

SCIENCE (

Tetrahedron Letters 44 (2003) 7989-7992

A convenient method for the synthesis of electron-rich phosphonates[☆]

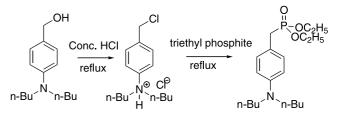
Shijun Zheng, Stephen Barlow, Timothy C. Parker and Seth R. Marder*

Department of Chemistry, University of Arizona, Tucson, AZ 85721-0041, USA[†] Received 21 August 2003; accepted 27 August 2003

Abstract—Very electron-rich benzylic-type phosphonates can be prepared by treating the corresponding alcohols in triethyl phosphite with one equivalent of iodine at an appropriate temperature in a general one-pot process. © 2003 Elsevier Ltd. All rights reserved.

The growing interest in organic materials for nonlinearoptical, electronic and opto-electronic applications has led to the development of many new π -conjugated molecules.¹ One of the most important reactions utilized to synthesize these types of molecules is the Horner-Emmons condensation of an aldehyde with a phosphonate to form an alkene with exclusively trans stereochemistry.² The general method to synthesize a phosphonate from the corresponding alcohol typically involves two steps: (i) conversion of the alcohol to a halide; (ii) the Michaelis-Arbuzov reaction of the halide with a trialkyl phosphite for several hours at high temperature (Scheme 1).³ This two-step procedure has drawbacks for very electron-rich benzylic-type alcohols such as 4-(diarylamino)benzyl alcohols and metallocenyl alcohols, which are potentially useful building blocks for electron-rich conjugated molecules. In particular, preparation of the halides can be complicated by oxidative or electrophilic side-reactions, and isolation of halides can be complicated by covalent/ionic equilibria.

These complications can be avoided in some cases by rendering the aromatic ring electron deficient through protonation. A method has been described for conver-

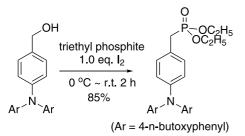

0040-4039/\$ - see front matter @ 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2003.08.110

sion of 4-(dialkylamino)-benzylic alcohols to the corresponding 4-(dialkylamino)-benzyl chloride hydrochloride salts by refluxing the alcohol in concentrated aqueous HCl; reflux of this product in triethyl phosphite gives the corresponding phosphonate (Scheme 2).⁴ However, this method is unsuccessful with 4-(diarylamino)benzylic alcohols, which are extremely weak Brønsted bases at the nitrogen center. The method is also not applicable to ferrocenylmethanol and octamethylferrocenylmethanol; under acidic conditions these are converted to the corresponding carbocations which then readily undergo dimerization reactions.⁵

We have found a very simple general one-pot method to convert electron-rich benzylic-type alcohols to phos-

$$R-OH \longrightarrow R-X \xrightarrow{\text{triethyl phosphite}} R^{O} R^{O} C_{2}H_{5}$$

Scheme 1.



Scheme 2.

^{*} Supplementary data associated with this article can be found at doi:10.1016/j.tetlet.2003.08.110

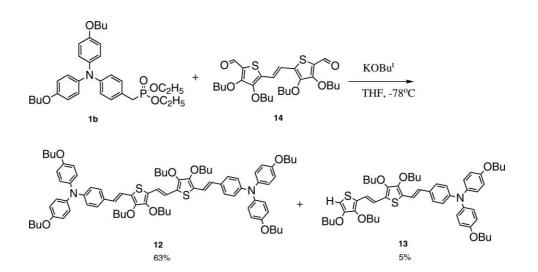
^{*} Corresponding author. Tel.: 404-385-6048; fax: 404-894-7452; e-mail: seth.marder@chemistry.gatech.edu

[†] Current address: School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.

Scheme 3.

phonates by treating the alcohols in triethyl phosphite with one equivalent of iodine at an appropriate temperature (Scheme 3). Presumably $[(EtO)_3PI]^+[I]^-$ and/ or $(EtO)_2P(O)I$ are intermediates, since triethyl phosphite is known to form these species rapidly on reaction with iodine, even at low temperatures.⁶

The scope of the method was tested by examination of a broad range of substrates (Table 1). This method not only renders the preparation of entries 1 and 5 possible (the preparation of these types of phosphonates has not been reported in literature) and provides a more convenient route to 4b,⁷ but also has the advantage that this one-pot reaction often proceeds at room temperature, which is useful for the synthesis of more complex electron-rich benzylic phosphonates that might not be stable at the elevated temperatures required for typical Michaelis–Arbuzov reactions. The rates of these reactions are highly dependent on the electron-richness of the substrates and their solubility in triethyl phosphite. For the less electron-rich benzylic alcohols (entries 8 and 9) the present method does not show significant advantages over the traditional method of Scheme 1; the substitution of the presumed iodide intermediate with triethyl phosphite does not appear to proceed as rapidly at room temperature as for the more electron-rich examples.


An example of the application of the electron-rich phosphonates, synthesized by the method described here, to the synthesis of conjugated materials is illustrated in Scheme 4. Compound **12** has a structural motif that is anticipated to show interesting two-photon absorbing properties.⁸

In summary, we have discovered a convenient highyielding method for making very electron-rich benzylic-type phosphonates, which are otherwise difficult to make.

Supporting information available. Experimental procedures, and characterizing data for entries 1–11 and for the preparation of compounds 12 and 13.

Acknowledgements

This work was supported by the United States Government through the National Renewable Energy Laboratory, Department of Energy (NREL grant ACQ-13061901), and the STC Program of the National Science Foundation (grant No. DMR 0120967).

Entry	Reactants	Products	Conditions	Yield/%
1	Ar Ar Ar Ar 1a Ar = 4- <i>n</i> -butoxyphenyl	$\begin{array}{c} Ar, & & & \\ N & & & \\ Ar & & & \\ Ar & & \mathbf{1b} & \\ Ar = 4-n-butoxyphenyl \end{array}$	0°C → r.t. 2 h	85%
2	Ph N Ph 2a OH	$\begin{array}{c} Ph \\ N \\ Ph \\ Ph \\ 2b \end{array} \begin{array}{c} C_2H_5OOC_2H_5 \end{array}$	0°C → r.t. 12 h	69%
3	C_2H_5 OH C_2H_5 3a	$\begin{array}{c} C_2H_5\\ N\\ C_2H_5\\ C_2H_5\\ \textbf{3b} \end{array} \xrightarrow{O} C_2H_5\\ OC_2H_5\\ OC$	0°C → r.t. 2 h	61%
4	Fe 4a	P-OC ₂ H ₅ Fe O 4b	0°C → r.t. 2 h	74%
5	Fe 5a	CC2H5 P−OC2H5 V Fe o 5b	0°C → r.t. 12 h	69%
6	он 6а	$ \begin{array}{c} $	0°C → r.t. 12 h	73%
7		$\sim \frac{OC_2H_5}{O\sim p^-OC_2H_5}$	0°C → r.t. 24 h	70%
8	H ₃ CO-OH 8a	Q, P−OC ₂ H ₅ 8b	0°C→150° C 5h	78%
9	S ga	$\overbrace{S 9b}^{O} \xrightarrow{O}_{P \leftarrow OC_2H_5}^{U}$	0°C→125° C 12h	40%
10	OH N 10a	$\overset{Oc_{2}H_{5}}{\underset{N}{\overset{Oc_{2}H_{5}}{\underset{1}{\overset{Oc}{\overset{O}{O$	0°C→r.t. 12 h	77%
11	BuO S 11a BuO OBu OH	Bu0 O Bu0 O P-OC ₂ H ₅ OC ₂ H ₅ 11b	0°C→r.t. 24 h	55%

References

- (a) Burland, D. M.; Miller, R. D.; Walsh, C. A. *Chem. Rev.* **1994**, *94*, 31–75 and references cited therein; (b) Marder, S. R.; Kippelen, B.; Jen, A. K.-Y.; Peyghambarian, N. *Nature* **1997**, *338*, 845–851.
- (a) Horner, L. Chem. Ber. 1958, 83, 733; (b) Wadsworth, W. S.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733.
- 3. For a review, see: Bhattacharya, A. K.; Thyagarajan, G. Chem. Rev. 1981, 81, 415.
- Marder, S. R.; Perry, J.; Zhou, W.; Kuebler, S. M.; Cammack, J. K. PCT Int. Appl. 2002, 181.
- (a) Rinehart, K. L.; Michejda, C. J.; Kittle, P. A. J. Am. Chem. Soc. 1959, 81, 3162; (b) Zou, C.; Wrighton, M. S.

J. Am. Chem. Soc. 1990, 112, 7578.

- (a) Skowronska, A.; Pakulski, M.; Michalski, J.; Cooper, D.; Trippett, S. *Tetrahedron Lett.* **1980**, *21*, 321; (b) Michalski, J.; Pakulski, M.; Skowronska, A. J. Chem. Soc., Perkin Trans. 1 **1980**, 833.
- 4b has previously been obtained by reaction of [FcCH₂NMe₃]⁺[I]⁻ with P(OEt)₃ (Boev, V. I. *Zh. Obshch. Khim.* 1978, 48, 1594) and from the reaction of FcLi with P(O)Cl(OEt)₂ (Alley, S. R.; Henderson, W. *J. Organomet. Chem.* 2001, 637–639, 216).
- Albota, M.; Beljonne, D.; Bredas, J.; Ehrlich, J.; Fu, J.; Heikal, A.; Hess, S.; Kogej, T.; Levin, M.; Marder, S.; McCord-Maughon, D.; Perry, J.; Rockel, H.; Rumi, M.; Subramaniam, G.; Webb, W.; Wu, X.; Xu, C. Science 1998, 281, 1653–1656.