# **Cobalt Carbonyl Complexes with Bridging Diphosphine** Ligands

Hameed A. Mirza, Jagadese J. Vittal, and Richard J. Puddephatt\*

Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7

Christopher S. Frampton and Ljubica Manojlović-Muir

Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K.

Wenjia Xia and Ross H. Hill

Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Received December 2, 1992

Reduction of cobalt(II) chloride by  $Na[BH_4]$  in the presence of CO and dmpm (= $Me_2PCH_2$ -PMe<sub>2</sub>) gave either  $[Co_2(CO)_2(\mu-CO)_2(\mu-dmpm)_2]$  (1a) or  $[Co_4(CO)_5(\mu-CO)_3(\mu-dmpm)_2]$  (6), depending on the reaction stoichiometry. Complex 1a, in solution is in equilibrium with its isomer  $[Co_2(CO)_4(\mu-dmpm)_2]$  (2a), and the thermodynamic parameters for the reaction were determined by measuring the equilibrium constant as a function of temperature using FTIR. The activation energy for the isomerization was determined by variable-temperature NMR studies, which also indicated that 2a is weakly paramagnetic. Reaction of 1a with iodine or  $[Cu(NCMe)_4]^+$  gave  $[Co_2(\mu-I)(\mu-CO)(CO)_2(\mu-dmpm)_2]^+$  (7) and  $[Co_4Cu_3(CO)_8(\mu-dmpm)_2]^+$  (8), respectively. The molecular structures of 6 and 8 were characterized by X-ray diffraction (6, orthorhombic,  $P_{2_12_12_1}$ , a = 14.953(2) Å, b = 11.386(1) Å, c = 16.836(1) Å, Z = 4, R = 0.038; 8, monoclinic,  $P2_1/c$ , a = 10.767(2) Å, b = 20.092(2) Å, c = 22.370(3) Å,  $\beta = 92.13^\circ$ , Z = 4, R = 0.076). Complex 6 contains an irregular tetrahedral  $Co_4$  cluster with two edges bridged by dmpm ligands and one face edge-bridged by carbonyl groups. The Co–Co bond lengths are 2.426(1)-2.541(2)A. The cluster 8 contains a central copper atom with approximately square-planar stereochemistry, which is apparently unique in copper clusters.

## Introduction

Dicobalt octacarbonyl,  $[Co_2(CO)_8]$ , was important in the development of carbonyl chemistry and homogeneous catalysis, and so it has been much studied.<sup>1,2</sup> In the solid state, the structure is of  $C_{2v}$  symmetry with two bridging carbonyls,<sup>3</sup> but in solution two nonbridged forms with  $D_{3d}$ and  $D_{2d}$  symmetry also exist (eq 1).<sup>4</sup> However, the

$$-c_{0} - c_{0} - c_{$$

interconversions are too rapid even at -150 °C to allow a study of the dynamics by <sup>13</sup>C NMR spectroscopy. Many phosphine derivatives of [Co2(CO)8] are known, most being formed by phosphine for carbonyl substitution reactions.<sup>5-13</sup>

(1) Mond, L.; Hirzt, H.; Cowap, M. D. J. Chem. Soc. 1910, 798

Among these are  $[Co_2(CO)_4(\mu-CO)_2(\mu-PP)]$  (PP = dppm, dmpm) and the isomers  $[Co_2(CO)_2(\mu-CO)_2(\mu-PP)_2]$  and  $[CO_2(CO)_4(\mu - PP)_2]$  (PP = dppm = Ph<sub>2</sub>PCH<sub>2</sub>PPh<sub>2</sub>). These complexes are also fluxional.

Thermolysis of [Co<sub>2</sub>(CO)<sub>8</sub>] yields the cluster [Co<sub>4</sub>- $(CO)_{12}$ ], which is formulated as  $[Co_4(CO)_9(\mu-CO)_3]$  with approximate  $C_{3v}$  symmetry and which is also fluxional.<sup>14-17</sup> It has been shown that up to four CO groups in [Co<sub>4</sub>- $(CO)_{12}$  can be substituted with monodentate phosphines to give complexes of the type  $[Co_4(CO)_{12-n}L_n]^{7,18}$  with n = 1-4 and with bidentate phosphine ligands to give  $[Co_4(CO)_{12-2n}(PP)_n].^{5,7,19}$ 

This paper describes related dinuclear and tetranuclear cobalt carbonyl complexes, with bridging Me<sub>2</sub>PCH<sub>2</sub>PMe<sub>2</sub> (=dmpm) ligands, which are synthesized by direct re-

- (9) de Leeuw, G.; Field, J. S.; Haines, R. J. J. Organomet. Chem. 1989, 359, 245.
- (10) Brown, G. M.; Finholt, J. E.; King, R. B.; Bibber, J. W. Inorg. Chem. 1982, 21, 2139
- (11) Laneman, S. A.; Fronczek, F. R.; Stanley, G. G. Inorg. Chem. 1989, 28, 1207.
- (12) Newton, M. G.; King, R. B.; Chang, M.; Pantaleo, N. S.; Gimeno, (12) Newton, N. G., Hing, M. D., Onang, M., Janabo, M. G., Chem. Soc., Chem. Commun. 1977, 531.
  (13) Chai, L. S.; Cullen, W. R. Inorg. Chem. 1975, 14, 482.
  (14) Sweany, R. L.; Brown, T. L. Inorg. Chem. 1977, 16, 415.
  (15) Carré, F. H.; Cotton, F. A.; Frenz, B. A. Inorg. Chem. 1976, 15, 380.

(16) Johnson, B. F. G.; Benfield, R. E. J. Chem. Soc., Dalton Trans. 1978, 1554.

(17) (a) Aime, S.; Osella, D.; Milone, L.; Hawkes, G. E.; Randall, E. W. J. Am. Chem. Soc. 1981, 103, 5920. (b) Hanson, B. E.; Lisic, E. C. Inorg. Chem. 1986, 25, 715. (c) Aime, S.; Botta, M.; Gobetto, R.; Hanson, B. E. Inorg. Chem. 1989, 28, 1196. (d) Heaton, B. T.; Sabounchei, J.; Kernaghan, S.; Nakayama, H.; Eguchi, T.; Takeda, S.; Nakamura, N.; Chihara, H. Bull. Chem. Soc. Jpn. 1990, 63, 3019. (e) J. Organomet. Chem. 1992, 428,

(18) Darensbourg, D. J.; Incorvia, M. J. Inorg. Chem. 1981, 20, 1911. (19) King, R. B.; Gimeno, J.; Lotz, T. J. Inorg. Chem. 1978, 17, 2401.

<sup>(2)</sup> Heck, R. F. Organotransition Metal Chemistry; Academic Press: Toronto, 1974.

<sup>(3)</sup> Summer, G. G.; Klug, H. P.; Alexander, L. E. Acta Crystallogr. 1964, 17, 732.

<sup>(4) (</sup>a) Bor, G.; Noack, K. J. Organomet. Chem. 1974, 64, 367. (b) Bor, G.; Dieter, U. K.; Noack, K. J. Chem. Soc., Chem. Commun. 1976, 914.

<sup>(</sup>c) Onaha, S.; Shriver, D. F. Inorg. Chem. 1976, 15, 915.

<sup>(5)</sup> Lisic, E. C.; Hanson, B. E. Inorg. Chem. 1986, 25, 812

<sup>(6) (</sup>a) Attali, S.; Poilblanc, R. Inorg. Chim. Acta 1972, 6, 475. (b) Mantasti, E.; Pelizzetti, E.; Rossetti, R.; Stanghellini, P. L. Inorg. Chim.

<sup>Martasi, E., Fenzetti, E., Rossetti, R., Stanglennin, F. E. Horg. Cittat.
Acta 1977, 25, 7.
(7) Wilkinson, G., Ed. Comprehensive Organometallic Chemistry;
Pergamon Press: Toronto, 1982; Vol. 5.
(8) (a) Harrison, W.; Trotter, J. J. Chem. Soc. A 1971, 1607. (b) Cullen,
W. R.; Crow, J.; Harrison, W.; Trotter, J. J. Am. Chem. Soc. 1970, 92,
6339. (c) Thornhill, D. J.; Manning, A. R. J. Chem. Soc., Dalton Trans.
1972 2056. (d) Fulumeta T. Mathematics P. L'Organatics</sup> 1973, 2086. (d) Fukumoto, T.; Matsumura, Y.; Okawara, R. J. Organomet. Chem. 1978, 69, 437.

duction of cobalt(II) halides in the presence of CO and dmpm. Some chemistry of  $[Co_2(CO)_2(\mu-CO)_2(\mu-dmpm)_2]$ , including the formation of an unusual Co<sub>4</sub>Cu<sub>3</sub> cluster, is also described. Preliminary accounts of parts of this work have been published.<sup>20,21</sup>

## Synthesis and Characterization of $[Co_2(CO)_2 (\mu-CO)_2(\mu-dmpm)_2]$ (1)

Reduction of cobalt(II) chloride by NaBH<sub>4</sub> in the presence of excess dmpm and CO gave the yellow-orange product  $[Co_2(CO)_2(\mu-CO)_2(\mu-dmpm)_2]$  (1a). The solidstate IR spectrum of 1a contained bands due to both terminal and bridging carbonyl groups and was very similar to that of  $[Co_2(CO)_2(\mu-CO)_2(\mu-dppm)_2]$  (1b), whose structure has been determined by X-ray diffraction.<sup>22</sup> However, in CH<sub>2</sub>Cl<sub>2</sub> solution at room temperature, the bridging carbonyl band was absent and it is clear that isomerization to an isomer with only terminal carbonyls,  $[Co_2(CO)_4(\mu$  $dmpm_{2}$  (2a), is responsible (eq 2). The solution IR



spectrum at -90 °C contained both bridging and terminal CO groups, indicating that the equilibrium of eq 2 lies to the left at low temperature and the right at higher temperature.

The thermodynamics of the equilibrium of eq 2 in dichloromethane solution were studied by variable-temperature solution FTIR spectroscopy (Figure 1). The observation of isosbestic points indicates a simple equilibrium between two isomers. Equilibrium constants were determined from these spectra over the temperature range 190-301 K, and a plot of  $\ln K$  vs 1/T resulted in a good linear fit (Figure 1). The thermodynamic data for 1 and 2 (PP = dmpm, dppm) and the parent  $[Co_2(CO)_8]$  are presented in Table I. For the diphosphine-bridged complexes, the enthalpy term strongly favors the bridged form (1), while the entropy term strongly favors the unbridged form (2) in each case. The effect is much greater than for the parent  $[Co_2(CO)_8]$  (Table I). An attempt was made to determine the equilibrium constants independently by variable-temperature UV-visible absorption spectroscopy. Complex 2a absorbs more strongly than 1a over the region 520–700 nm, but the bandwidths appear to be temperature dependent and so quantitative data could not be obtained.

The <sup>31</sup>P NMR spectrum of the equilibrium mixture of 1a and 2a in acetone- $d_6$  at room temperature, where 2a is predominant, contained a single broad resonance at  $\delta$ 14.1. At -90 °C, where 1a is predominant, the spectrm contained a sharp singlet resonance at  $\delta$  33.2, assigned to 1a, and a barely resolved, extremely broad, weak resonance at  $\delta$  20.5, assigned to 2a. At intermediate temperatures (0 to -20 °C) the <sup>31</sup>P NMR was very broad. It is therefore clear that the interconversion of 1a and 2a is fast at room



Figure 1. Variable-temperature FTIR spectra in the carbonyl region for the equilibrium mixture 1a/2a. The arrows indicate the growth or decay of peaks as the temperature is decreased, while at the bottom is the derived plot of  $\ln K$  vs 1/T.

Table I. Thermodynamic and Kinetic Data for the Equilibrium 1/2<sup>s</sup>

|                                               | $\Delta H/kJ$      | $\Delta S/J$    | ratio         | ∆G*/kJ        |                   |
|-----------------------------------------------|--------------------|-----------------|---------------|---------------|-------------------|
| complex                                       | mol <sup>-1</sup>  | K-1 mol-1       | 298 K         | 1 <b>90 K</b> | mol <sup>-1</sup> |
| [Co <sub>2</sub> (CO) <sub>8</sub> ]<br>1a/2a | +5.6<br>+26.3(2.1) | +21<br>+107(13) | 44:56<br>9:91 | 74:26<br>98:2 | 27<br>47(1)       |
| 1b/2b                                         | +22.1(1.5)         | +102(8)         | 3:97          | 85:15         | 41.5(1)           |

<sup>a</sup> Data in the case of [Co<sub>2</sub>(CO)<sub>8</sub>] are for solutions in pentane or hexane, while in the case of 1/2 data are for solutions in CH<sub>2</sub>Cl<sub>2</sub>.

temperature such that only an average signal is observed but that separate signals are observed at low temperature. However, there must also be a very significant temperature dependence of the chemical shift of one or both isomers, since separate shifts of  $\delta$  33.2 and 20.5 cannot result in an average of  $\delta$  14.1. Spectra between -30 and -80 °C were consistent with this assignment, but the signal assigned to -2a was always extremely broad, such that there remained some doubt. Therefore, the <sup>31</sup>P NMR spectra in  $CD_2Cl_2$  of 1b/2b, both of which have been structurally characterized,<sup>22</sup> were reinvestigated. The spectrum at 20 and -32 °C each contained a singlet at  $\delta$  34.3 and 37.1, respectively, while at -52 and -72 °C two singlets were observed at  $\delta$  41.9 (1b), 37.3 (2b) and 44.8 (1b), 37.7 (2b), respectively. There was further change of chemical shifts at -95 °C, but no further splittings were observed. In the case of the 1b/2b equilibrium, both resonances were well resolved (Figure 2) and so the assignments are secure. The temperature dependence of the chemical shifts is significantly less than for 1a/2a, but the trend is the same. Of course, part of the change in average chemical shift is

 <sup>(20)</sup> Elliot, D. J.; Mirza, H. A.; Puddephatt, R. J.; Holah, D. G.; Hughes,
 A. N.; Hill, R. H.; Xia, W. Inorg. Chem. 1989, 28, 3282.
 (21) Mirza, H. A.; Vittal, J. J.; Puddephatt, R. J. J. Chem. Soc., Chem.

Commun. 1991, 309.

<sup>(22)</sup> Elliot, D. J.; Holah, D. G.; Hughes, A. N.; Magnuson, V. R.; Moser, I. M.; Puddephatt, R. J. Bull. Soc. Chim. Fr. 1992, 129, 676.



Figure 2. Variable-temperature <sup>13</sup>C NMR (75 MHz) and <sup>31</sup>P NMR (121 MHz) spectra for the mixture 1b/2b.

due to the strong temperature dependence of the equilibrium constant for eq 2. The 1b:2b ratios at 21, -32, -52, and -72 °C are 4:96, 22:78, 44:56, and 72:28, respectively. However, it is clear that the  $\delta$  values of individual isomers decrease at higher temperatures and that the effect is stronger for the dmpm complexes 1a/2a.

The room-temperature <sup>1</sup>H NMR spectrum of 1a/2a in  $CD_2Cl_2$  shows a broad resonance at  $\delta$  2.35 for the  $CH_2P_2$ protons of the dmpm ligand and another resonance at  $\delta$ 1.5 for the PMe protons. At -90 °C, the resonances due to CH<sup>a</sup>H<sup>b</sup>P<sub>2</sub> protons of 1a appeared as an AB pattern at  $\delta$  1.93 and 2.75 while a very weak peak at  $\delta$  2.19 was assigned to the  $CH_2P_2$  protons of 2a. In addition, broad resonances at  $\delta$  1.50 and 1.34 (weak) were assigned to the Me<sub>2</sub>P protons.

No carbonyl resonance was resolved in the roomtemperature <sup>13</sup>C NMR spectrum of 1a/2a. However, at -82 °C two carbonyl resonances were observed at  $\delta$  203.5 and 265.5, assigned to the terminal and bridging carbonyls, respectively, of 1a. No resonance due to 2a was resolved. This could be due to the low abundance of 2a (only 2%at -82 °C), but at intermediate temperatures where the abundance is higher, based on the thermodynamic data of Table I, the resonance was still absent. For the dppm analogs 1b/2b <sup>13</sup>C resonances were observed for both isomers, although that due to 2b was broad (Figure 2) and a coalesced signal was observed at room temperature.

It is interesting that the solid-state structure of [Co<sub>2</sub>- $(CO)_4(\mu$ -dppm)<sub>2</sub>] (2b) clearly indicates chemical inequivalence of the carbonyl groups occupying axial and equatorial sites on cobalt<sup>22</sup> but only one carbonyl resonance was observed at low temperature. Moreover, the reaction shown in eq 2 for the equilibrium between 1 and 2 does not of itself lead to equivalence of carbonyl groups or the CH<sup>a</sup>H<sup>b</sup> protons of the unbridged form. This confirms that a second form of fluxionality with a much lower activation energy must occur within the nonbridged form 2. A reasonable mechanism for this fluxional process, which makes all carbonyls and  $CH_2P_2$  protons equivalent, is illustrated by eq 3 (note that when only two carbonyls are



shown the other two are vertical to the plane of the paper). The structures are shown as Newman projections along the Co-Co bond. The reversible reaction  $2 \rightleftharpoons 3$  is most reasonable, as structure 3 is analogous to the structure of the  $D_{2d}$  isomer of  $[Co_2(CO)_8]$  (eq 1). The formation of a third isomer (4) is possible but not necessary to explain the NMR data. A simpler interpretation of the NMR data, suggested by a reviewer, is that 3 is more stable than 2 in solution and that the equilibrium is between 1 and 3. A temperature-dependent equilibrium between 2 and 3 is inconsistent with the FTIR data discussed above; therefore, this interpretation requires 3 to be significantly more stable than 2 in solution over the whole temperature range studied. The problem with this interpretation is that 2 is the form that has been structurally characterized in the solid state.<sup>22</sup>

The approximate activation energies  $\Delta G^*$  for the equilibration between isomers was calculated by using the Eyring equation and are given in Table I. The activation energy for a given equilibration was constant, within the error bars given in Table I, over the temperature ranges for which coalescence of observable NMR resonances occurred. These temperature ranges were 233-275 or 213-243 K for 1a/2a or 1b/2b, respectively; hence, the entropy of activation is small. There is a clear correlation between the values of  $\Delta H$  and  $\Delta G^*$  for a given complex (Table I); in particular, the values of both parameters are much larger for 1/2 than for the corresponding isomers in  $[Co_2(CO)_8]$ .

The strong dependence of  $\delta(^{31}P)$  of 1a/2a on temperature, the extreme broadness of the <sup>31</sup>P resonance of 2a, and the inability to detect the <sup>13</sup>CO resonance of 2a were puzzling and suggested that 2a might be paramagnetic. It is known that the Co–Co distance in 2b (2.819(2) Å) is much longer than in 1b (2.44(3) Å),<sup>22</sup> and this observation indicates a very weak Co-Co bond in 2b. Therefore, the magnetic susceptibility of complexes 1a/2a in solution was determined as a function of temperature by using Evans' method.<sup>23</sup> The results are given in Table II. The mixtures of 1a/2a are paramagnetic in solution, and the value of  $\mu_{eff}$ increases with temperature as the proportion of 2a increases. The values of  $\mu_{eff}$  at 201 and 298 K were 0.84 and 1.24  $\mu_B$  and correspond to 2a:1a ratios of 5:95 and 91:9, respectively (Table II). Considering that some temperature-independent paramagnetism is expected, the value of  $\mu_{\text{eff}}$  at 298 K is clearly too low to indicate that 2a has two unpaired electrons, as expected for the diradical 5, but is consistent with an equilibrium between metalmetal-bonded and diradical forms 2a and 5; eq 4) or to a high-spin/low-spin equilibrium for 2a.24 Similar solution paramagnetism has been observed in  $[Co_2H(\mu-H)_3(i-Pr_2 PCH_2CH_2CH_2P-i-Pr_2)_2$  and was attributed either to a

<sup>(23) (</sup>a) Evans, D. F. J. Chem. Soc. 1959, 2003. (b) Ostfeld, D.; Cohen,
I. A. J. Chem. Educ. 1972, 49, 829. (c) Tiers, G. V. D. J. Phys. Chem.
1958, 62, 1151. (d) Washburn, E. W. International Critical Tables;
McGraw-Hill: New York, 1929; Vol. III, p 27 and Vol. IV, p 361. (e)
Figgis, B. N., Lewis, J. In Modern Coordination Chemistry; Lewis, J.
Wilkins, R. G., Eds.; Interscience: New York, 1960.
(24) (a) Baird, M. C. Chem. Rev. 1988, 88, 1217. (b) Fryzuk, M. D.;
Ng, J. B.; Rettig, S. J.; Huffman, J. C.; Jonas, K. Inorg. Chem. 1991, 30, 2437.

<sup>2437.</sup> 

Table II. Magnetic Moments ( $\mu_B$ ) of 1a/2a in CD<sub>2</sub>Cl<sub>2</sub> Solution as a Function of Temperature

|                          | T/K          |               |               |               |               |               |              |
|--------------------------|--------------|---------------|---------------|---------------|---------------|---------------|--------------|
|                          | 201          | 221           | 241           | 251           | 261           | 273           | 298          |
| ratio <sup>a</sup> 1a:2a | 95:5<br>0.84 | 81:19<br>0.98 | 56:44<br>1.10 | 44:56<br>1.14 | 32:68<br>1.19 | 22:78<br>1.26 | 9:91<br>1.24 |

<sup>a</sup> These values are estimated from the thermodynamic data obtained from FTIR studies (Table I). <sup>b</sup> This includes the diamagnetic correction; estimated error is  $\pm 0.05 \ \mu_{\beta}$ .



high-spin/low-spin equilibrium or to reversible dissociation to monomeric complexes.<sup>24</sup> It is not clear if the proposed paramagnetic complex might play a part in the fluxionality of 1a/2a, but it is presumably responsible for the anomalous NMR properties of 2a discussed earlier. Both the NMR data and magnetic properties were reproducible with carefully purified samples and so are unlikely to be caused by impurities of cobalt(II), while the FTIR data preclude reversible dissociation to mononuclear complexes. No EPR signal could be detected for 1a in the solid state or for 1a/2a in dichloromethane solution at room temperature or in a glass at liquid-nitrogen temperature. In the solid state, a mixture of 1b/2b had  $\mu_{eff} = 1.1 \ \mu_{B}$ , while 1a was diamagnetic.

# Synthesis and Characterization of [Co<sub>4</sub>(CO)<sub>5</sub>- $(\mu - CO)_3(\mu - dmpm)_2$ (6)

Reduction of cobalt(II) chloride by NaBH<sub>4</sub> in the presence of a stoichiometric quantity of dmpm and excess CO gave the black product  $[Co_4(CO)_5(\mu-CO)_3(\mu-dmpm)_2]$ . The only difference from the reaction which gave  $[Co_2$ - $(CO)_4(dmpm)_2$ ] was the Co:dmpm ratio, which was ca. 1:1 and 1:3 in the synthesis of 6 and 1a, respectively. Complex 6 has been prepared previously by pyrolysis of  $[Co_2(CO)_6 (\mu$ -dmpm)];<sup>5</sup> it was stable in the solid state, but it decomposed slowly in solution at room temperature.



The solid-state structure of 6 was determined by a singlecrystal X-ray analysis, which produced the atomic coordinates listed in Table III. Selected bond lengths and angles are shown in Table IV.

The molecular structure, illustrated in Figure 3, contains a distorted-tetrahedral Co<sub>4</sub> cluster, with two edges spanned by two dmpm ligands and one face edge-bridged by three carbonyl groups. The remaining five carbonyl ligands are essentially linear (Co-C-O = 171.2(10)-179.3)(9)°). Thus, the molecular geometry of 6 can be derived from the  $C_{3v}$  structure of the parent complex [Co<sub>4</sub>- $(CO)_{12}$ ],<sup>5,18,25</sup> by substituting one apical and one equatorial carbonyl group with one dmpm ligand and two axial

Table III. Fractional Atomic Coordinates and Equivalent Displacement Parameters  $(Å^2)$  for  $[Co_4(CO)_8(\mu-dmpm)_2]$ 

|              | x            | у            | Z            | Ua    |
|--------------|--------------|--------------|--------------|-------|
| Co(1)        | 0.08251(5)   | -0.11372(6)  | 0.02914(4)   | 0.035 |
| Co(2)        | 0.06274(6)   | 0.01864(7)   | -0.08243(4)  | 0.041 |
| Co(3)        | -0.03421(5)  | 0.03731(7)   | 0.03427(4)   | 0.039 |
| Co(4)        | 0.12935(6)   | 0.09623(7)   | 0.04393(5)   | 0.045 |
| P(1)         | 0.00966(11)  | -0.26389(14) | -0.01853(10) | 0.049 |
| P(2)         | -0.01579(12) | -0.09886(18) | -0.15786(9)  | 0.056 |
| P(3)         | -0.06855(14) | 0.16868(16)  | 0.12316(9)   | 0.055 |
| P(4)         | 0.12430(14)  | 0.15132(21)  | 0.16920(11)  | 0.070 |
| C(1)         | 0.1536(4)    | -0.0922(6)   | -0.0640(3)   | 0.049 |
| C(2)         | 0.0033(5)    | -0.0740(5)   | 0.1106(3)    | 0.051 |
| C(3)         | -0.0326(6)   | 0.1332(6)    | -0.0572(3)   | 0.066 |
| C(4)         | 0.1579(4)    | -0.1925(6)   | 0.0860(4)    | 0.056 |
| C(5)         | 0.1133(5)    | 0.0997(7)    | -0.1577(4)   | 0.062 |
| C(6)         | -0.1421(5)   | -0.0160(8)   | 0.0234(5)    | 0.077 |
| C(7)         | 0.2408(5)    | 0.0500(8)    | 0.0520(5)    | 0.074 |
| C(8)         | 0.1366(7)    | 0.2322(7)    | -0.0043(6)   | 0.091 |
| C(9)         | -0.0628(5)   | -0.2242(6)   | -0.1027(4)   | 0.059 |
| C(10)        | 0.0083(5)    | 0.1681(7)    | 0.2087(4)    | 0.064 |
| C(11)        | -0.0663(7)   | 0.3357(8)    | 0.0522(5)    | 0.090 |
| C(12)        | 0.0770(6)    | -0.3868(7)   | -0.0562(5)   | 0.084 |
| C(13)        | 0.0483(6)    | -0.1639(9)   | -0.2410(4)   | 0.087 |
| C(14)        | -0.1147(6)   | -0.0434(9)   | -0.2090(5)   | 0.091 |
| C(15)        | -0.1756(5)   | 0.1438(10)   | 0.1769(5)    | 0.088 |
| C(16)        | -0.0730(10)  | 0.3248(8)    | 0.0898(6)    | 0.133 |
| C(17)        | 0.1771(6)    | 0.0486(11)   | 0.2410(5)    | 0.105 |
| C(18)        | 0.1808(8)    | 0.2900(11)   | 0.1913(7)    | 0.150 |
| <b>O</b> (1) | 0.2189(3)    | -0.1315(5)   | 0.0948(3)    | 0.071 |
| O(2)         | -0.0124(4)   | -0.0988(5)   | 0.1781(3)    | 0.082 |
| O(3)         | -0.0670(6)   | 0.2116(6)    | -0.0864(3)   | 0.118 |
| O(4)         | 0.2074(4)    | -0.2467(6)   | 0.1241(3)    | 0.096 |
| O(5)         | 0.1462(5)    | 0.1495(6)    | -0.2090(3)   | 0.107 |
| O(6)         | -0.2142(4)   | -0.0506(8)   | 0.0166(5)    | 0.152 |
| <b>O</b> (7) | 0.3138(4)    | 0.0234(7)    | 0.0633(4)    | 0.111 |
| O(8)         | 0.1438(7)    | 0.3248(6)    | -0.0259(5)   | 0.154 |

 $^{a}U = \frac{1}{3}\sum_{i=1}^{3}\sum_{j=1}^{3}U_{ij}a^{*}_{i}a^{*}_{j}(\mathbf{i}_{i}\cdot\mathbf{i}_{j})$ 

carbonyl groups with another. The disposition of the dmpm ligands along the edges of the Co<sub>4</sub> tetrahedron is such as to yield the isomeric form I. The five-membered Co<sub>2</sub>P<sub>2</sub>C ring containing the axial dmpm ligand adopts an envelope conformation, with the  $CH_2$  group at the flap; the conformation of the ring incorporating the C(3) and C(4) atoms is puckered, as is evident from the torsion angles shown in Table IV. The molecular structure of 6 is therefore asymmetrical and closely similar to that of the rhodium cluster  $[Rh_4(CO)_8(dppm)_2]$ .<sup>15</sup>

The Co-Co bond lengths in 6 vary from 2.426(1) to 2.541-(2) Å and can be compared with those of 2.438(3)-2.717(1) Å observed in other crystallographically characterized cobalt complexes.<sup>15,18,25-29</sup> They follow the trend displayed by tetrahedral cluster complexes of the type [Co<sub>4</sub>- $(CO)_{12-n}L_n$  (n = 1-5), in which the metal-metal bonds in the basal plane are shorter, and presumably stronger, than the bonds involving the apical cobalt atom.<sup>18,26-28</sup> In 6 the basal-basal and basal-apical Co-Co distances average 2.443 and 2.518 Å, respectively. Of the three basal-apical bonds the one spanned by the dmpm ligand (Co(3)-Co(4))= 2.541 Å) is slightly longer than the two unsupported bonds (Co(1)-Co(4) = 2.503(2) Å, Co(2)-Co(4) = 2.510 Å). In the basal plane, however, the bond bridged the dmpm ligand (Co(1)-Co(2) = 2.426(1) Å) is shorter than the other two (Co(2)-Co(3) = 2.451(2) Å, Co(1)-Co(3) = 2.452 Å).

<sup>(25) (</sup>a) Wei, C. H. Inorg. Chem. 1969, 8, 2384. (b) Wei, C. H.; Wilkes, G. R.; Dahl, L. F. J. Am. Chem. Soc. 1967, 89, 4792. (c) Wei, C. H.; Dahl, L. F. J. Am. Chem. Soc. 1966, 88, 1821.

<sup>(26)</sup> Bahsoun, A. A.; Osborn, J. A.; Voelken, C.; Bonnet, J.; Lavigne, G. Organometallics 1982, 1, 1114. (27) Darensbourg, D. J.; Zalewski, D. J.; Delord, T. Organometallics

<sup>1984, 3, 1210.</sup> 

<sup>(28)</sup> Darensbourg, D. J.; Zalewski, D. J.; Rheingold, R. L.; Durney, R. L. Inorg. Chem. 1986, 25, 3281.

<sup>(29)</sup> Richmond, M. G.; Kochi, J. K. Organometallics 1987. 6, 777.

Table IV. Selected Interatomic Distances (Å) and Angles

| (deg) in [Co <sub>4</sub> (CO) <sub>8</sub> (µ-dmpm) <sub>2</sub> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                          |          |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------|----------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bond D            | istances                 |          |  |  |  |
| Co(1)-Co(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.426(1)          | Co(1)-Co(3)              | 2.452(2) |  |  |  |
| Co(1)-Co(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.503(2)          | $C_0(1) - P(1)$          | 2.180(2) |  |  |  |
| $C_0(1) - C(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.910(6)          | $C_{0}(1) - C(2)$        | 1.868(7) |  |  |  |
| $C_0(1) - C(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.730(7)          | $C_{0}(2) - C_{0}(3)$    | 2.451(2) |  |  |  |
| $C_0(2) - C_0(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.510(2)          | $C_0(2) - P(2)$          | 2.187(2) |  |  |  |
| $C_0(2) - C(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.880(7)          | $C_0(2) - C(3)$          | 1.978(8) |  |  |  |
| $C_0(2) - C(5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.741(7)          | Co(3)-Co(4)              | 2.541(2) |  |  |  |
| $C_0(3) - P(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.177(2)          | $C_0(3) - C(2)$          | 1.890(7) |  |  |  |
| $C_0(3) - C(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.888(7)          | $C_0(3) - C(6)$          | 1.734(8) |  |  |  |
| $C_0(4) - P(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.202(3)          | $C_{0}(4) - C(7)$        | 1.753(8) |  |  |  |
| $C_0(4) - C(8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.751(9)          | P(1) - C(9)              | 1.841(7) |  |  |  |
| P(2) - C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.842(8)          | P(3) - C(10)             | 1.842(7) |  |  |  |
| P(4) - C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.867(8)          |                          |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                          |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bond A            | Angles                   |          |  |  |  |
| Co(2) - Co(1) - Co(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60.3(1)           | Co(2) - Co(1) - Co(4)    | 61.2(1)  |  |  |  |
| Co(2) - Co(1) - P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 98.1(1)           | $C_0(2) = C_0(1) = C(1)$ | 49.7(2)  |  |  |  |
| Co(2) - Co(1) - C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.9(2)          | Co(2)-Co(1)-C(4)         | 146.1(3) |  |  |  |
| Co(3)-Co(1)-Co(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61.7(1)           | Co(3)-Co(1)-P(1)         | 102.0(1) |  |  |  |
| Co(3)-Co(1)-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109.6(2)          | Co(3)-Co(1)-C(2)         | 49.7(2)  |  |  |  |
| Co(3) - Co(1) - C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 143.9(3)          | Co(4) - Co(1) - P(1)     | 157.7(1) |  |  |  |
| Co(4)-Co(1)-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 78.7(3)           | Co(4)-Co(1)-C(2)         | 82.7(2)  |  |  |  |
| Co(4) - Co(1) - C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 104.9(3)          | P(1)-Co(1)-C(1)          | 94.4(2)  |  |  |  |
| P(1)-Co(1)-C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98.2(3)           | P(1)-Co(1)-C(4)          | 97.1(3)  |  |  |  |
| C(1)-Co(1)-C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 157.6(3)          | C(1)-Co(1)-C(4)          | 99.1(3)  |  |  |  |
| C(2)-Co(1)-C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97.6(3)           | Co(1)-Co(2)-Co(3)        | 60.4(1)  |  |  |  |
| Co(1) - Co(2) - Co(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60.9(1)           | Co(1) - Co(2) - P(2)     | 97.8(1)  |  |  |  |
| Co(1)-Co(2)-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.7(2)           | Co(1)-Co(2)-C(3)         | 109.3(2) |  |  |  |
| Co(1) - Co(2) - C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 147.1(3)          | Co(3)-Co(2)-Co(4)        | 61.6(1)  |  |  |  |
| Co(3)-Co(2)-P(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 101.6(1)          | Co(3)-Co(2)-C(1)         | 110.7(2) |  |  |  |
| Co(3)-Co(2)-C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 49.0(2)           | Co(3)-Co(2)-C(5)         | 142.6(3) |  |  |  |
| Co(4) - Co(2) - P(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 157.0(1)          | Co(4)-Co(2)-C(1)         | 79.0(2)  |  |  |  |
| Co(4) - Co(2) - C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82.6(2)           | Co(4)-Co(2)-C(5)         | 104.9(3) |  |  |  |
| P(2)-Co(2)-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94.2(2)           | P(2)-Co(2)-C(3)          | 98.1(3)  |  |  |  |
| P(2)-Co(2)-C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97.8(3)           | C(1)-Co(2)-C(3)          | 158.1(3) |  |  |  |
| C(1)-Co(2)-C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.3(4)           | C(3)-Co(2)-C(5)          | 96.9(4)  |  |  |  |
| C(1)Co(3)Co(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59.3(1)           | Co(1)-Co(3)-Co(4)        | 60.2(1)  |  |  |  |
| Co(1) - Co(3) - P(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 132.4(1)          | Co(1)-Co(3)-C(2)         | 48.9(2)  |  |  |  |
| Co(1)-Co(3)-C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 111.6(3)          | Co(1)-Co(3)-C(6)         | 114.4(3) |  |  |  |
| Co(2) - Co(3) - Co(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60.3(1)           | Co(2) - Co(3) - P(3)     | 138.6(1) |  |  |  |
| Co(2) - Co(3) - C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108.2(3)          | Co(2)-Co(3)-C(3)         | 52.3(3)  |  |  |  |
| Co(2)-Co(3)-C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 115.8(3)          | Co(4) - Co(3) - P(3)     | 90.1(1)  |  |  |  |
| Co(4)-Co(3)-C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 174.2(3)          | P(3)-Co(3)-C(2)          | 93.6(2)  |  |  |  |
| P(3)-Co(3)-C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.6(3)           | P(3)-Co(3)-C(6)          | 95.4(3)  |  |  |  |
| C(2)-Co(3)-C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 159.8(4)          | C(2)-Co(3)-C(6)          | 96.5(4)  |  |  |  |
| C(3)-Co(3)-C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97.4(4)           | Co(1)-Co(4)-Co(2)        | 57.9(1)  |  |  |  |
| Co(1)-Co(4)-Co(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 58.1(1)           | Co(1)-Co(4)-P(4)         | 111.0(1) |  |  |  |
| Co(1)-Co(4)-C(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 89.2(3)           | Co(1)-Co(4)-C(8)         | 144.6(4) |  |  |  |
| Co(2)-Co(4)-Co(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 58.1(1)           | Co(2)-Co(4)-P(4)         | 154.0(1) |  |  |  |
| Co(2) - Co(4) - C(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.7(3)          | Co(2)-Co(4)-C(8)         | 86.7(4)  |  |  |  |
| Co(3)-Co(4)-P(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95.9(1)           | Co(3)-Co(4)-C(7)         | 147.2(3) |  |  |  |
| Co(3)-Co(4)-C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 105.3(4)          | P(4)-Co(4)-C(7)          | 92.5(3)  |  |  |  |
| P(4)-Co(4)-C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101.2(4)          | C(7)-Co(4)-C(8)          | 104.0(5) |  |  |  |
| Co(1) - P(1) - C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112.7(3)          | Co(2) - P(2) - C(9)      | 112.7(3) |  |  |  |
| Co(3) - P(3) - C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 112.8(3)          | Co(4) - P(4) - C(10)     | 113.7(3) |  |  |  |
| Co(1)-C(1)-Co(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79.6(3)           | Co(1)-C(2)-Co(3)         | 81.4(3)  |  |  |  |
| Co(2)-C(3)-Co(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 78.7(3)           | P(1)-C(9)-P(2)           | 110.7(4) |  |  |  |
| P(3)-C(10)-P(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 107.5(4)          |                          |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Toreion           | Angles                   |          |  |  |  |
| $P(1) = C_0(1) = C_0(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $r_{0}(2) = P(2)$ | Aligies                  | 2(1)     |  |  |  |
| $C_{0}(2) = C_{0}(1) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -P(1) - C(0)      | _16                      | 8(3)     |  |  |  |
| $C_0(1) = C_0(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -P(2) - C(0)      | -10.                     | 3(3)     |  |  |  |
| $C_0(1) = P(1) = C_0(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2) = O(3)        | 20                       | 8(3)     |  |  |  |
| $C_0(2) = P(2) = C_0(2) = P(2) = C_0(2) = P(2) = C_0(2) = P(2) = C_0(2) = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (9) - P(1)        | _29.                     | 6(3)     |  |  |  |
| $P(3) = C_0(3) = C_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $C_0(4) - P(4)$   | -25.                     | 9(1)     |  |  |  |
| $\frac{1}{1} \left( \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \right) = \frac{1}$ | -P(3) - C(10)     |                          | 2(3)     |  |  |  |
| $C_0(3) - C_0(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -P(4) - C(10)     | -13                      | 4(3)     |  |  |  |
| $C_0(3) = P(3) = C_0(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(10) - P(4)      | 42                       | 2(3)     |  |  |  |
| $C_0(4) - P(4) - C_0(4) - C_0(4) - P(4) - P(4) - C_0(4) - P(4) -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(10) - P(3)      | -13                      | 9(3)     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - (, * (*)        | 10,                      |          |  |  |  |

All the terminal Co-C distances (axial, equatorial, and apical) are equal (1.730(7)-1.753(8) Å), and they are substantially shorter than the bridging Co-C distances (1.868(7)-1.978(8) Å). Only one carbonyl bridge is slightly asymmetrical (Co(3)-C(3) = 1.888(7) Å, Co(2)-C(3) = 1.978(8) Å).



Figure 3. View of the molecular structure of  $[Co_4(CO)_8(Me_2-PCH_2PMe_2)_2]$ . The oxygen atoms are assigned the same numbers as the carbon atoms to which they are bonded, but their labels are omitted for clarity.

The Co–P bond lengths are within the range of those observed in phosphine and phosphite derivatives of the  $[Co_4(CO)_{12}]$  cluster (2.156(2)-2.266(6) Å).<sup>18,28</sup> In the axial dmpm ligand the Co–P bonds are equal (2.180(2) and 2.187(2) Å), while for the other dmpm group the apical bond (Co(4)-P(4) = 2.202(3) Å) is substantially longer than the equatorial bond (Co(3)-P(3) = 2.177(2) Å). The lengthening of the Co(4)–P(4) bond may be attributed to the trans influence of the axial phosphine transmitted through the metal–metal bond  $(P(2)-Co(2)-Co(4) = 157.0(1)^{\circ}, Co-(2)-Co(4)-P(4) = 154.0(1)^{\circ}).$ 

The IR spectrum of 6 in the solid state gave both terminal (1989, 1963, 1946, 1930, and 1893 cm<sup>-1</sup>) and bridging (1810, 1773, and 1743 cm<sup>-1</sup>) carbonyl stretching frequencies, the frequencies being lower than in the parent  $[Co_4(CO)_{12}]^{16,17e}$  due to the strong donor ability of dmpm. In solution in CH<sub>2</sub>Cl<sub>2</sub>, the carbonyl stretching frequencies were in agreement with literature data.<sup>5</sup>

At room temperature, the <sup>31</sup>P NMR spectrum in CD<sub>2</sub>-Cl<sub>2</sub> contained a broad resonance centered at  $\delta$  -0.9 ppm. At -90 °C this split into three resonances with an intensity ratio of 2:1:1, consistent with the X-ray structure (Figure 4). The peaks are assigned to  $P^{a}$  and  $P^{b}(d, \delta 6.8, J(P^{a,b}P^{d}))$ = 50.4 Hz, P<sup>c</sup> (d,  $\delta - 4.8$ ,  $J(P^{c}P^{d}) = 33.6 \text{ Hz}$ ), and P<sup>d</sup> (broad,  $\delta$  -11). The apical phosphorus resonance was severely broadened by the cobalt quadrupole even at low temperature.<sup>5</sup> The previous report gave  $\delta(P)$  11.8 at 25 °C and  $\delta(\mathbf{P})$  12.15 (intensity 3) and 11.10 (intensity 1) at -60 °C; the chemical shifts are in poor agreement with the present data, but there is little doubt that the same complex is present. The <sup>1</sup>H NMR spectrum of 6 is also temperaturedependent. Thus, at room temperature, it contained a broad resonance due to the PMe protons centered at  $\delta$ 1.47 but, at -90 °C, there were four such resonances as expected for the solid-state structure. These data complement the earlier report of the <sup>13</sup>C and <sup>57</sup>Co NMR spectra $^{5,17}$  and confirm that complex 6 is fluxional.



Figure 4. Variable-temperature <sup>31</sup>P NMR spectra (121 MHz) for  $[Co_4(CO)_8(Me_2PCH_2PMe_2)_2]$ . The chemical shifts at -90 °C are  $\delta$  6.8  $[P^a,P^b]$ , -4.8  $[P^c]$ , -11  $[P^d]$ .

## Reaction Chemistry of $[Co_2(CO)_4(\mu-dmpm)_2]$

A study of the reaction of 1a/2a was made with the expectation that the small, strong donor ligands dmpm would lead to easy oxidation of cobalt.<sup>5,7,27-35</sup>

 $[Co_2(CO)_4(\mu-dmpm)_2]$  reacted easily with iodine, and following precipitation with NaBPh<sub>4</sub>, the red crystalline complex  $[Co_2(\mu-I)(CO)_2(\mu-CO)(\mu-dmpm)_2]$  [BPh<sub>4</sub>] (7) was isolated. Complex 7 was also formed on reaction of 1a/2a with sodium iodide and NaBPh<sub>4</sub>; clearly it is easily oxidized. A number of complexes similar to 7 are known,<sup>22</sup> and it was readily characterized by its analytical and spectroscopic data (see Experimental Section).



Reaction of 1a/2a with  $[Cu(MeCN)_4]BF_4$  gave a deep green solution from which black, air-stable crystals of  $[Co_4-Cu_3(CO)_8(\mu-dmpm)_4]BF_4$  (8) were isolated in low yield. Since the spectroscopic data did not define the structure, it was characterized by an X-ray structure determination.

The molecular structure of the cluster cation 8 is illustrated in Figure 5. Positional parameters and bond distances and angles are given in Tables V and VI. The cluster core can be considered to comprise two triangles

(35) Puddephatt, R. J. Chem. Soc. Rev. 1983, 99.



of metal atoms (Co(1)Co(2)Cu(2) and Co(3)Co(4)Cu(3))bridged by a central copper atom (Cu(1)). Each  $Co_2Cu$ triangle has three edge-bridging carbonyl ligands, of which one (e.g. C(3)O(3)) bridges a Co-Co bond and two (e.g. C(5)O(5) and C(7)O(7) are semibridging between cobalt and copper.<sup>36,37</sup> The two Co<sub>2</sub>Cu triangles are bridged by two dmpm ligands, of which one bridges between equivalent copper atoms (Cu(2)P(1)P(2)Cu(3)) and one bridges between cobalt atoms (Co(1)P(3)P(4)Co(3)). The other two dmpm ligands bridge between cobalt atoms within each  $Co_2Cu$  triangle (e.g. Co(1)P(5)P(6)Co(2)). There are two terminal carbonyls bound to cobalt (Co(2)C(1)O(1)), Co(4)C(2)O(2)). The two  $Co_2Cu$  triangles lean toward one another such that the nonbonded distance Cu(2)-Cu(3)= 3.211(4) Å is much shorter than the corresponding distances Co(1)-Co(3) = 4.248(4) Å and Co(2)-Co(4) - Co(4)4.24(4) Å. In order to span the long Co(1)–Co(3) distance, the  $\mu$ -dmpm ligand has bond angles which are significantly distorted from the normal tetrahedral values (e.g. P(3)- $C(20)-P(4) = 121.8(2.1)^{\circ}; Co(3)-P(4)-C(20) = 121.5(1.4)^{\circ}].$ Indeed, the cluster is remarkable in having the versatile  $\mu$ -dmpm ligands spanning pairs of metal atoms separated by the disparate distances of 2.51, 2.52, 3.21, and 4.25 Å.

The most remarkable feature of the structure of 8 is the geometry of the bridging copper atom Cu(1). It does not bridge symmetrically between the faces of the  $Co_2Cu$ 

<sup>(30)</sup> Hanson, B. E.; Fanwick, P. E.; Mancini, J. S. Inorg. Chem. 1982, 21, 3811.

<sup>(31)</sup> Puddephatt, R. J.; Thompson, M. A.; Manojlović-Muir, L.; Muir, K. W.; Frew, A. A.; Brown, M. P. J. Chem. Soc., Chem. Commun. 1981, 805.

<sup>(32)</sup> Ling, S. S. M.; Puddephatt, R. J.; Manojlović-Muir, L.; Muir, K. W. Inorg. Chim. Acta 1983, 77, L95.

 <sup>(33)</sup> Ling, S. S. M.; Jobe, I. R.; McLennan, A. J.; Manojlović-Muir, L.;
 Muir, K. W.; Puddephatt, R. J. J. Chem. Soc., Chem. Commun. 1985, 566.
 (34) King, R. B.; RaghuVeer, K. S. Inorg. Chem. 1984, 23, 2482.

<sup>(36)</sup> Darensbourg, D. J.; Chao, C.-S.; Reibenspies, J. H.; Bischoff, C. J. Inorg. Chem. 1990, 29, 2153.

<sup>(37)</sup> Achternbosch, M.; Braun, H.; Fuchs, R.; Klufers, P.; Selle, A.; Wilhelm, V. Angew. Chem., Int. Ed. Engl. 1990, 29, 783.



**Figure 5.** View of the structure of the cluster cation  $[Co_4Cu_3(CO)_8(\mu-dmpm)_4]^+$ .

triangles but is displaced toward the cobalt atoms such that the Cu(1)-Co distances (2.458(4)-2.474(4) Å) are significantly shorter than the Cu(1)-Cu distances (2.683-(4) and 2.624(3) Å). The latter distances are in the range found for weak lateral forces between copper(I) atoms,38,39 but the Cu-Cu bonding is still presumably partly responsible for the tilting of the  $Co_2Cu$  triangles described above. The four cobalt atoms and Cu(1) are approximately coplanar (dihedral angle between planes Cu(1)Co(1)Co-(2) and Cu(1)Co(3)Co(4) 14.8(3)°; Co(2)-Cu(1)-Co(3) = $178.0(1)^{\circ}$ , Co(1)-Cu(1)-Co(4) = 168.1(1)^{\circ}). Although at least one group 11 cluster complex is known to contain an approximately square-planar metal center in oxidation state I,40 this stereochemistry is much more typical of these metals in oxidation state III. Furthermore, formal removal of the central copper atom Cu(1) as  $Cu^+$  leaves each  $Co_2$ -Cu triangle with an odd electron count, whereas its removal as Cu<sup>3+</sup> and the other copper atoms as LCu<sup>+</sup> leaves two  $[Co_2L_6(\mu-CO)]^{2-}$  units (where L = terminal CO or phosphine donor atoms) in which cobalt has an 18-electron configuration and each Co<sub>2</sub>Cu triangle has its favored electron count.<sup>39</sup> Although the use of oxidation states in clusters is fraught with problems, it is used here to indicate that the atom Cu(1) probably uses  $dsp^2$  hybrid orbitals in bonding and has the stereochemistry expected for this bonding state. Together these factors suggest that the cluster contains a formally d<sup>8</sup> copper(III) atom (Cu(1)). The presence of square-planar copper in cluster complexes appears to be unprecedented.<sup>39</sup>

Since the electron configuration of the cluster was unexpected, the possible presence of hydride ligands was considered. It should be noted that a formulation as [Co4- $Cu_{3}H_{2}(CO)_{8}(\mu-dmpm)_{4}$  would require Cu(1) to have oxidation state I. However, no evidence for hydride was observed in the <sup>1</sup>H NMR spectrum (no signals from  $\delta 0$ to -50) or from final difference Fourier maps in the X-ray structure determination. Dissolution of the cluster in a  $[^{2}H_{7}]$ dimethylformamide/CCl<sub>4</sub> mixture failed to give any trace of  $CHCl_3$ . This reduction of  $CCl_4$  to  $CHCl_3$  is a sensitive test for transition-metal hydrides. The mass spectrum gave a peak at m/z 1195 as expected for the cluster cation without hydride ligands. Hence, hydride ligands are presumed to be absent.

Cluster 8 dissolved only in highly polar solvents such as N,N-dimethylformamide, and the solutions were very airsensitive. The <sup>31</sup>P NMR spectrum of 8 in DMF solution contained three resonances with an intensity ratio of 1:2:1 at  $\delta$  3.66, 3.28, and -31.19, respectively, fully consistent with the solid-state structure. The resonance at  $\delta$  3.66 is assigned to the dmpm ligand bridging cobalt atoms between the two  $Co_2Cu$  triangles and the resonance at  $\delta$ 3.28 is attributed to the dmpm ligands bridging the Co-Co bonds within each Co<sub>2</sub>Cu triangle, while the resonance at  $\delta$  -31.19 is attributed to the dmpm ligand bridging the two copper atoms. The <sup>1</sup>H NMR spectrum contained six resonances for PMe protons with an intensity ratio of 1:1: 1:1:1:2 at  $\delta$  1.04, 1.18, 1.24, 1.42, 1.64, and 1.68 ppm, respectively, again consistent with the solid-state structure.

The IR spectrum of 8 contained carbonyl stretching bands in three distinct regions. Bands at 1981, 1946, and 1917 cm<sup>-1</sup> are assigned to terminally bound CO and bands at 1879, 1860, 1838, 1833, and 1803 cm<sup>-1</sup> are assigned to semibridging CO, while a band at 1713 cm<sup>-1</sup> is assigned to bridging CO.<sup>5,27,30</sup> Similar stretching frequencies for semibridging carbonyls were earlier reported in other mixed-metal cobalt complexes such as [(tmed)CuCo(CO)<sub>4</sub>]  $(tmed = N, N, N', N'-tetramethylethylenediamine),^{41}$  [Cu- $(dmpe)_2][Cu(Co(CO)_4)_2]^{36}$  and  $[CoRh(CO)_3(dppm)_2]^{42}$ .

The FAB mass spectrum of 8 gave a parent ion peak for  $Co_4Cu_3(CO)_8(dmpm)_4^+$  at m/e 1195, with an excellent

<sup>(38)</sup> Lee, S. W.; Trogler, W. C. Inorg. Chem. 1990, 29, 1659.

 <sup>(39)</sup> Salter, I. Adv. Organomet. Chem. 1989, 249.
 (40) Johnson, B. F. G.; Kaner, D. A.; Lewis, J.; Raithby, P. R. J. Chem. Soc., Chem. Commun. 1981, 753.

<sup>(41)</sup> Doyle, G.; Eriksen, K. A.; VanEngen, D. Organometallics 1985, 4,877.

Table V. Atomic Positional and Thermal Parameters  $(Å^2)$ for  $[Co_4Cu_3(CO)_8(\mu-dmpm)_4][BF_4]$ 

| atom                     | x                    | у                     | Z                      | U or $U_{eq}^{a}$  |
|--------------------------|----------------------|-----------------------|------------------------|--------------------|
| Cu(1)                    | 0.3786(2)            | 0.4965(1)             | 0.2648(1)              | 0.0346(8)*         |
| Cu(2)                    | 0.4129(2)            | 0.6288(1)             | 0.2667(1)              | 0.0375(8)*         |
| Cu(3)                    | 0.2342(2)            | 0.5415(1)             | 0.3477(1)              | 0.0375(8)*         |
| Co(1)                    | 0.3689(2)            | 0.5664(1)             | 0.1741(1)              | 0.0326(8)*         |
| Co(2)                    | 0.5704(2)            | 0.5520(1)             | 0.2343(1)              | 0.0353(9)*         |
| Co(3)                    | 0.1908(2)            | 0.4373(1)             | 0.2947(1)              | 0.0312(8)*         |
| Co(4)                    | 0.3749(2)            | 0.4478(1)             | 0.3664(1)              | 0.0351(9)*         |
| P(1)                     | 0.3595(6)            | 0.7177(3)             | 0.3192(2)              | 0.045(2)*          |
| P(2)                     | 0.1577(6)            | 0.0300(3)             | 0.3824(3)              | $0.052(2)^{+}$     |
| $\mathbf{P}(\mathbf{J})$ | 0.2303(3)            | 0.3067(3)             | 0.11/9(2)<br>0.2054(2) | $0.044(2)^{+}$     |
| P(5)                     | 0.4379(5)            | 0.5949(3)             | 0.203 + (3)            | 0.042(2)           |
| P(6)                     | 0.6854(5)            | 0.6083(3)             | 0.1729(3)              | 0.044(2)*          |
| P(7)                     | 0.0654(5)            | 0.3866(3)             | 0.3573(2)              | 0.042(2)*          |
| P(8)                     | 0.2955(5)            | 0.3930(3)             | 0.4413(2)              | 0.039(2)*          |
| C(10)                    | 0.197(2)             | 0.713(1)              | 0.346(1)               | 0.079(8)           |
| C(11)                    | 0.450(2)             | 0.741(1)              | 0.382(1)               | 0.12(1)            |
| C(12)                    | 0.347(2)             | 0.795(1)              | 0.279(1)               | 0.093(9)           |
| C(21)                    | -0.008(2)            | 0.644(1)              | 0.375(1)               | 0.12(1)            |
| C(22)                    | 0.185(2)             | 0.650(1)              | 0.460(1)               | 0.10(1)            |
| C(20)                    | 0.225(4)             | 0.41/(2)              | 0.144(2)               | 0.16(2)            |
| C(31)                    | 0.283(3)<br>0.101(3) | 0.4/9(1)<br>0.542(2)  | 0.048(1)               | 0.08(1)            |
| C(32)                    | -0.007(3)            | 0.378(2)              | 0.098(1)<br>0.185(1)   | 0.19(2)<br>0.18(2) |
| C(42)                    | 0.178(4)             | 0.312(2)              | 0.196(2)               | 0.19(2)            |
| C(30)                    | 0.592(2)             | 0.672(1)              | 0.1340(9)              | 0.058(7)           |
| C(51)                    | 0.466(2)             | 0.618(1)              | 0.0296(9)              | 0.095(9)           |
| C(52)                    | 0.354(2)             | 0.716(1)              | 0.098(Ì)               | 0.10(Ì)            |
| C(61)                    | 0.812(2)             | 0.658(1)              | 0.202(1)               | 0.081(8)           |
| C(62)                    | 0.756(2)             | 0.560(1)              | 0.1160(9)              | 0.091(9)           |
| C(40)                    | 0.155(2)             | 0.345(1)              | 0.4170(9)              | 0.056(6)           |
| C(71)                    | -0.046(2)            | 0.320(1)              | 0.3386(9)              | 0.069(7)           |
| C(72)                    | -0.036(2)            | 0.444(1)              | 0.3960(9)              | 0.064(7)           |
| C(81)                    | 0.380(2)             | 0.327(1)              | 0.4771(8)              | 0.039(7)           |
| O(1)                     | 0.240(2)<br>0.745(1) | 0.442(1)<br>0.4458(8) | 0.3037(9)<br>0.2641(6) | 0.077(8)           |
| cúi                      | 0.673(2)             | 0.489(1)              | 0.2552(9)              | 0.059(7)           |
| <b>O</b> (2)             | 0.626(2)             | 0.3985(8)             | 0.3787(7)              | 0.086(6)           |
| C(2)                     | 0.528(2)             | 0.419(Ì)              | 0.373(Ì)               | 0.064(7)           |
| O(3)                     | 0.520(1)             | 0.4545(7)             | 0.1415(6)              | 0.056(4)           |
| C(3)                     | 0.492(2)             | 0.503(1)              | 0.1686(8)              | 0.043(6)           |
| O(4)                     | 0.008(1)             | 0.5394(7)             | 0.2659(6)              | 0.060(4)           |
| C(4)                     | 0.092(2)             | 0.504(1)              | 0.2828(8)              | 0.047(6)           |
| 0(5)                     | 0.163(1)             | 0.6503(7)             | 0.2084(6)              | 0.055(4)           |
| O(5)                     | 0.257(2)<br>0.443(1) | 0.019(1)              | 0.2017(9)<br>0.4365(7) | 0.045(6)           |
| C(6)                     | 0.397(2)             | 0.50+5(8)             | 0.4303(7)              | 0.078(3)           |
| O(7)                     | 0.649(2)             | 0.6237(8)             | 0.3406(7)              | 0.089(6)           |
| C(7)                     | 0.598(2)             | 0.601(1)              | 0.297(1)               | 0.073(8)           |
| O(8)                     | 0.366(1)             | 0.3268(7)             | 0.2953(6)              | 0.063(5)           |
| C(8)                     | 0.327(2)             | 0.381(1)              | 0.3086(8)              | 0.039(6)           |
| В                        | 0.051(1)             | 0.1927(9)             | 0.5030(7)              | 0.14(4)            |
| F(1)                     | -0.051(1)            | 0.2230(9)             | 0.4759(7)              | 0.195(8)           |
| F(2)                     | 0.015(1)             | 0.1346(9)             | 0.5293(7)              | 0.195(8)           |
| F(3)                     | 0.103(1)             | 0.2342(9)             | 0.5458(7)              | 0.195(8)           |
| r(4)<br>B/               | 0.13/(1)             | 0.1/90(9)             | 0.4010(/)              | 0.192(8)           |
| 5<br>F(1')               | -0.03+(3)            | 0.105(1)              | 0.514(1)               | 0.2(2)             |
| F(2')                    | 0.095(3)             | 0.133(1)              | 0.507(1)               | 0.040(8)           |
| F(3')                    | -0.010(3)            | 0.210(1)              | 0.453(1)               | 0.040(8)           |
| F(4′)                    | 0.118(3)             | 0.241(1)              | 0.529(1)               | 0.040(8)           |
| B‴                       | 0.067(4)             | 0.181(2)              | 0.499(2)               | 0.01(1)            |
| F(1")                    | 0.031(4)             | 0.199(2)              | 0.442(2)               | 0.01(1)            |
| F(2")                    | 0.040(4)             | 0.116(2)              | 0.508(2)               | 0.01(1)            |
| F(3")<br>F(4")           | 0.004(4)             | 0.220(2)              | 0.539(2)               | 0.01(1)            |
| * \ T J                  | 0.174(7)             | V.1/1(4)              | 0.207(2)               | 0.01(1)            |

<sup>a</sup> Parameters with an asterisk were refined anisotropically and are given in the form of the isotropic equivalent displacement parameter defined as  $U_{eq} = \frac{1}{3} \sum_{l} \sum_{j} U_{lj} a^*_{l} a^*_{j} (\mathbf{a}_{l'} \mathbf{a}_{j})$ .

agreement between observed and calculated isotope patterns. In addition, EDX analysis confirmed the cobalt to copper ratio of 4:3. Thus, all of this evidence is fully consistent with the solid-state structure for 8.

Complex 8 was obtained in only low yield along with numerous unidentified compounds, and attempts to prepare analogous silver and gold derivatives were unsuccessful. The stoichiometry and mechanism of formation of 8 therefore remain obscure.

## **Experimental Section**

NMR spectra were recorded in  $CD_2Cl_2$  unless otherwise specified, using varian XL200 or XL300 spectrometers. Chemical shifts are quoted with respect to TMS or external  $H_3PO_4$ .

[Co<sub>2</sub>(CO)<sub>2</sub>(µ-CO)<sub>2</sub>(µ-dmpm)<sub>2</sub>] (1a). CoCl<sub>2</sub>·6H<sub>2</sub>O (0.5 g, 2.1 mmol) was dissolved in EtOH (60 mL), and dmpm (0.8 mL, 6.95 mmol) was added. The resulting yellow-brown mixture was stirred under a slow stream of CO gas for 1 h. An ethanolic suspension (20 mL) of NaBH<sub>4</sub> (0.35 g, 9.25 mmol) was added dropwise over a period of 15 min. The mixture was stirred for a further 2.5 h under a slow stream of CO gas to give a yelloworange suspension. This was filtered off and recrystallized from  $CH_2Cl_2$  (10 mL)/*n*-pentane (20 mL) to give the yellow-orange microcrystalline product, which was washed with EtOH (7 mL) and dried under vacuum: yield 20%; mp 135-137 °C. Anal. Calcd for C14H28O4P4C02: C, 33.53; H, 5.59. Found: C, 32.85; H. 5.71. IR (CH<sub>2</sub>Cl<sub>2</sub>): 1a, 1945, 1916, 1735 cm<sup>-1</sup>; 2a, 1953, 1920, 1893 cm<sup>-1</sup>. NMR at -92 °C in CD<sub>2</sub>Cl<sub>2</sub> for 1a: δ(<sup>1</sup>H) 1.93 [m, 2H, CH<sup>a</sup>H<sup>b</sup>P<sub>2</sub>], 2.75 [m, 2H, CH<sup>a</sup>H<sup>b</sup>P<sub>2</sub>], 1.50 [overlapping m, 24H, MeP];  $\delta$ (<sup>13</sup>C) 203.5 [terminal CO], 265.5 [ $\mu$ -CO], 19.5, 19.0 [MeP];  $\delta(^{31}P)$  29.85 [s, dmpm]. NMR at -62 °C CD<sub>2</sub>Cl<sub>2</sub> for 2a:  $\delta(^{31}P)$ 19.3 [br s, dmpm]. FAB-MS: m/z 502, calcd for Co<sub>2</sub>(CO)<sub>4</sub>- $(dmpm)_2^+ 502.$ 

 $[Co_4(CO)_8(\mu-dmpm)_2]$  (6). To a solution of CoCl<sub>2</sub>·6H<sub>2</sub>O (0.90 g, 2.75 mmol) in EtOH (60 mL) was added dmpm (0.40 mL, 3.47 mmol). This solution was then saturated with CO gas for 0.5 h, and a suspension of NaBH<sub>4</sub> (0.40 g, 10.57 mmol) in EtOH (20 mL) was added over a period of 15 min. The black reaction mixture was stirred under CO for 2.5 h, and the solvent was evaporated under vacuum to give the black product, which was recyrstallized from benzene/n-heptane: yield 15%. Anal. Calcd for C<sub>18</sub>H<sub>28</sub>O<sub>8</sub>P<sub>4</sub>Co<sub>4</sub>·0.5C<sub>7</sub>H<sub>16</sub>: C, 33.0; H, 4.6. Found: C, 33.7; H, 3.3 (heptane confirmed by NMR). IR (Nujol):  $\nu$ (CO) 1989, 1963, 1946, 1930, 1893 cm<sup>-1</sup> [terminal CO]; 1810 1773, 1743 cm<sup>-1</sup> [ $\mu$ -CO]. NMR in CD<sub>2</sub>Cl<sub>2</sub>:  $\delta(^{1}H) (25 °C) 2.45 [br, CH_2P_2], 1.47 [d, J(PH)_{obs})$ = 8 Hz, PMe<sub>2</sub>];  $\delta({}^{1}H)$  (-90 °C) 3.17 [br t, CH°H<sup>d</sup>P<sub>2</sub>,  ${}^{2}J(PH)$  = 9.5 Hz], 2.05 [br, CH<sup>a</sup>H<sup>b</sup>P<sub>2</sub>, H<sup>b</sup>], the resonance due to H<sup>a</sup> is hidden, 1.64 [br d,  $PMe_2$ ,  $J(PH)_{obs} = 7$  Hz], 1.49 [br,  $PMe_2$ ], 1.34 [br, PMe<sub>2</sub>], 1.23 [br d, PMe<sub>2</sub>,  $J(PH)_{obs} = 7.5 \text{ Hz}$ ];  $\delta(^{31}P) (25 \text{ °C}) -0.9$  $[br s, dmpm]; \delta(^{31}P) (-90 \circ C) 6.8 [d, J(PP) = 50.4 Hz, P^{a}P^{b}], -4.8$  $[br d, J(PP) = 33.6 Hz, P^{\circ}], -11 [br, P^{d}].$ 

[Co<sub>2</sub>(μ-I)(CO)<sub>2</sub>(μ-CO)(μ-dmpm)<sub>2</sub>]BPh<sub>4</sub> (7). To a solution of [Co<sub>2</sub>(CO)<sub>4</sub>(μ-dmpm)<sub>2</sub>] (0.16 g, 0.32 mmol) in C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub> (7 mL) was added a solution of NaI (0.1 g, 0.67 mmol) in ethanol (3 mL). The mixture was stirred overnight, forming a red solution with some white precipitate. The solution was filtered, excess NaBPh<sub>4</sub> in ethanol was added to the filtrate, and a layer of ethanol (15 mL) was added. The red crystalline product which precipitated was filtered off, washed with *n*-pentane (10 mL), and dried under vacuum: yield 20%; mp 133-135 °C dec. Anal. Calcd for C<sub>37</sub>H<sub>48</sub>BIO<sub>3</sub>P<sub>4</sub>CO<sub>2</sub>·1.25CH<sub>2</sub>Cl<sub>2</sub>: C, 44.73; H, 4.92. Found: C, 44.74; H, 5.37. IR (Nujol):  $\nu$ (CO) 2018 (vw), 1937 (vs), 1901 (sh), 1804 (vs) cm<sup>-1</sup>. NMR at 25 °C in CD<sub>2</sub>Cl<sub>2</sub>: δ<sup>(1</sup>H) 1.7 [d, PMe], 2.4 m, CH<sup>a</sup>H<sup>b</sup>P<sub>2</sub>, <sup>2</sup>J(PH) = 5.5 Hz], 2.68 [m, CH<sup>a</sup>H<sup>b</sup>P<sub>2</sub>, <sup>2</sup>J(PH) = 5.5 Hz], 7.4 [m, BPh]; δ<sup>(31</sup>P) 29.3 [s, dmpm].

 $[Co_4Cu_3(CO)_8(\mu-dmpm)_4]BF_4$  (8). To a solution of  $[Co_2-(CO)_4(dmpm)_2]$  (0.70 g, 0.14 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was added a suspension of  $[Cu(MeCN)_4]BF_4$  (0.05 g, 0.14 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5 mL). The original dark brown solution immediately turned deep green. The mixture was stirred for a further 4 h under a N<sub>2</sub> atmosphere. The green solution was decanted from insoluble material, and a layer of *n*-pentane was added. The

<sup>(42)</sup> Elliot, D. J.; Ferguson, G.; Holah, D. G.; Hughes, A. N.; Jennings, M. C.; Magnuson, V. R.; Potter, D.; Puddephatt, R. J. Organometallics 1990, 9, 1336.

|                                  | Table VI.          | Selected Bond Distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | es (Å) and A         | Angles (deg) for [Co4                      | Cu3(CO)8(µ-0      | dmpm) <sub>4</sub> ]BF <sub>4</sub>                        |          |
|----------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------|-------------------|------------------------------------------------------------|----------|
|                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bond Di              | stances                                    |                   |                                                            |          |
| Cu(2)-Cu(1)                      | 2.683(4)           | Cu(3)-Cu(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.624(3)             | C(6)Cu(3)                                  | 2.12(2)           | P(3)-Co(1)                                                 | 2.196(6) |
| Co(1) - Cu(1)                    | 2.466(4)           | Co(2)-Cu(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.463(4)             | P(5)-Co(1)                                 | 2.219(6)          | C(3) - Co(1)                                               | 1.84(2)  |
| Co(3) - Cu(1)                    | 2.458(4)           | Co(4)-Cu(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.474(4)             | C(5)-Co(1)                                 | 1.73(2)           | P(6)-Co(2)                                                 | 2.196(6) |
| Cu(3)-Cu(2)                      | 3.221(4)           | $C_0(1) - C_u(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.450(4)             | C(1)-Co(2)                                 | 1.73(2)           | C(3) - Co(2)                                               | 1.93(2)  |
| $C_{0}(2) - C_{u}(2)$            | 2.422(4)           | Co(3)-Cu(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.443(3)             | $C(7) - C_0(2)$                            | 1.73(3)           | P(4) - Co(3)                                               | 2.209(6) |
| Co(4) - Cu(3)                    | 2.442(4)           | Co(2) - Co(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.523(4)             | P(7)-Co(3)                                 | 2.228(6)          | C(4) - Co(3)                                               | 1.73(2)  |
| $C_0(4) - C_0(3)$                | 2.509(4)           | P(1)-Cu(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.223(6)             | C(8) - Co(3)                               | 1.87(2)           | P(8)-Co(4)                                                 | 2.202(6) |
| P(2) - Cu(3)                     | 2.229(6)           | C(5) - Cu(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.19(2)              | $C(2) - C_0(4)$                            | 1.75(2)           | C(6) - Co(4)                                               | 1.73(2)  |
| C(7) - Cu(2)                     | 2.15(2)            | C(4)-Cu(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.20(2)              | C(8)-Co(4)                                 | 1.92(2)           | -(-/(-/                                                    |          |
|                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .Bond A              | Angles                                     |                   |                                                            |          |
| Cu(3)-Cu(1)-Cu(2)                | 74.5(1)            | Co(1)-Cu(1)-Cu(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 56.6(1)              | C(3)-Co(2)-Co(1)                           | 46.4(6)           | C(3)-Co(2)-P(6)                                            | 91.6(6)  |
| Co(1) - Cu(1) - Cu(3)            | 112.1(1)           | Co(2)-Cu(1)-Cu(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55.96(9)             | C(3)-Co(2)-C(1)                            | 95.2(9)           | C(7)-Co(2)-Cu(1)                                           | 98.7(8)  |
| Co(2) - Cu(1) - Cu(3)            | 124.3(1)           | Co(2)-Cu(1)-Co(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61.6(1)              | C(7)-Co(2)-Cu(2)                           | 59.5(8)           | C(7)-Co(2)-Co(1)                                           | 118.7(8) |
| Co(3) - Cu(1) - Cu(2)            | 126.1(1)           | Co(3)-Cu(1)-Cu(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 57.35(9)             | C(7)-Co(2)-P(6)                            | 97.5(8)           | C(7)-Co(2)-C(1)                                            | 96(1)    |
| Co(3) - Cu(1) - Co(1)            | 119.3(1)           | Co(3)-Cu(1)-Co(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 178.0(1)             | C(7)-Co(2)-C(3)                            | 164(1)            | Cu(3)-Co(3)-Cu(1)                                          | 64.7(1)  |
| Co(4) - Cu(1) - Cu(2)            | 112.6(1)           | Co(4) - Cu(1) - Cu(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>57.2</b> (1)      | Co(4) - Co(3) - Cu(1)                      | 59.8(1)           | Co(4) - Co(3) - Cu(3)                                      | 59.1(1)  |
| $C_0(4) - C_u(1) - C_0(1)$       | 168.1(1)           | Co(4) - Cu(1) - Co(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 118.4(1)             | P(4)-Co(3)-Cu(1)                           | 95.8(2)           | P(4) - Co(3) - Cu(3)                                       | 143.3(2) |
| $C_0(4) - C_u(1) - C_0(3)$       | 61.2(1)            | $C_0(1) - C_u(2) - C_u(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 57.2(1)              | P(4)-Co(3)-Co(4)                           | 139.0(2)          | P(7)-Co(3)-Cu(1)                                           | 156.2(2) |
| $C_0(2) - C_0(2) - C_0(1)$       | 57.4(1)            | $C_0(2) - C_u(2) - C_0(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 62.4(1)              | P(7) = Co(3) = Cu(3)                       | 101.3(2)          | P(7)-Co(3)-Co(4)                                           | 96.8(2)  |
| P(1) = Cu(2) = Cu(1)             | 140.0(2)           | P(1)-Cu(2)-Co(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 144.2(2)             | P(7)-Co(3)-P(4)                            | 105.7(2)          | C(4) - Co(3) - Cu(1)                                       | 95.2(7)  |
| P(1) = Cu(2) = Co(2)             | 150.1(2)           | C(5) = Cu(2) = Cu(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 78.4(5)              | C(4) - Co(3) - Cu(3)                       | 61.0(7)           | C(4) - Co(3) - Co(4)                                       | 120.0(7) |
| C(5) = Cu(2) = Co(1)             | 43 5(5)            | C(5) = Cu(2) = Co(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 105.8(6)             | $C(4) = C_0(3) = P(4)$                     | 92.5(7)           | $C(4) = C_0(3) = P(7)$                                     | 93.9(7)  |
| C(5) = Cu(2) = P(1)              | 102 5(6)           | C(7) = Cu(2) = Cu(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 82 8(7)              | C(8) = Co(3) = Cu(1)                       | 72.2(6)           | $C(8) = C_0(3) = C_0(3)$                                   | 107.9(6) |
| $C(7) = Cu(2) = C_0(1)$          | 106 4(7)           | C(7) = Cu(2) = Cu(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44 1(7)              | C(8) = Co(3) = Co(4)                       | 49 5(6)           | $C(8) = C_0(3) = P(4)$                                     | 93 7(6)  |
| C(7) = Cu(2) = Co(1)             | 100.4(7)           | C(7) - Cu(2) - C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 149 9(9)             | $C(8) = C_0(3) = P(7)$                     | 96.0(6)           | $C(8) = C_0(3) = C(4)$                                     | 166 5(9) |
| $C_{1}(3) = C_{1}(2) = C_{1}(1)$ | 57 90(9)           | $C_0(4) = C_1(3) = C_1(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58 3(1)              | $C_{1}(3) = C_{0}(4) = C_{1}(1)$           | 64 5(1)           | $C_0(3) = C_0(4) = C_0(1)$                                 | 59 1(1)  |
| $C_0(3) = C_0(3) = C_0(1)$       | 61 8(1)            | P(2) = Cu(3) = Cu(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1410(2)              | $C_0(3) = C_0(4) = C_0(3)$                 | 59 1(1)           | P(8) = Co(4) = Cu(1)                                       | 156 3(2) |
| P(2) = Cu(3) = Cu(3)             | 146 8(2)           | P(2) = Cu(3) = Cu(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 146.7(2)             | P(8) = Co(4) = Cu(3)                       | 105 0(2)          | P(8) = Co(4) = Co(1)                                       | 97 2(2)  |
| F(2) = Cu(3) = Cu(3)             | 140.0(2)           | $\Gamma(2) = Cu(3) = Co(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13 3(6)              | C(2) = Co(4) = Cu(3)                       | 001(7)            | $\Gamma(0) = Co(4) = Co(3)$<br>$\Gamma(2) = Co(4) = Cu(3)$ | 147 8(8) |
| C(4) = Cu(3) = Cu(1)             | 105 1(6)           | C(4) = Cu(3) = Cu(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 105 3(6)             | C(2) = Co(4) = Co(1)                       | 138 0(8)          | C(2) = Co(4) = Cu(3)                                       | 00 4(7)  |
| C(4) = Cu(3) = Cu(4)             | 91 O(6)            | C(4) = Cu(3) = I(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 105.5(0)             | C(2) = C0(4) = C0(3)                       | 03 3(7)           | $C(2) = Co(4) = \Gamma(0)$                                 | 58 0(7)  |
| C(6) = Cu(3) = Cu(1)             | 01.0(0)<br>44.0(6) | C(6) - Cu(3) - Cu(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 103.8(0)<br>104.7(7) | C(0) = C0(4) = C0(1)                       | 1171(8)           | C(6) = Co(4) = Cu(3)                                       | 98 6(7)  |
| C(0) = Cu(3) = Co(4)             | 140.1(0)           | $C_{0} = C_{0} = C_{0$ | 66 2(1)              | C(6) = Co(4) = C(3)                        | 08 2(1)           | $C(0) = C_0(4) = C_0(0)$                                   | 71.0(6)  |
| $C_{(0)} = C_{(1)} = C_{(4)}$    | 50 2(1)            | $C_{0}(2) = C_{0}(1) = C_{0}(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58 2(1)              | C(0) = C(1) = C(2)                         | 106.0(6)          | C(8) = Co(4) = Co(1)                                       | 47 6(6)  |
| C(2) = C(1) = Cu(1)              | 100 2(2)           | P(2) = CO(1) = CU(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1497(2)              | C(8) = Co(4) = Cu(3)                       | 03.4(6)           | C(8) = Co(4) = C(3)                                        | 02 1(1)  |
| P(3) = Co(1) = Cu(1)             | 100.2(2)           | P(5) = Co(1) = Cu(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140.7(2)             | $C(8) = Co(4) = \Gamma(8)$                 | 162.0(0)          | P(2) = C(10) = P(1)                                        | 115(1)   |
| P(3) = Co(1) = Co(2)             | 140.4(2)           | P(5) = Co(1) = Cu(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 130.0(2)             | P(4) = C(0) = P(3)                         | 102.0(3)          | P(2) = C(10) = P(1)<br>P(4) = C(20) = P(5)                 | 111(1)   |
| P(5) = Co(1) = Cu(2)             | 101 5(2)           | P(3) = Co(1) = Co(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 57.2(2)              | P(4) = C(20) = P(3)<br>P(3) = C(40) = P(7) | 122(2)<br>112(1)  | $\Gamma(0) = C(30) = \Gamma(3)$                            | 174(2)   |
| P(3) = Co(1) = P(3)              | 101.5(2)           | C(3) = Co(1) = Cu(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40 7(6)              | P(0) = C(40) = P(7)                        | 112(1)            | O(1) = O(1) = O(2)<br>O(2) = O(2) = O(2)                   | 1/4(2)   |
| C(3) = Co(1) = Cu(2)             | 107.1(6)           | C(3) = Co(1) = Co(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 49.7(0)              | O(2) = C(2) = Co(4)                        | 1/7(2)            | C(2) = C(3) = C(1)                                         | 122(2)   |
| C(3) - Co(1) - P(3)              | 92.8(0)            | C(3) = Co(1) = P(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 98.9(0)              | O(3) - C(3) - Co(1)                        | 143(2)            | O(3) - C(3) - Co(2)                                        | 133(2)   |
| C(5) = Co(1) = Cu(1)             | 93.6(7)            | C(5) = Co(1) = Cu(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60.2(7)              | $C_0(3) = C(4) = C_0(3)$                   | /5./(8)           | O(4) = O(4) = O(3)                                         | 120(2)   |
| C(5) - Co(1) - Co(2)             | 118.4(7)           | C(5) = Co(1) = P(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94.0(7)              | O(4) = C(4) = Co(3)                        | 104(2)            | Co(1) = C(5) = Cu(2)                                       | /0.4(8)  |
| C(5) - Co(1) - P(5)              | 94.9(7)            | C(5) = Co(1) = C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 162.8(9)             | O(5) - C(5) - Cu(2)                        | 120(2)            | O(5) - C(5) - Co(1)                                        | 104(2)   |
| Cu(2)-Co(2)-Cu(1)                | 66.6(1)            | Co(1) = Co(2) = Cu(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59.3(1)              | $C_{0}(4) = C(6) = C_{0}(3)$               | 78.1(9)           | O(6) - C(6) - Cu(3)                                        | 124(2)   |
| Co(1)-Co(2)-Cu(2)                | 59.4(1)            | P(6)-Co(2)-Cu(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 154.6(2)             | O(6) - C(6) - Co(4)                        | 157.7(2)          | Co(2) = C(7) = Cu(2)                                       | 76.4(1)  |
| P(6)-Co(2)-Cu(2)                 | 106.0(2)           | P(6) - Co(2) - Co(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95.7(2)              | O(7) - C(7) - Cu(2)                        | 124(2)            | O(7) - C(7) - Co(2)                                        | 160(2)   |
| C(1)-Co(2)-Cu(1)                 | 97.2(7)            | C(1)-Co(2)-Cu(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 146.2(7)             | Co(4) - C(8) - Co(3)                       | 82.9(8)           | U(8)-C(8)-Co(3)                                            | 142(2)   |
| C(1)-Co(2)-Co(1)                 | 138.8(7)           | C(1)-Co(2)-P(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100.2(7)             | O(8) - C(8) - Co(4)                        | 135(2)            |                                                            |          |
| C(3)-Co(2)-Cu(1)                 | 68.5(6)            | C(3)-Co(2)-Cu(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 105.0(6)             |                                            |                   |                                                            |          |
|                                  |                    | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Torsion              | Angles                                     | o (1) o (1)       |                                                            |          |
| Co(3)-Cu(1)                      | -Co(1)-Co(2        | -177.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>2</b> (2)         | Co(4)-Cu(1)-                               | $C_0(1) - C_0(2)$ | 93                                                         | .4(7)    |
| Co(3)–Cu(1)                      | -Co(2)-Co(1        | .) 116(-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4)                   | Co(4)-Cu(1)-                               | Co(2) = Co(1)     | -166                                                       | .4(2)    |

|                               | 1013101   | 23118103                |           |
|-------------------------------|-----------|-------------------------|-----------|
| Co(3)-Cu(1)-Co(1)-Co(2)       | -177.9(2) | Co(4)-Cu(1)-Co(1)-Co(2) | 93.4(7)   |
| Co(3)-Cu(1)-Co(2)-Co(1)       | 116(4)    | Co(4)-Cu(1)-Co(2)-Co(1) | -166.4(2) |
| Co(1)-Cu(1)-Co(3)-Co(4)       | -166.4(2) | Co(2)-Cu(1)-Co(3)-Co(4) | 79(4)     |
| Co(1) - Cu(1) - Co(4) - Co(3) | 95.4(7)   | Co(2)-Cu(1)-Co(4)-Co(3) | -177.7(2) |

intensely green crystalline product (large crystals appear black) separated; it was washed with n-pentane and dried under reduced pressure: yield 5%; mp 174-175 °C dec. IR (Nujol): v(CO) 1981 (vs), 1946 (m), 1917 (sh), 1879 (vs), 1860 (vs), 1838 (m), 1833 (m), 1803 (sh), 1713 (vs) cm<sup>-1</sup>. NMR at 25 °C in DMF- $d_7$ :  $\delta$ (<sup>1</sup>H) 1.04 [3H, Me], 1.18 [3H, Me], 1.24 [3H, Me], 1.42 [6H, Me], 1.64 (3H, Me), 1.68 (6H, Me), 2.70 [m, CH<sub>2</sub>P<sub>2</sub>];  $\delta$ <sup>(31</sup>P) 3.66 [1P, PCo], 3.28 [2P, PCo], -31.19 [1P, PCu]. FAB-MS: m/z 1195, calcd for  $Co_4Cu_3(CO)_8(dmpm)_4$  + 1195, with excellent agreement between observed and calculated isotope patterns. Accurate mass: found 1194.708, calcd 1194.715.

Solution FTIR Studies of the Equilibrium of 1 and 2. FTIR spectra were obtained by using a Bruker IFS 85 spectrophotometer using CaF2 IR cells cooled by a CTI-Cryogenics Model 22 cryocooler and 350R compressor system with a Lake Shore Cryotronics DRC 80C temperature controller and DT500 DRC silicon diode sensor. The solvent was  $CH_2Cl_2$ . In a typical experiment, a solution of  $[Co_2(CO)_4(\mu-dmpm)_2]$  (5.0 mg) in CH<sub>2</sub>-Cl<sub>2</sub> (1.0 ML) in the IR cell was cooled to 190 K and allowed to equilibrate before recording the spectrum. The sample was then warmed by 5 K and the procedure repeated. In this way spectra were finally obtained at 5 K intervals between 190 and 300 K. The procedure was repeated using pure solvent, and spectral subtraction then gave the absolute spectra for the 1a/2a mixture at each temperature. The limiting spectra of each isomer were obtained by extrapolation of plots of  $\exp(-1/T)$  vs absorbance. The spectrum of the terminal isomer was easily generated, since it should have no absorbance in the bridging carbonyl region at ca. 1700 cm<sup>-1</sup>. Now that the extinction coefficients for each isomer were known, the equilibrium constant at each temperature was calculated. As a check that the extinction coefficients are not temperature-dependent, values of the equilibrium constant were calculated using absorbance values from at least two different wavelengths; there was excellent agreement. FTIR data in CH2-Cl<sub>2</sub> [ $\nu$ (CO), cm<sup>-1</sup>]: 1a, 1945, 1916, 1735 (sh), 1716; 2a, 1953, 1920, 1893; 1b, 1951, 1924, 1765 (sh), 1753; 2b, 1972, 1953, 1921.

Solution Magnetic Moment Studies of 1a/2a. A sample of  $[Co_2(CO)_4(\mu\text{-dmpm})_2]$  (6.1 mg, 0.01 mmol) was dissolved in CD<sub>2</sub>- $Cl_2$  (0.5 mL) containing 5%  $CH_2Cl_2$  and 5% TMS in a 5-mm NMR tube. A 3-mm sealed capillary containing 5% CH<sub>2</sub>Cl<sub>2</sub> and

Table VII. Summary of X-ray Structure Determinations

|                                                                         | 6                             | 8                    |
|-------------------------------------------------------------------------|-------------------------------|----------------------|
| formula                                                                 | C18H28C04O8P4                 | C28H56BC04Cu3F4P8O8  |
| fw                                                                      | 732.04                        | 1281.72              |
| cryst syst, space group                                                 | orthorhombic,<br>$P2_12_12_1$ | monoclinic, $P2_1/c$ |
| cell dimens                                                             |                               |                      |
| a, Å                                                                    | 14.953(2)                     | 10.767(2)            |
| b, Å                                                                    | 11.386(1)                     | 20.092(2)            |
| c, Å                                                                    | 16.836(1)                     | 22.370(3)            |
| $\beta$ , deg                                                           |                               | 92.13(1)             |
| V, Å <sup>3</sup> ; Z                                                   | 2866.4(6); 4                  | 4836(2); 4           |
| calcd (obsd) density, g cm <sup>-3</sup>                                | 1.696                         | 1.76 (1.78(5))       |
| $\lambda$ (Mo K $\alpha$ ), Å; $\mu$ (Mo K $\alpha$ ), cm <sup>-1</sup> | 0.710 69; 25.30               | 0.710 73; 28.4       |
| $R(F_{o}), R_{w}(F_{o}^{2})^{a}$                                        | 0.038, 0.051                  | 0.076, 0.066         |

 ${}^{a}R = \sum ||F_{o}| - |F_{o}||/|F_{o}|; R_{w} = [\sum w(|F_{o}| - |F_{o}|)^{2}/\sum w|F_{o}|^{2}]^{1/2}, w = 1/\sigma^{2}(|F_{o}|).$ 

5% TMS in CD<sub>2</sub>Cl<sub>2</sub> was inserted as inner reference, and the cap was closed. <sup>1</sup>H NMR measurements were than recorded from 298 to 183 K. At the end of the experiment the inner capillary was removed and another spectrum was recorded at 298 K.

X-ray Structure Determinations. [Co4(CO)8(µ-Me2PCH2-PMe<sub>2</sub>)<sub>2</sub>] (6). Purple-black crystals of 6 used in this analysis were grown from a CH<sub>2</sub>Cl<sub>2</sub>/pentane mixture. All X-ray crystallographic measurements were made with a monocrystal of dimensions  $\sim 0.40 \times 0.40 \times 0.50$  mm, graphite-monochromated Mo K $\alpha$  radiation, and an Enraf-Nonius CAD4 diffractometer.

The unit cell dimensions (Table VII) were determined by a least-squares treatment of diffractometric angles of 25 reflections. The intensity data were measured by  $\theta/2\theta$  scans of (0.80 + 0.35)  $\tan \theta$ )° in  $\theta$ , and the scan speeds were adjusted to give  $\sigma(I)/I \leq$ 0.03 subject to a time limit of 60 s. Two standard reflections, remeasured every 2 h throughout data collection, showed no significant variation in intensity. Integrated intensities of all reflections, derived in the usual manner (q = 0.03),<sup>43</sup> were corrected for Lorentz, polarization, and absorption effects. The last correction, made by an empirical method,44 led to transmission factors on F of 0.70-1.23. Of 6773 reflections measured, 1078 were symmetry-related, and their structure amplitudes were averaged to give 539 unique ones and an R(internal) value of 0.030. Only unique reflections with  $I \ge 2.5\sigma(I)$ , of which there were 4769, were used in the structure analysis.

The positions of the cobalt atoms were determined from a Patterson function and those of the remaining non-hydrogen atoms from the subsequent Fourier difference syntheses. All non-hydrogen atoms were allowed anisotropic displacement parameters. The structural model did not include hydrogen atoms but was assigned a polarity parameter,  $\eta$ .<sup>45</sup> The structure was refined by full-matrix least squares. All calculations were performed using the GX program package.46 The neutral-atom scattering factors and anomalous dispersion corrections were taken from ref 47.

[Co4Cu3(CO)8(µ-Me2PCH2PMe2)4][BF4](8). A black crystal, with dimensions  $0.15 \times 0.12 \times 0.34$  mm, was mounted in a glass

capillary tube. The density was determined by the neutral buoyancy method. The data collection was carried out by using an Enraf-Nonius CAD4F diffractometer with graphite-monochromated Mo K $\alpha$  radiation.<sup>48</sup> Cell constants and an orientation matrix were determined by using the angular settings for 19 highangle reflections with  $24.4 < 2\theta < 29.9^{\circ}$ . Intensity data were recorded at variable scan speeds chosen to optimize counting statistics within a maximum time per data point of 60 s; background estimates were made by extending the scan by 25%on either side. Standard reflections were monitored every 180 min of X-ray exposure time and showed a random decay of 3% over the total time period of 130 h. Corrections were made for Lorentz, monochromator, and crystal polarization and background radiation effects using the structure determination package<sup>49</sup> running on a PDP11/23+ computer. An empirical absorption correction was applied.<sup>50</sup> Scattering factors were from ref 47.

The positions of the Co, Cu, and P atoms were determined using SHELXS-86 running on a SUN 3/50 workstation<sup>51</sup> and all remaining non-hydrogen atoms by subsequent difference Fourier syntheses. Refinement was by full-matrix, least-squares techniques on F using SHELX-76 software.52 The Cu. Co. and P atoms were assigned anisotropic thermal parameters. The BF<sub>4</sub>anion was disordered; the geometry was constrained to be regular tetrahedral with B-F = 1.37 Å, and the site occupancies were refined to 70, 20, and 10%. A common isotropic thermal parameter was used for the F atoms in each disorder component of the anion and was refined in the least-squares cycles. Hydrogen atoms were included in idealized positions; a common isotropic temperature factor was assigned to all H atoms and refined. In all, 6699 unique data were observed and refinement was based on 3093 reflections with  $I \ge 2.5\sigma(I)$  and 295 variables. The crystal data and experimental conditions are given in Table VII. Tables of H atom parameters, anisotropic thermal parameters, rootmean-square amplitudes of vibration, weighted least-squares planes, and torsion angles have been deposited as supplementary material.

Acknowledgment. We thank NATO for a travel grant and Drs. D. J. Elliot, D. G. Holah, and A. N. Hughes for valuable discussions and help. R.J.P. and R.H.H. thank the NSERC (Canada) for financial support.

Supplementary Material Available: Tables S1-S6, giving anisotropic displacement parameters, bond lengths, bond angles, and torsion angles for  $[Co_4(CO)_8(\mu\text{-dmpm})_2]$  and general displacement parameters and bond distances and angles for [Co4- $Cu_{s}(CO)_{s}(\mu-dmpm)_{4}$  [BF<sub>4</sub>] (16 pages). Ordering information is given on any current masthead page.

#### OM920769N

- (48) Enraf-Nonius CAD4F Users Manual; Enraf-Nonius: Delft, The Netherlands, 1982.
- (49) Enraf-Nonius Structure Determination Package, SDP-PLUS, Version 3.0, 1985
- (50) North, A. C. T.; Phillips, D. C.; Mathews, F. S. Acta Crystallogr. 1968. A24. 351.

(51) Sheldrick, G. M. SHELXS-86, Structure Solving Program for Crystal Structure Determination; University of Gottingen: Gottingen, Germany, 1986.

(52) Sheldrick, G. M. SHELX-76, Program for Crystal Structure Determination; University of Cambridge: Cambridge, England, 1976.

<sup>(43)</sup> Manojlović-Muir, L.; Muir, K. W. J. Chem. Soc., Dalton Trans. 1974. 2427

<sup>(44)</sup> Walker, N.; Stuart, D. Acta Crystallogr. 1983, A39, 158.
(45) Rogers, D. Acta Crystallogr. 1981, A37, 734.
(46) Mallinson, P. R.; Muir, K. W. J. Appl. Crystallogr. 1985, 18, 51.
(47) International Tables for X-Ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. 4, pp 99, 149.