and 59.3. LC-MS: *m/z* 602 [M+1]⁺. Anal. Calcd. for C33H33NO4P2S: C, 65.88; H, 5.53; N, 2.33. Found: C, 65.78; H, 5.49; N, 2.26.

Compound (E)-3b (higher R_f). Yield: 0.231 g (75%, E + Z); 0.080 g (*E*, isolated, 26%) (using 0.5 mmol of allene **2b**). Mp: 196–198°C. IR (KBr): 3239, 1626, 1572, 1437, 1240, 1107, 810 cm⁻¹. ¹H NMR: δ 0.68 (s, 3H, *CH*₃), 1.00 (s, 3H, *CH*₃), 2.39 (s, 3H, C₆H₄*CH*₃), 3.04–3.13 (m, 2H, CC*H*₂), 3.47 (dd \rightarrow t, ³*J*(P-H)=²*J*(H-H)=11.6 Hz, 1H, OCH_AH_B), 3.62 (dd \rightarrow t, ³*J*(P-H)=²*J*(H-H)~11.6 Hz, 1H, OCH_AH_B), 3.90–4.02 (m, 3H, OCH₂ + NH), 4.73–4.80 (m, 1H, *CH*NH), 6.66 (d, ³*J* (H-H)=8.4 Hz, 1H, Ar-H), 6.83 (dd \rightarrow t, ³*J*(H-H)=7.6 Hz, 1H, Ar-H), 7.05 (dd \rightarrow t, ³*J*(H-H)~7.0 Hz, 1H, Ar-H), 7.20–7.40 (m, 7H, Ar-H), 7.50–7.54 (m, 4H, Ar-H), 7.91–7.97 (m, 2H, Ar-H), 8.13–8.18 (m, 2H, Ar-H). ¹³C NMR (125 MHz): δ 21.3, 21.4 (s, C₆H₄CH₃), 21.8, 32.4 (d, *J*(P-C)=5.8 Hz, *C*(CH₃)₂),

Scheme 3. Formation of chromene 4 via hydrazone 7.

Journal of Heterocyclic Chemistry DOI 10.1002/jhet

33.6 (d, *J*(P-C) ~ 7.4 Hz, *C*H₂), 45.4 (s, NHCH), 75.5 (d, *J* (P-C) = 6.3 Hz, OCH₂(A)), 75.6 (d, *J*(P-C) = 6.3 Hz, OCH₂(B)), 109.2 (d, ¹*J*(P-C) = 192.9 Hz, PC = C), 116.5, 122.8, 124.5, 128.3 (d, *J*(P-C) = 13.0 Hz), 128.7 (d, *J*(P-C) = 13.3 Hz), 128.9, 129.5 (d, *J*(P-C) = 29.4 Hz), 130.5 (d, *J*(P-C) = 5.0 Hz), 130.6 (d, *J*(P-C) = 5.1 Hz), 131.5 (d, *J*(P-C) = 2.9 Hz), 131.7 (d, *J* (P-C) = 11.0 Hz), 131.8 (d, *J*(P-C) = 2.8 Hz), 132.0 (d, *J* (P-C) = 11.1 Hz), 134.1 (d, *J*(P-C) = 19.8 Hz), 134.9 (d, *J* (P-C) = 21.0 Hz), 137.0 (d, *J*(P-C) = 1.9 Hz), 151.4, 160.5, 160.7. ³¹P NMR: δ 14.7 and 59.1. LC-MS: *m*/z 616 [M + 1]⁺. Anal. Calcd. for C₃₄H₃₅NO₄P₂S: C, 66.33; H, 5.73; N, 2.28. Found: C, 66.15; H, 5.81; N, 2.32.

Compound (Z)-3b (lower R_f). Yield: 0.231 g (75%, E + Z); 0.151 g (Z, isolated, 49%). Mp: 204-210°C. IR (KBr):3214, 2920, 1626, 1597, 1455, 1238, 1059, 831 cm⁻¹. ¹H NMR: δ 0.81 (s, 3H, CH₃), 1.20 (s, 3H, CH₃), 2.44 (s, 3H, C₆H₄CH₃), 2.74-2.88 (m, 2H, CHCH₂), 3.11-3.14 (m, 1H, NH), 3.53-3.56 (m, 1H, OCH_AH_B), 3.73–4.03 (m, 3H, $OCH_2 + OCH_AH_B$), 4.72-4.77 (m, 1H, CHNH), 6.96-7.44 (m, 14H, Ar-H), 7.70-7.71 (m, 2H, Ar-H), 7.80–7.83 (m, 2H, Ar-H). ¹³C NMR (125 MHz): δ 21.0, 21.3 (s, C₆H₄CH₃), 22.0, 32.3 (d, J(P-C) = 6.1 Hz, $C(CH_3)_2$, 33.5 (dd, ${}^{3}J(P-C) = 4.3$ Hz, 10.3 Hz, CH_2), 44.9 (s, NHCH), 76.0 (d, J(P-C) = 7.5 Hz, $OCH_2(A)$), 76.1 (d, J(P-C) = 6.6 Hz, $OCH_2(B)$), 108.8 (d, (P-C) = 172.3 Hz, PC = C), 116.9, 123.0, 124.3, 128.3 (d, J(P-C) = 2.6 Hz, 128.4 (d, J(P-C) = 2.9 Hz), 128.7, 129.4, 129.6, 130.5 (d, J(P-C) = 4.8 Hz), 130.7 (d, J(P-C) = 6.4 Hz), 131.4₆, 131.4_9 , 131.6 (d, J(P-C) = 3.3 Hz), 131.7, 133.9 (d, J(P-C) = 32.3 Hz, 134.7 (d, J(P-C) = 35.5 Hz), 137.4, 151.4, 159.7. ³¹P NMR: δ 10.7 and 59.3. LC-MS: m/z 616 [M+1]⁺. Anal. Calcd. for C₃₄H₃₅NO₄P₂S: C, 66.33; H, 5.73; N, 2.28. Found: C, 66.48; H, 5.70; N, 2.21.

Compound (E)-3c (higher R_f). Yield: 0.212 g (67%, E+Z);0.049 g (E, isolated, 23%) (using 0.5 mmol of allene 2c). Mp: 180-184°C. IR (KBr): 3478, 3198, 1628, 1510, 1233, 1058, 833 cm⁻¹. ¹H NMR: δ 0.69 (s, 3H, CH₃), 1.00 (s, 3H, CH₃), 3.04–3.13 (m, 2H, CCH₂), 3.49 (dd \rightarrow t, ³J(P-H) = ²J $(H-H) = 11.6 \text{ Hz}, 1H, \text{ OCH}_{A}H_{B}, 3.63 \text{ (dd} \rightarrow t, {}^{3}J(P-H) \sim {}^{2}J$ $(H-H) \sim 12.0 \text{ Hz}, 1H, \text{ OCH}_A H_B), 3.86 (s, 3H, C_6 H_4 \text{ OCH}_3),$ 3.93-4.04 (m, 3H, OCH₂+NH), 4.75-4.76 (m, 1H, CHNH), 6.66 (d, ${}^{3}J(\text{H-H}) = 8.0 \text{ Hz}$, 1H, Ar-H), 6.82–6.94 (m, 3H, Ar-H), 7.04-7.07 (m, 1H, Ar-H), 7.27-7.56 (m, 9H, Ar-H), 7.92-7.97 (m, 2H, Ar-H), 8.15-8.17 (m, 2H, Ar-H). ¹³C NMR: δ 21.3, 21.7, 32.4 (d, J(P-C) = 5.8 Hz, $C(CH_3)_2$), 33.5 (d, J (P-C)~6.0 Hz, CH₂), 45.4 (NHCH), 55.3 (OCH₃), 75.4 (d, J $(P-C) = 6.3 \text{ Hz}, \text{ OCH}_2(A)), 75.5 \text{ (d, } J(P-C) = 6.3 \text{ Hz}, \text{ OCH}_2(B)),$ 108.8 (d, ${}^{1}J(P-C) = 195.4 \text{ Hz}$, PC = C), 113.6, 116.4, 122.8, 124.5, (d, J(P-C) = 2.1 Hz), 125.8 (d, J(P-C) = 4.9 Hz), 128.3 (d, J(P-C) = 13.3 Hz, 128.5 (d, J(P-C) = 13.3 Hz), 128.7 (d, J (P-C) = 13.1 Hz, 129.5 (d, J(P-C) = 28.8 Hz), 131.3 (d, J (P-C) = 11.5 Hz), 131.5 (d, J(P-C) = 2.5 Hz), 131.7, 131.8, 132.0 (d, J(P-C) = 11.4 Hz), 134.1 (d, J(P-C) = 22.4 Hz), 134.9 (d, J (P-C) = 23.4 Hz), 151.4, 159.0, 160.7. ³¹P NMR: δ 14.8 and 59.1. LC-MS: m/z 632 [M+1]⁺. Anal. Calcd. for C34H35NO5P2S: C, 64.65; H, 5.58; N, 2.22. Found: C, 64.53; H, 5.61; N, 2.27.

Compound (Z)-3c (lower R_f). Yield: 0.212 g (67%, E+Z); 0.093 g (Z, isolated, 44%). Mp: 184–188°C. IR (KBr): 3191, 2963, 1628, 1510, 1244, 1061, 772 cm⁻¹. ¹H NMR: δ 0.81 (s, 3H, CH₃), 1.20 (s, 3H, CH₃), 2.72–2.89 (m, 2H, CHCH₂), 3.13–3.17 (m, 1H, NH), 3.52–3.56 (m, 1H, OCH_AH_B), 3.77– 4.04 (m, 6H, OCH_AH_B+OCH₂+OCH₃), 4.72–4.78 (m, 1H, CHNH), 6.91–7.08 (m, 4H, Ar-*H*), 7.21–7.44 (m, 10H, Ar-*H*), 7.70–7.85 (m, 4H, Ar *H*). ¹³C NMR: δ 21.0, 22.0, 32.3 (d, *J*(P–C) = 5.6 Hz, *C*(CH₃)₂), 33.3 (~d, *J*(P-C) ~ 7.4 Hz, CH₂), 44.9 (NHCH), 55.3 (OCH₃), 76.0 (OCH₂), 108.5 (d, ¹*J* (P-C) = 173.1 Hz, PC=C), 114.1, 116.9, 123.0, 124.3, 125.8, 128.4, 128.5, 128.7, 129.6, 131.5, 131.6, 131.7, 131.8, 133.9 (d, *J*(P-C) = 32.1 Hz), 134.7 (d, *J*(P-C) = 32.1 Hz), 151.4, 159.2, 159.8. ³¹P NMR: δ 10.8 and 59.3. LC-MS: *m*/z 632 [M+1]⁺. Anal. Calcd. for $C_{34}H_{35}NO_5P_2S$: C, 64.65; H, 5.58; N, 2.22. Found: C, 64.58; H, 5.51; N, 2.26.

Compound (E)-3d (higher R_f). Yield: 0.097 g (76%, E+Z);0.027 g (E, isolated, 21%) (using 0.2 mmol of allene 2d). Mp: 188-192°C. IR (KBr): 3181, 3058, 1630, 1597, 1485, 1088, 1006 cm^{-1} . ¹H NMR: δ 0.70 (s, 3H, CH₃), 0.96 (s, 3H, CH₃), 2.98–3.00 (m, 1H, CHC H_AH_B), 3.13–3.16 (m, 1H, CHC H_AH_B), 3.51 (dd \rightarrow t, ³J(P-H) = ²J(H-H) ~ 12.2 Hz, 1H, OCH_AH_B), 3.63 $(dd \rightarrow t, {}^{3}J(P-H) = {}^{2}J(H-H) \sim 12.6 \text{ Hz}, 1H, \text{ OCH}_{A}H_{B}), 3.95-4.11$ (m, 3H, OCH₂+NH), 4.75–4.76 (m, 1H, CHNH), 6.64 (d, ${}^{3}J$ (H-H) = 8.0 Hz, 1H, Ar-H), 6.84-6.88 (m, 1H, Ar-H), 7.05-7.09 (m, 1H, Ar-H), 7.26-7.55 (m, 11H, Ar-H), 7.91-7.96 (m, 2H, Ar-H), 8.13–8.16 (m, 2H, Ar-H). ¹³C NMR (125 MHz): δ 21.4, 21.6, 32.4 (d, ${}^{3}J(P-C) = 5.9 \text{ Hz}$, $C(CH_{3})_{2}$), 33.4 (d, J(P-C) = 5.9 Hz) C) = 7.3 Hz, CH₂), 45.3 (NHCH), 75.3 (d, J(P-C) = 6.1 Hz, $OCH_2(A)$), 75.4 (d, J(P-C) = 5.9 Hz, $OCH_2(B)$), 107.8 (d, ¹J (P-C) = 197.0 Hz, PC = C), 116.4, 123.1, 124.5 (d, J(P-C)) = 197.0 Hz, PC = C), 116.4, 123.1, 124.5 (d, J(P-C)) = 197.0 Hz, PC = C), 116.4, 123.1, 124.5 (d, J(P-C)) = 197.0 Hz, PC = C), 116.4, 123.1, 124.5 (d, J(P-C)) = 197.0 Hz, PC = C), 116.4, 123.1, 124.5 (d, J(P-C)) = 197.0 Hz, PC = C), 116.4, 123.1, 124.5 (d, J(P-C)) = 197.0 Hz, PC = C), 116.4, 123.1, 124.5 (d, J(P-C)) = 197.0 Hz, PC = C), 116.4, 123.1, 124.5 (d, J(P-C)) = 197.0 Hz, PC = C), 116.4, 123.1, 124.5 (d, J(P-C)) = 197.0 Hz, PC = C), 116.4, 123.1, 124.5 (d, J(P-C)) = 197.0 Hz, PC = C), 116.4, 123.1, 124.5 (d, J(P-C)) = 197.0 Hz, PC = C), 116.4, 123.1, 124.5 (d, J(P-C)) = 197.0 Hz, PC = C), 116.4, 123.1, 124.5 (d, J(P-C)) = 197.0 Hz, PC = C), 116.4, 123.1, 124.5 (d, J(P-C)) = 197.0 Hz, PC = C), 116.4, 123.1, 124.5 (d, J(P-C)) = 197.0 Hz, PC = C), 116.4, 123.1, 124.5 (d, J(P-C)) = 197.0 Hz, PC = C), 126.0 Hz, PC = CC) = 2.8 Hz), 128.3, 128.4, 128.8 (d, J(P-C) = 13.1 Hz), 129.5 (d, J(P-C) = 4.3 Hz, 131.6 (d, J(P-C) = 2.6 Hz), 131.7 (d, J(P-C) = 17.5 Hz), 131.9 (d, J(P-C) = 2.3 Hz), 132.0 (d, J(P-C) = 11.4 Hz, 132.1 (d, J(P-C) = 4.6 Hz), 132.4 (d, J $(P-C) = 5.1 \text{ Hz}), \quad 133.4 \quad (d, \quad J(P-C) = 2.1 \text{ Hz}), \quad 133.9 \quad (d, \quad J$ (P-C) = 24.0 Hz, 134.8 (d, J(P-C) = 24.8 Hz), 151.2, 161.6, 161.8. ³¹P NMR: δ 14.4 and 59.2. LC-MS: m/z 635 $[M - 1]^4$ and 637 $[M+1]^+$. Anal. Calcd. for C₃₃H₃₂ClNO₄P₂S: C, 62.31; H, 5.07; N, 2.20. Found: C, 62.21; H, 5.15; N, 2.26.

Compound (Z)-3d (lower R_f). Yield: 0.097 g (76%, E+Z);0.070 g (Z, isolated, 55%). Mp: 176-180°C. IR (KBr): 3202, 3058, 1630, 1483, 1242, 1059, 1009, 791 cm⁻¹. ¹H NMR: δ 0.83 (s, 3H, CH₃), 1.18 (s, 3H, CH₃), 2.76-2.77 (m, 2H, CHCH₂), 3.05-3.09 (m, 1H, NH), 3.53-3.58 (m, 1H, OCH_AH_B), 3.79–4.06 (m, 3H, $OCH_AH_B + OCH_2$), 4.71–4.76 (m, 1H, CHNH), 7.00-7.08 (m, 2H, Ar-H), 7.23-7.48 (m, 12H, Ar-H), 7.72–7.77 (m, 2H, Ar-H), 7.81–7.86 (m, 2H, Ar-H). ¹³C NMR: δ 21.2, 22.0, 32.4 (d, J(P-C) = 6.5 Hz, $C(CH_3)_2$), 33.5 $(dd, J(P-C) \sim 10.4 \text{ Hz}, J(P-C) \sim 3.4 \text{ Hz}, CH_2), 45.0 (NHCH),$ 76.0 (d, J(P-C) = 6.3 Hz, $OCH_2(A)$), 76.1 (d, J(P-C) = .6.1 Hz, OCH₂(B)), 107.9 (d, ${}^{1}J(P-C) = 174.9 \text{ Hz}, PC = C$), 117.1, 123.4, 124.4 (d, *J*(P-C) = 5.4 Hz), 128.5, 128.5₁, 128.5₇, 128.6, 129.0, 129.8, 131.5 (d, J(P-C) = 2.3 Hz), 131.6 (d, J(P-C) = 1.6 Hz), 131.9, 132.1 (d, J(P-C) = 4.8 Hz), 132.5 (d, J(P-C) = 6.6 Hz), 133.9 (d, J(P-C) = 16.0 Hz), 134.0, 134.7 (d, J(P-C) = 18.4 Hz), 151.4, 160.5. ³¹P NMR: δ 10.1 and 59.3. LC-MS: *m/z* 634 $\left[M-2\right]^{*}$ and 636 $\left[M\right]^{*}.$ Anal. Calcd. for $C_{33}H_{32}ClNO_4P_2S$: C, 62.31; H, 5.07; N, 2.20. Found: C, 62.21; H, 5.15; N, 2.28.

Compound (*E*+*Z*)-3*e*. Yield: 0.16 g (83%, *E*+*Z*) (using 0.3 mmol of allene 2*e*). Mp: 210–214°C. IR (KBr): 3212, 3058, 1628, 1601, 1453, 1289, 1244, 1060 cm⁻¹. ¹H NMR: (*E*/ $Z \sim 1:1$) δ 0.70, 0.79 and 1.10 (3 s, 12H, CH₃), 2.51–2.66 (m, 4H), 3.30–3.50 (m, 4H), 3.68–3.76 (m, 2H), 3.93–4.14 (m, 4H), 4.61–4.68 (m, 2H, CHNH), 6.95–7.00 (m, 4H, Ar-*H*), 7.16–7.82 (m, 37H, Ar-*H*), 8.34 (d, ³*J*(H-H)=8.4 Hz, 1H, Ar-*H*). ¹³C NMR: (*E*+*Z*) δ 21.2, 21.3, 21.9, 32.4 (d, *J*(P-C)=6.0 Hz, *C* (CH₃)₂), 32.5 (d, *J*(P-C)=6.2 Hz, *C*(CH₃)₂), 33.5 (dd, *J*(P-C)=6.2 Hz), *C*(CH₃)₂), 33.5 (dd, *J*(P-C)=6.2 Hz), *C*(CH₃)₂), 33.5 (dd, *J*(P-C)=6.2 Hz), *C*(CH₃)₂), 33.5 (dd), *J*(P-C)=6.2 Hz), *C*(CH₃)₃), *C*(CH₃), *C*(CH₃), *C*(CH₃), *C*(CH₃), *C*(CH₃), *C*(CH₃), *C*(CH₃), *C*(CH₃), *C*(CH₃), *C*(CH

C) ~ 10.2 Hz, *J*(P-C) ~ 5.4 Hz, CH₂), 33.8 (dd, *J*(P-C) ~ 10.7 Hz, *J* (P-C) ~ 4.2 Hz, CH₂), 44.3 (d, *J*(P-C) = 4.5 Hz, -NHCH), 44.7 (d, *J* (P-C) = 4.9 Hz, -NHCH), 75.8 (d, *J*(P-C) = 3.6 Hz, OCH₂(A)), 76.0 (d, *J*(P-C) = .6.0 Hz, OCH₂(B)), 76.3, 76.4, 106.4 (d, ¹*J*(P-C) = 176.0 Hz, PC = C), 107.5 (d, ¹*J*(P-C) = 177.0 Hz, PC = C), 117.0, 117.1, 123.9 (d, *J*(P-C) = 28.0 Hz), 125.0, 125.5 (d, *J*(P-C) = 13.0 Hz), 126.2, 126.4, 126.6, 126.9, 128.1, 128.3₀, 128.3₂, 128.4₀, 128.4₄, 128.7, 128.9, 129.0, 129.1, 129.2₀, 129.2₄, 129.3, 129.6, 129.7, 130.7, 130.8, 131.4, 131.5, 131.7, 131.9, 132.8, 133.3, 133.6, 133.8, 134.0, 134.3, 134.9 (d, *J*(P-C) = 19.0 Hz), 151.3, 151.4, 161.2, 161.3 (the spectrum was complicated because of the peaks for both the isomers). ³¹P NMR: δ 10.1, 11.0 and 59.0, 59.9. LC-MS: *m/z* 650 [M - 1]⁺. Anal. Calcd. for C₃₇H₃₅NO₄P₂S: C, 68.19; H, 5.41; N, 2.15. Found: C, 68.32; H, 5.38; N, 2.21.

Yield: 0.194 g (61%, E+Z);Compound (E)-3f (higher R_f). 0.083 g (E, isolated, 26%) (using 0.5 mmol of allene 2a). Mp: 260-264°C. IR (KBr): 3229, 1624, 1595, 1472, 1250, 1057, 837, 787 cm⁻¹. ¹H NMR (500 MHz): δ 0.66 (s, 3H, CH₃), 0.99 (s, 3H, CH₃), 3.08–3.12 (m, 2H, CHCH₂), 3.46–3.51 (m, 1H, OCH_AH_B), 3.62-3.67 (m, 1H, OCH_AH_B), 3.97-4.05 (m, 3H, NH+OCH₂), 4.73–4.75 (m, 1H, CHNH), 6.57 (d, ${}^{3}J$ (H-H)=9.0 Hz, 1H, Ar-H), 6.97-7.00 (m, 1H, Ar-H), 7.32-7.54 (m, 12H, Ar-H), 7.93-7.97 (m, 2H, Ar-H), 8.12–8.17 (m, 2H, Ar-H). ¹³C NMR (125 MHz): δ 21.2, 21.7, 32.3 (d, J(P-C) = 6.1 Hz, $C(CH_3)_2$), 33.0 (d, J(P-C) = 6.1 Hz, $C(CH_3)_2$), C(P-C) = 6.1 Hz, $C(CH_3)_2$, $C(CH_3)_2$ C)=8.0 Hz, CH₂), 45.1 (NHCH), 75.5 (d, J(P-C)=6.1 Hz, OCH₂ (A)), 75.6 (d, J(P-C) = 6.1 Hz, $OCH_2(B)$), 110.0 (d, ${}^{1}J(P-C) = 6.1 \text{ Hz}$) C)=194.6 Hz, PC=C), 117.8, 125.8, 127.6 (d, J(P-C)=27.8 Hz), 128.2, 128.3 (d, J(P-C) = 13.3 Hz), 129.4 (d, J(P-C) = 17.5 Hz), 130.6 (d, J(P-C) = 4.6 Hz), 131.6, 131.7₀, 131.7₂, 131.8, 131.9, 133.6 (d, J(P-C) = 4.8 Hz), 133.8 (d, J(P-C) = 12.5 Hz), 134.6 (d, J (P-C) = 10.6 Hz, 149.9, 160.2, 160.4. ³¹P NMR: δ 14.1 and 59.0. LC-MS: m/z 636 $[M]^+$ and 638 $[M+2]^+$. Anal. Calcd. for C33H32CINO4P2S: C, 62.31; H, 5.07; N, 2.20. Found: C, 62.21; H, 5.13; N, 2.27.

Compound (Z)-3f (lower R_f). Yield: 0.194 g (61%, E+Z)0.111 g (Z, isolated, 35%). Mp: 236-238°C. IR (KBr): 3223, 1628, 1476, 1248, 1105, 1060, 828 cm^{-1} . ¹H NMR: δ 0.80 (s, 3H, CH₃), 1.18 (s, 3H, CH₃), 2.74–2.85 (m, 2H, CHCH₂), 3.17-4.04 (m, 5H, OCH₂+NH), 4.68-4.73 (m, 1H, CHNH), 7.00-7.01 (m, 1H, Ar-H), 7.16-7.18 (m, 1H, Ar-H), 7.27-7.46 (m, 12H, Ar-H), 7.68–7.74 (m, 2H, Ar-H), 7.81–7.86 (m, 2H, Ar-*H*). ¹³C NMR: δ 21.1, 22.0, 32.4 (d, *J*(P-C)=6.1 Hz, *C*(CH₃) ₂), 33.1 (dd, $J(P-C) \sim 10.1 \text{ Hz}$, $J(P-C) \sim 4.2 \text{ Hz}$, CH_2), 44.7 (NHCH), 76.0₅ (d, J = 7.0 Hz, OCH₂(A)), 76.1₀ (d, J = 6.6 Hz, $OCH_2(B)$), 110.0 (d, ¹J(P-C) = 172.6 Hz, PC = C), 118.4, 125.8 (d, J(P-C) = 4.8 Hz), 128.0, 128.5 (d, J(P-C) = 1.5 Hz), 128.6 (d, J(P-C) = 1.8 Hz, 128.8, 129.6, 130.7 (d, J(P-C) = 4.8 Hz), 131.4, 131.5, 131.6, 131.7, 131.8 (d, J(P-C) = 2.9 Hz), 132.0 (d, J (P-C) = 3.0 Hz, $133.6_8 \text{ (d, } J(P-C) = 6.1 \text{ Hz}$), $133.6_9 \text{ (d, } J$ (P-C) = 57.8 Hz, 134.5 (d, J(P-C) = 54.1 Hz), 150.0, 159.4. ³¹P NMR: δ 10.0 and 59.5. LC-MS: m/z 635 $[M-1]^+$ and 637 $[M+1]^+$. Anal. Calcd. for $C_{33}H_{32}CINO_4P_2S$: C, 62.31; H, 5.07; N, 2.20. Found: C, 62.28; H, 5.11; N, 2.15.

Compound (E)-3 g (higher R_f). Yield: 0.201 g (62%, E+Z); 0.055 g (*E*, isolated, 17%) (using 0.5 mmol of allene **2b**). Mp: 216–220°C. IR (KBr): 3169, 1624, 1597, 1474, 1250, 1101, 716 cm⁻¹. ¹H NMR: δ 0.68 (s, 3H, *CH*₃), 0.99 (s, 3H, *CH*₃), 2.39 (s, 3H, C₆H₄*CH*₃), 3.05–3.12 (m, 2H, *CHCH*₂), 3.46 (dd \rightarrow t, ³*J*(P-H)=²*J*(H-H)~11.4 Hz, 1H, OCH_AH_B), 3.63 (dd \rightarrow t, ³*J*(P-H)=²*J*(H-H)~11.4 Hz, 1H, OCH_AH_B), 3.90–4.04 (m, 3H, OCH₂+NH), 4.74–4.75 (m, 1H, *CH*NH), 6.57 (d, 1H,

³*J*(H-H) = 8.8 Hz, Ar-*H*), 6.95–6.98 (m, 1H, Ar-*H*), 7.18–7.51 (m, 11H, Ar-*H*), 7.90–7.96 (m, 2H, Ar-*H*), 8.10–8.14 (m, 2H, Ar-*H*). ¹³C NMR (125 MHz): δ 21.2, 21.3 (s, C₆H₄CH₃), 21.7, 32.3 (d, *J*(P-C) = 6.0 Hz, *C*(CH₃)₂), 33.1 (d, *J*(P-C) ~ 6.1 Hz, CH₂), 45.1 (NHCH), 75.5 (d, *J*(P-C)=6.0 Hz, OCH₂(A)), 75.6 (d, ³*J*(P-C)=6.1 Hz, OCH₂(B)), 109.8 (d, ¹*J*(P-C)=193.1 Hz), PC=C), 117.7, 125.9, 127.6, 128.2 (d, *J*(P-C)=13.1 Hz), 128.7 (d, *J*(P-C)=4.6 Hz), 130.3₂, 131.6 (d, *J*(P-C)=2.1 Hz), 131.7₀, 131.7₄, 131.8, 133.8 (d, *J*(P-C)=17.5 Hz), 134.6 (d, *J*(P-C)=15.9 Hz), 137.1, 149.9, 159.7. ³¹P NMR: δ 14.3 and 59.0. LC-MS: *m*/z 650 [M]⁺ and 652 [M+2]⁺. Anal. Calcd. for C₃₄H₃₄ClNO₄P₂S: C, 62.82; H, 5.27; N, 2.15. Found: C, 62.75; H, 5.15; N, 2.21.

Compound (Z)-3 g (lower R_f). Yield: 0.201 g (62%, E + Z); 0.146 g (Z, isolated, 45%). Mp: 230-234°C. IR (KBr): 3208, 2963, 1630, 1597, 1474, 1254, 1061, 720 cm⁻¹ ¹. ¹H NMR (500 MHz): δ 0.80 (s, 3H, CH₃), 1.19 (s, 3H, CH₃), 2.44 (s, 3H, C₆H₄CH₃), 2.72–2.87 (m, 2H, CHCH₂), 3.26–3.30 (m, 5H, OCH2+NH), 4.69-4.75 (m, 1H, CHNH), 6.98-7.00 (m, 1H, Ar-H), 7.14-7.53 (m, 12H, Ar-H), 7.67-7.73 (m, 2H, Ar-H), 7.80–7.85 (m, 2H, Ar-H). ¹³C NMR (125 MHz): δ 21.0, 21.4, 22.0, 32.4 (d, J(P-C) = 6.1 Hz, $C(CH_3)_2$), 33.0 (d, J $(P-C) = 14.4 \text{ Hz}, CH_2), 44.7 (NHCH), 76.1 (OCH_2(A)), 76.2$ $(OCH_2(B)), 109.9 \text{ (d, } {}^1J(P-C) = 171.1 \text{ Hz}, PC = C), 118.4, 125.7$ (d, J(P-C) = 4.4 Hz), 128.0, 128.5 (d, J(P-C) = 1.3 Hz), 128.6, 128.7, 129.5, 129.6, 130.5 (d, *J*(P-C)=4.9 Hz), 130.6, 131.5 (d, J(P-C) = 11.5 Hz, 131.7 (d, J(P-C) = 11.1 Hz), 131.8 (d, J $(P-C) = 2.9 \text{ Hz}), \quad 132.0 \quad (d, J(P-C) = 2.9 \text{ Hz}), \quad 133.8 \quad (d, J)$ (P-C) = 67.5 Hz, 134.6 (d, J(P-C) = 68.5 Hz), 137.9, 150.1, 159.2. ³¹P NMR: δ 10.3 and 59.5. LC-MS: *m/z* 650 [M]⁺ and 652 [M+2]⁺. Anal. Calcd. for C₃₄H₃₄ClNO₄P₂S: C, 62.82; H, 5.27; N, 2.15. Found: C, 62.71; H, 5.35; N, 2.19.

Compound (E)-3h (higher R_f). Yield: 0.190 g (57%, E+Z; 0.080 g (E, isolated, 24%) (using 0.5 mmol of allene **2c**). Mp: 208-210°C. IR (KBr): 3229, 2481, 1624, 1596, 1474, 1246, 1057, 839 cm^{-1} . ¹H NMR (500 MHz): δ 0.69 (s, 3H, CH₃), 1.00 (s, 3H, CH₃), 3.08-3.23 (m, 2H, CHCH₂), 3.47 $(dd \rightarrow t, {}^{3}J(P-H) \sim {}^{2}J(H-H) \sim 12.5 \text{ Hz}, 1H, OCH_{A}H_{B}), 3.64$ $(dd \rightarrow t, {}^{3}J(P-H) \sim {}^{2}J(H-H) \sim 12.5 \text{ Hz}, 1H, \text{ OCH}_{A}H_{B}), 3.85 \text{ (s,}$ 3H, OCH₃), 3.91–4.03 (m, 3H, OCH₂+NH), 4.73–4.76 (m, 1H, CHNH), 6.59 (d, ${}^{3}J$ (H-H) = 5.0 Hz, 1H, Ar-H), 6.92–6.99 (m, 3H, Ar-H), 7.25-7.52 (m, 9H, Ar H), 7.92-7.96 (m, 2H, Ar H), 8.10-8.15 (m, 2H, Ar-H). ¹³C NMR (125 MHz): δ 21.1, 22.0, 32.4 (d, J(P-C) = 6.3 Hz, $C(CH_3)_2$), 33.0 (d, $J(P-C) \sim 10.0 \text{ Hz}$, CH₂), 44.7 (NHCH), 55.4 (C₆H₄OCH₃), 76.1₀ (OCH₂(A)), 76.1₃ (OCH₂(B)), 109.3 (d, ${}^{1}J(P-C) = 172.5 \text{ Hz}, PC = C$), 114.2, 118.3, 125.6 (d, J(P-C) = 6.3 Hz), 125.8 (d, J(P-C) = 5.0 Hz), 127.9, 128.5, 128.6, 129.6, 131.4, 131.5, 131.6, 131.7₀, 131.7₄, 131.8, 131.9, 133.8 (d, J(P-C) = 13.7 Hz), 134.6 (d, J(P-C) = 12.5 Hz, 150.0, 159.3. ³¹P NMR: δ 14.3 and 59.0. Anal. Calcd. for C₃₄H₃₄ClNO₅P₂S: C, 61.31; H, 5.14; N, 2.10. Found: C, 61.25; H, 5.19; N, 2.18.

Compound (Z)-3 h (lower R_f). Yield: 0.190 g (57%, E+Z); 0.110 g (Z, isolated, 33%). Mp: 228–232°C. IR (KBr): 3235, 1632, 1601, 1439, 1057, 1009, 756 cm⁻¹. ¹H NMR (500 MHz): δ 0.81 (s, 3H, *CH*₃), 1.19 (s, 3H, *CH*₃), 2.74–2.86 (m, 2H, CHCH₂), 3.22–3.26 (m, 1H, NH), 3.53 (dd, ³*J*(P-H)=12.5 Hz, ²*J*(H-H)=7.5 Hz, 1H, OCH_AH_B), 3.74–4.02 (m, 6H, OCH_AH_B+OCH₂+C₆H₄OCH₃), 4.70–4.75 (m, 1H, CHNH), 6.92–7.00 (m, 3H, Ar-H), 7.15–7.49 (m, 10H, Ar-H), 7.71–7.76 (m, 2H, Ar-H), 7.82–7.86 (m, 2H, Ar-H). ¹³C NMR (125 MHz):

δ 21.2, 21.7, 32.3 (d, J(P-C) = 5.9 Hz, $C(CH_3)_2$), 33.1 (d, J(P-C) ~ 6.9 Hz, CH_2), 45.2 (NHCH), 55.3 (OCH₃), 75.5 (d, J(P-C) = 6.1 Hz, OCH₂(A)), 75.6 (d, J(P-C) = 6.3 Hz, OCH₂(B)), 109.4 (d, ¹J(P-C) = 193.9 Hz, PC = C), 113.6, 117.7, 125.5 (d, J(P-C) = 5.1 Hz), 125.9 (d, J(P-C) = 1.9 Hz), 127.6, 128.2 (d, J(P-C) = 12.9 Hz), 128.7 (d, J(P-C) = 12.9 Hz), 129.3 (d, J(P-C) = 16.6 Hz), 131.6₀, 131.6₃, 131.6₇, 131.8, 131.9, 133.8 (d, J(P-C) = 14.1 Hz), 134.6 (d, J(P-C) = 12.5 Hz), 149.9, 158.9, 159.9, 160.2. ³¹P NMR: δ 10.3 and 59.4. LC-MS: m/z 666 [M]⁺ and 668 [M + 2]⁺. Anal. Calcd. for C₃₄H₃₄ClNO₅P₂S: C, 61.31; H, 5.14; N, 2.10. Found: C, 61.35; H, 5.09; N, 2.18.

Compound (E)-3i (higher R_f). Yield: 0.208 g (62%, E+Z);0.057 g (E, isolated, 17%) (using 0.5 mmol of allene 2d). Mp: 186-190°C. IR (KBr): 3200, 1628, 1474, 1250, 1059, 789 cm⁻¹. ¹H NMR: δ 0.70 (s, 3H, CH₃), 0.96 (s, 3H, CH₃), $^{3}J(P-H) = ^{2}J$ 3.06–3.14 (m, 2H, CHC H_2), 3.50 (dd \rightarrow t, (H-H) ~ 12.7 Hz, 1H, OC H_AH_B), 3.64 (dd \rightarrow t, ${}^{3}J(P-H) = {}^{2}J$ $(H-H) \sim 12.7 \text{ Hz}, \quad 1H, \quad \text{OCH}_{A}H_{B}), \quad 3.95-4.12$ 3H, (m, $OCH_2 + NH$, 4.70–4.77 (m, 1H, CHNH), 6.56 (d, ³J (H-H) = 8.8 Hz, 1H, Ar-H), 6.98–7.00 (m, 1H, Ar-H), 7.26–7.52 (m, 11H, Ar-H), 7.90-7.96 (m, 2H, Ar-H), 8.08-8.14 (m, 2H, Ar-*H*). ¹³C NMR: δ 21.4, 21.6, 32.4 (d, J(P-C) = 5.6 Hz, $C(CH_3)_2$), 33.0 (dd $\rightarrow \sim$ d, J(P-C) ~ 7.2 Hz, CH₂), 45.0 (NHCH), 75.3 (d, J(P-C) = 5.9 Hz, OCH₂(A)), 75.5 (d, J(P-C) = 6.1 Hz, OCH₂(B)), 108.4 $(d, {}^{1}J(P-C) = 196.3 \text{ Hz}, PC = C), 117.7, 125.9, 128.0, 128.3, 128.4,$ 128.8 (d, J(P-C) = 13.0 Hz), 129.4 (d, J(P-C) = 3.8 Hz), 131.7, 131.8, 131.9₀, 131.9₄, 132.0, 132.1, 133.5 (d, *J*(P-C)=9.7 Hz), 134.6 (d, *J*(P-C)=7.4 Hz), 149.7, 155.9, 160.9, 161.2. ³¹P NMR: δ 14.0 and 59.2. LC-MS: m/z 670 [M]⁺, 672 [M+2]⁺ and 674 $[M+4]^+$. Anal. Calcd. for $C_{33}H_{31}Cl_2NO_4P_2S$: C, 59.11; H, 4.66; N, 2.09. Found: C, 59.23; H, 4.61; N, 2.15.

Compound (Z)-3i (lower R_f). Yield: 0.208 g (62%, E+Z);0.151 g (Z, isolated, 45%). Mp: 232-236°C. IR (KBr): 3187, 3058, 1628, 1474, 1248, 1059, 791 cm⁻¹. ¹H NMR (500 MHz): δ 0.84 (s, 3H, CH₃), 1.17 (s, 3H, CH₃), 2.75–2.81 (m, 2H, CHCH₂), 3.12–3.16 (m, 1H, NH), 3.53–3.56 (m, 1H, OCH_AH_B), 3.82–4.06 (m, 3H, $OCH_AH_B + OCH_2$), 4.69–4.76 (m, 1H, CHNH), 7.01 (d, ${}^{3}J(H-H) = 9.0$ Hz, 1H, Ar-H), 7.19– 7.22 (m, 3H, Ar-H), 7.35-7.52 (m, 9H, Ar H), 7.74-7.78 (m, 2H, Ar H), 7.84–7.88 (m, 2H, Ar H). ¹³C NMR (125 MHz): δ 21.2, 21.9, 32.4 (d, J(P-C) = 6.3 Hz, $C(CH_3)_2$), 33.1 (dd, J (P-C) ~ 10.4 Hz, J(P-C) ~ 3.8 Hz, CH₂), 44.8 (s, NHCH), 76.0 (d, $J(P-C) = 6.4 \text{ Hz}, \text{ OCH}_2(A)), 76.1 \text{ (d, } J(P-C) = .6.0 \text{ Hz}, \text{ OCH}_2$ (B)), 108.7 (d, ${}^{1}J(P-C) = 174.6 \text{ Hz}$, PC = C), 118.4, 126.0 (d, J (P-C) = 5.4 Hz, 128.3, 128.6 (d, J(P-C) = 6.1 Hz), 128.7 (d, J (P-C) = 5.6 Hz), 129.0, 129.7, 131.5 (d, J(P-C) = 11.1 Hz), 131.6 (d, J(P-C) = 11.4 Hz), 132.0 (d, J(P-C) = 3.5 Hz), 132.1 (d, J (P-C) = 2.9 Hz, 132.2 (d, J(P-C) = 6.3 Hz), 133.5, 133.9, 134.1 (d, J(P-C) = 2.0 Hz), 134.3, 134.7, 150.0, 159.9. ³¹P NMR: δ 9.8 and 59.5. LC-MS: m/z 670 [M]⁺, 672 [M+2]⁺ and 674 $[M+4]^+$. Anal. Calcd. for $C_{33}H_{31}Cl_2NO_4P_2S$: C, 59.11; H, 4.66; N, 2.09. Found: C, 59.25; H, 4.56; N, 2.15.

Compound (*E*+*Z*)-*3j.* Yield: 0.27 g (78%, *E*+*Z*; using 0.5 mmol of allene **2e**). Mp: 240–244°C. IR (KBr): 3198, 2963, 1628, 1472, 1258, 1057, 806 cm⁻¹. ¹H NMR (500 MHz): (*E*/*Z*=~1:1). Major isomer: δ 0.67 (s, 3H, *CH*₃), 0.76 (s, 3H, *CH*₃), 2.23–2.60 (m, 2H, CHC*H*₂), 3.06–4.06 (m, 5H, OC*H*₂ (A) + OC*H*₂(B) + N*H*), 4.59 (br m, 1H, *CH*NH), 7.03–7.95 (m, 19H, Ar-*H*), 8.24–8.26 (m, 1H, Ar-*H*). Minor isomer: δ 1.07 (s, 6H, 2 *CH*₃); remaining peaks were merged with peaks due to the major isomer. ¹³C NMR (125 MHz): δ 21.1, 21.2, 21.8₇, 21.8₈, 32.4 (d, *J*(P-C)=6.3 Hz, *C*(CH₃)₂) and 32.5 (d, *J*

 $(P-C) = 6.3 \text{ Hz}, C(CH_3)_2), 33.2 \text{ (dd, } J(P-C) \sim 10.1 \text{ Hz}, J(P-C) \sim 5.6 \text{ Hz},$ CH_2) and 33.4 (dd, $J(P-C) \sim 10.7 \text{ Hz}$, $J(P-C) \sim 4.7 \text{ Hz}$, CH_2), 44.2 (NHCH) and 44.5 (NHCH), 75.8_1 (d, J(P-C) = 5.9 Hz, $OCH_2(A)$), 75.8_3 (d, J(P-C) = .6.0 Hz, $OCH_2(B)$), 76.0 (d, J(P-C) = 6.1 Hz, $OCH_2(A)$), 76.4 (d, J(P-C) = 6.5 Hz, $OCH_2(B)$), 107.3 (d, ¹J (P-C) = 176.3 Hz, PC = C) and 108.3 (d, ${}^{1}J(P-C) = 176.8 \text{ Hz},$ PC=C), 118.4₁, 118.4₃, 124.5, 125.3, 125.4, 125.5, 125.6, 126.2 (d, *J*(P-C) = 16.6 Hz), 126.6, 126.9, 127.0, 128.1, 128.2, 128.3, 128.40 128.41, 128.4, 128.5, 128.9, 129.0, 129.10, 129.11, 129.2₀, 129.2₃, 129.6₅, 129.6₇, 130.5 (d, *J*(P-C)=5.6 Hz), 131.4 (d, J(P-C) = 11.1 Hz), 131.5₅, 131.5₇, 131.6₂, 131.6₄, 131.7₁, 131.7₃, 131.9, 132.6 (d, *J*(P-C) = 4.8 Hz), 133.1, 133.3, 133.4 (d, *J* (P-C) = 2.5 Hz, 133.5, 133.9, 134.0 (d, J(P-C) = 5.5 Hz), 134.1, 134.3, 134.8, 149.9, 150.0, 160.5, 160.6 (the spectrum was complicated because of the peaks for both the isomers). ³¹P NMR: δ 9.3, 10.2 and 59.3, 60.2. LC-MS: *m/z* 686 [M]⁺ and 688 [M+2]⁺. Anal. Calcd. for C₃₇H₃₄ClNO₄P₂S: C, 64.77; H, 4.99; N, 2.04. Found: C, 64.85; H, 4.91; N, 2.12.

Compound (Z)-6a (higher R_f). Yield: 0.134 g (41%; using 0.5 mmol of allene 5). Mp: 248-250°C. IR (KBr): 3187, 3058, 1628, 1474, 1248, 1059, 791 cm⁻¹. ¹H NMR: δ 2.65–2.70 (br $^{3}J(H-H) \sim 12.0 \text{ Hz}, 1H, CHCH_{A}), 2.85-2.90 \text{ (dd,}$ d, $(H-H) \sim 14.8 \text{ Hz}, {}^{4}J(P-H) = 4.1 \text{ Hz}, 1H, CHCH_{B}, 3.35-3.39 \text{ (dd,}$ ${}^{3}J(\text{H-H}) \sim 6.4 \text{ Hz}, {}^{4}J(\text{P-H}) \sim 6.8 \text{ Hz}, 1\text{H}, \text{NH}), 4.66-4.72 \text{ (m, 1H,}$ CHNH), 6.14 (d, ${}^{3}J(H-H) = 7.6$ Hz, 1H, Ar-H), 6.83–6.85 (m, 1H, Ar-H), 7.01-7.18 (m, 1H, Ar H), 7.23-7.46 (m, 18H, Ar-*H*), 7.68–7.85 (m, 8H, Ar *H*). ¹³C NMR: δ 33.5 (dd \rightarrow t, J $(P-C) \sim J(P-C) \sim 5.5 \text{ Hz}, CH_2), 44.8 \text{ (s, NHCH)}, 115.1 \text{ (d,}$ (P-C) = 95.6 Hz, PC = C), 116.1, 122.9, 124.3 (d,J (P-C) = 4.1 Hz, 127.4, 128.0, 128.1, 128.2, 128.3₀, 128.3₁, 128.3₄, 128.4, 128.5, 128.8, 129.3, 130.9, 131.0₂, 131.0₆, 131.0_9 , 131.1_1 , 131.1_4 , 131.1_8 , 131.2_2 , 131.4_3 , 131.4_4 , 131.4_5 , 131.5, 131.6, 131.7, 132.6, 133.7, 133.8, 133.9, 134.2, 134.3, 134.6, 134.8, 134.9, 135.6, 150.6, 158.1 (the spectrum was complicated). $^{31}\mathrm{P}$ NMR: δ 24.7 and 59.2. LC-MS: m/z 654 [M+1]⁺. Anal. Calcd. for C₄₀H₃₃NO₂P₂S: C, 73.49; H, 5.09; N, 2.14. Found: C, 73.38; H, 5.15; N, 2.19.

Compound (Z)-6b (higher R_f). Yield: 0.107 g (31%; using 0.5 mmol of allene 5). Mp: 190-194°C. IR (KBr): 3113, 3058, 1630, 1474, 1265, 1165, 926 cm⁻¹. ¹H NMR: (500 MHz): δ 2.65-2.70 (m, 1H, CHCH_A), 2.87-2.91 (m, 1H, CHCH_B), 3.66-3.71 (m, 1H, NH), 4.66–4.73 (m, 1H, CHNH), 6.08 (d, ³J(H-H)=8.8 Hz, 1H, Ar-H), 7.16-7.48 (m, 19H, Ar-H), 7.64-7.86 (m, 8H, Ar-*H*). ¹³C NMR (125 MHz): δ 33.3 (dd \rightarrow t, *J*(P-C) ~ *J* $(P-C) \sim 6.1 \text{ Hz}, CH_2), 44.5 \text{ (NHCH)}, 115.8 \text{ (d, } {}^{1}J(P-C) = 95.1 \text{ Hz},$ PC=C), 117.5, 125.7₅, 125.7₉, 127.5, 127.7, 128.0, 128.1, 128.2_6 , 128.3_0 , 128.3_8 , 128.4_3 , 128.5, 128.6, 129.2, 130.8, 130.9, 131.0, 131.1, 131.2, 131.4, 131.4, 131.5, 131.5, 131.6, 131.8, 132.3, 133.4, 133.9, 134.0, 134.1, 134.4, 134.5, 134.9, 135.4, 149.2, 157.8 (the spectrum was complicated). ³¹P NMR: δ 24.7 and 59.3. LC-MS: m/z 688 [M]⁺and 690 [M+2]⁺. Anal. Calcd. for $C_{40}H_{32}CINO_2P_2S$: C, 69.81; H, 4.69; N, 2.04. Found: C, 69.73; H, 4.61; N, 2.08.

Acknowledgments. We thank the Department of Science and Technology (DST, New Delhi) for financial support and for the single crystal X-ray diffractometer facility at the University of Hyderabad, and UGC (New Delhi) for equipment under UPE and CAS programs. K. C. K. thanks DST for a J. C. Bose fellowship. R. R. S. and R. K. thank CSIR (New Delhi) for fellowships. TRNP thanks UGC for a fellowship.

REFERENCES AND NOTES

[1] Cowen, B. J.; Miller, S. J Chem Soc Rev 2009, 3102.

[2] (a) Lu, X.; Zhang, C.; Xu, Z. Acc Chem Res 2001, 34, 535; (b) Ye, L.-W.; Zhou, J.; Tang, Y. Chem Soc Rev 2008, 1140.

[3] (a) Evans, R. A.; Hanley, T. L.; Skidmore, M. A.; Davis, T. P.; Such, G. K.; Yee, L. H.; Ball, G. E.; Lewis, D. A. Nat Mater, 2005, 4, 249; (b) Kang, Y.; Mei, Y.; Du, Y.; Jin, Z. Org Lett 2003, 5, 4481; (c) Endo, S.; Matsunaga, T.; Kuwata, K.; Zhao, H.-T.; El-Kabbani, O.; Kitade, Y.; Hara, A. Bioorg Med Chem 2010, 18, 2485; (d) Sabry, N. M.; Mohamed, H. M.; Khattab, E. S. A. E.H.; Motlaq, S. S.; El-Agrody, A. M. E. J Med Chem 2011, 46, 765; (e) Iwata, N.; Kitanaka, S. J. Nat Prod 2010, 73, 1203; (f) Bergmann, R.; Gericke, R. J. Med Chem 1990, 33, 492; (g) Conti, C.; Desideri, N. Bioorg Med Chem 2009, 17, 3720.

[4] (a) Kaya, P. T.; Musa, M. A.; Nocanda, X. W.; Robinson, R. S. Org Biomol Chem 2003, 1, 1133; (b) Lesch, B.; Brase, S. Angew Chem Int Ed 2004, 43, 115; (c) Shi, Y.-L.; Shi, M. Org Lett 2005, 7, 3057; (d) Zhao, G.-L.; Shi, Y.-L.; Shi, M. Org Lett 2005, 7, 4527; (e) Shi, M.; Dai, L.-Z.; Shi, Y.-L.; Zhao, G.-L. Adv Synth Catal 2006, 348, 967; (f) Dai, L.-Z.; Shi, Y.-L.; Zhao, G.-L.; Shi, M. Chem Eur J 2007, 13, 3701; (g) Shi, Y.-L.; Shi, M. Org Biomol Chem 2007, 5, 1499; (h) Ma, R.; Xu, S.; Tang, X.; Wu, G.; He, Z. Tetrahedron 2011, 67, 1053; (i) Arai, N.; Ohkuma, T. Tetrahedron 2011, 67, 1617.

[5] (a) Meng, X.; Huang, X.; Chen, R. Org Lett 2009, 11, 137; (b)
Meng, X.; Huang, Y.; Zhao, H.; Xie, P.; Ma, J.; Chen, R. Org Lett 2009, 11, 991.
[6] Bhuvan Kumar, N. N.; Nagarjuna Reddy, M.; Kumara Swamy, K. C. J. Org Chem 2009, 74, 5395.

[7] While our work was under progress, Shi *et. al.* reported that the $P(n-Bu)_3$ catalyzed cyclization reactions of salicyl-*N*-thiophosphinyl imines and salicylaldehydes with ethyl 2,3-butadienoate (allenic ester) provide the corresponding functionalized chromans. See Sun, Y.-W.; Guan, X.-Y.; Shi, M. Org Lett 2010, 12, 5664.

[8] (a) Kumara Swamy, K. C.; Balaraman, E.; Satish Kumar, N. Tetrahedron 2006; 62, 10152; (b) Chakravarty, M.; Kumara Swamy, K. C. J. Org Chem 2006, 71, 9128; (c) Chakravarty, M.; Kumara Swamy, K. C. Synthesis 2007, 3171; (d) Chakravarty, M.; Bhuvan Kumar, N. N.; Sajna, K. V.; Kumara Swamy, K. C. Eur J Org Chem 2008, 4500; (e) Balaraman, E.; Srinivas, V.; Kumara Swamy, K. C. Tetrahedron 2009, 65, 7603; (f) Phani Pavan, M.; Chakravarty, M.; Kumara Swamy, K. C. Eur J Org Chem 2009, 5927; (g) Srinivas, V.; Balaraman, E.; Sajna, K. V.; Kumara Swamy, K. C. Eur J Org Chem 2011, 4222; (h) Sajna, K. V.; Kumara Swamy, K.; Chakravarty, M.; Bhuvan Kumar, N. N.; Kumara Swamy, K. C. J. Org Chem 2011, 76, 920.

[9] (a) Crystallographic data for the structure (Z)-3a have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 918124. Copies of the data can be obtained free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44(1223)336033 or e-mail: deposit@ccdc.cam.ac.uk]; (b) Sheldrick, G. M. SADABS, Siemens Area Detector Absorption Correction; University of Göttingen: Germany, 1996; (c) Sheldrick, G. M. SHELX-97: A Program for Crystal Structure Solution and Refinement; University of Göttingen: Germany, 1997; (d) Sheldrick, G. M. SHELXTL NT Crystal Structure Analysis Package, Version 5; Bruker AXS Analytical X-ray System: WI (USA), 1999; (e) (Z)-3a: colorless block, C₃₃H₃₂NO₄P₂S, M=600.61, Monoclinic, Space group P2(1)/c, a=13.459 (3), b=15.365(3), c=16.616(3) Å, β =112.72(2)°, V=3169.5(11) Å₃³ Z=4, μ =0.240 mm⁻¹, data/restrains/parameters: 4578/0/372, R indices (I > 2\sigma(I)): R1=0.0832, wR2 (all data)=0.1983.

[10] D. D. Perrin, W. L. F. Armarego, D. R. Perrin, Purification of Laboratory Chemicals; Pergamon: Oxford UK, 1986.

[11] (a) Guillemin, J. C.; Savignac, P.; Denis, J. M. Inorg Chem 1991, 30, 2170; (b) Iorga, B.; Eymery, F.; Carmichael, D.; Savignac, P. Eur J Org Chem 2000, 3103; (c) Nishimura, T; Hirabayashi, S; Yasuhara, Y; Hayashi, T. J Am Chem Soc 2006, 128, 2556; (d) Bhuvan Kumar, N. N.; Chakravarty, M.; Satish Kumar, N.; Sajna, K. V.; Kumara Swamy, K. C. J. Chem Sci 2009, 121, 23; (e) Phani Pavan, M.; Kumara Swamy, K. C. Synlett 2011, 1288.