

Preparation of 2-Iodo-1,3-butadienes from 1-Trimethylsilyl-2,3-butadienes and their Functionalizations

Takashi Nishiyama, Tomoyuki Esumi, Yoshiharu Iwabuchi, Hiroshi Irie, and Susumi Hatakeyama*

Faculty of Pharmaceutical Sciences, Nagasaki University, Nagasaki 852, Japan

Received 18 September 1997; revised 16 October 1997; accepted 17 October 1997

Abstract: Successive treatment of 1-trimethylsilyl-2,3-butadienes with iodine and tetra-n-butylammonium fluoride in the same flask affords 2-iodo-1,3-butadienes in good yields and their palladium-catalyzed carbonylation and alkynylation allows introduction of ester and alkynyl groups to the 2-position bearing an iodine atom leading to various 2,3-disubstituted 1,3-butadienes.

© 1997 Elsevier Science Ltd. All rights reserved.

In the course of search for the synthetic utility of 1-trimethylsilyl-2,3-butadienes,¹ we have recently found that addition of iodine to 1-trimethylsilyl-2,3-butadienes 1 took place at ~78 °C at the terminal double bond to give *vic*-diiodoallylsilanes 2 quantitatively.² Interestingly, it was also found that *vic*-diiodoallylsilanes 2 thus formed decomposed gradually to 2-iodo-1,3-butadienes 3 above ~30 °C.³ These findings allowed us to envisage that successive treatment of 1 with iodine and tetra-*n*-butylammonium fluoride (TBAF) in the same flask would produce 2-iodo-1,3-butadienes 3 effectively as depicted in Scheme 1. Exploitation of a general practical method for the preparation of substituted 2-halo-1,3-butadienes such as 3 is important because few methods are available for this purpose.⁴ We now report an efficient method with broad applicability for the preparation of 2-iodo-1,3-butadienes 3 from 1-trimethylsilyl-2,3-butadienes 1 and their conversions to various 2,3-disubstituted 1,3-butadienes.

Experimentation was undertook as shown in Scheme 2 and the results were summarized in Table 1. Nine 2-substituted 1-trimethylsilyl-2,3-butadienes 1^5 were synthesized in good yields by the reaction of bromides or tosylates 5, freshly prepared from 4, with Me₃SiCH₂MgCl in the presence of CuCN and LiCl. It is important to note that use of CuCN and LiCl turned out to be crucial for effecting γ -attack of Grignard reagent leading to exclusive formation of 1.6 The precedent method⁷ using LiCuBr₂ or CuBr often gave a mixture of 1 and the corresponding alkyne produced by competitive α -attack of the Grignard reagent. 1-Trimethylsilyl-2,3-butadienes 1 thus obtained were then allowed to react with iodine followed by TBAF at -78 °C in CH₂Cl₂. It was found that initially formed *vic*-diiodoallylsilanes 2 smoothly underwent F^- mediated elimination reaction

giving 2-iodo-1,3-butadienes 3 in good to excellent yields except two examples shown in entries 6 and 8. A typical procedure is described for the synthesis of 2-iodo-3-phenyl-1,3-butadiene 3 (R = Ph). To an ice-cooled suspension of CuCN (6.9 g, 77 mmol) and LiCl (6.5 g, 153 mmol) in THF (100 ml) was added Me_3SiCH_2MgCl (1 M in Et_2O , 77 ml, 77 mmol). After being stirred at 0 °C for 30 min, the mixture was cooled to -78 °C and a solution of freshly prepared 3-bromo-1-phenylpropyne (5.0 g, 26 mmol) in THF (20 ml) was added. After 1 h at -78 °C, the reaction was quenched by the addition of sat. NH_4Cl . The reaction mixture was diluted with AcOEt, washed with water, dried over $MgSO_4$, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (*n*-hexane) to give 1-trimethylsilyl-2-phenyl-2,3-butadiene 1 (R = Ph) (4.8 g, 92%). To a stirred mixture of 1 (R = Ph) (4.8 g, 24 mmol) and $NaHCO_3$ (2.9 g, 35 mmol) in CH_2Cl_2 (50 ml) at -78 °C was added a solution of I_2 (9.0 g, 35 mmol) in CH_2Cl_2 (150 ml). After 10 min, TBAF (1 M in THF, 35 ml, 35 mmol) was added and the mixture was stirred at -78 °C for 1 h. The reaction mixture was diluted with AcOEt, washed with 5% $Na_2S_2O_3$ and water, dried over $MgSO_4$, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (*n*-hexane) to give 2-iodo-3-phenyl-1,3-butadiene 3 (R = Ph) (5.7 g, 93%).

Scheme 2. (a) CBr₄, Ph₃P, CH₂Cl₂, 0 °C or n-BuLi, TsCl, THF, -78 °C; (b) Me₃SiCH₂MgCl (3 equiv.), CuCN (3 equiv.), LiCl (6 equiv.), THF, -78 °C; (c) I₂ (1.5 equiv.), NaHCO₃, (1.5 equiv.), CH₂Cl₂, -78 °C, then 1 M n-Bu₄NF in THF (1.5 equiv.), -78 °C.

Table 1 Preparation of 2-substituted 1-trimethylsilyl-2,3-butadienes and 3-substituted 2-Iodo-1,3-butadienes

			Yield ^a (%)	
entr	y R	Х	1 from 4	3 from 1
1	Ph	Br	92	93
2	BnOCH ₂	Br	87	98
3	Bu	Br	89	87
4	Ph(OBn)CH	Br	94	95
5	C ₅ H ₁₁ (OBn)CH	Br	87	91
6	Me ₂ (OMe)C	Br	77	0
7	CH ₂	TsO	84	88
8	Me ₃ Si	TsO	75	0c
9	Me	TsO	65 ^b	60 ^b

a) isolated yield. b) the isolated yield decreased because of its volatility. c) 4-iodo-1-trimethylsilyl-2-butyne was produced in variable yield (~50%).

Having developed a new practical method for the preparation of 2-iodo-1,3-butadienes 3, we then examined functionalization of the 2-position bearing an iodine atom leading to various 2,3-disubstituted 1,3-

butadienes. Table 2, Table 3, and Table 4 show the results of palladium-catalyzed⁸ carbonylation, alkynylation, and cross-coupling reactions of 3. It can been seen that both carbonylation and alkynylation reactions worked well. However, introduction of an substituent by cross-coupling reaction gave unsatisfactory results and the dimeric tetraene 10 was mostly obtained in moderate yield.

Table 2 Preparation of 3-substituted
2-methoxycarbonyl-1,3-butadienes^a

√ →	F CO ₂ Me
y R	Yield ^b (%) of 6
Ph	78
BnOCH ₂	76
Bu	72
Ph(OBn)CH	84
C ₅ H ₁₁ (OBn)CH	96
	y R Ph BnOCH₂ Bu Ph(OBn)CH

a) the reaction was conducted using (Ph₃P)₄Pd (0.03 equiv.), Et₃N (2 equiv.) in MeOH at room temperature under CO (1 atm). b) isolated yield.

Table 3 Preparation of 2-alkynyl-3-phenyl-1.3-butadienes^a

a) the reaction was conducted using alkyne (1.1 equiv.), $(Ph_3P)_2PdCl_2$ (0.03 equiv.), CuI (0.06 equiv.), Et₃N (2 equiv.) in THF at room temperature. b) isolated yield.

Ш

95

Ph

Table 4 Cross-coupling reactions of 2-iodo-3-phenyl-1,3-butadiene

PK	RM PK	R PK	= =	+ Ph	ŮŢŮ,	Ph
3	8		9		10	
				Yield ^b (%)		
entry	RM (1.5 equiv.)	Method ^a	8	9	10	
1	MeMgBr	Α	36	36	0	
2	MeLi	В	0	0	63	
3	<i>n</i> -BuLi	В	0	0	57	
4	n-Bu ₃ SnCH=CH ₂	С	0	0	52	

a) A: (Ph₃P)₄Pd (0.03 equiv.), THF, room temperature; B: (Ph₃P)₄Pd (0.03 equiv.), benzene, reflux; C: Pd₂(dba)₃·CHCl₃ (0.03 equiv.), THF, 50 °C. b) isolated yield..

Furthermore, we examined reactions of 2-iodo-3-phenyl-1,3-butadiene 3 (R = Ph) with benzaldehyde *via* metallation. As can be seen from Table 5, 3 (R = Ph) reacted with bezaldehyde in good yields although the regioselectivity of the reaction was dependent on the reaction conditions. In this particular case, dienylmagnesium⁹ and chromium¹⁰ species turned out to produce the allene 12 exclusively.

Table 5 Reaction of 2-iodo-3-phenylbuta-1,3-dienes with benzaldehyde via metallation

entry	Conditions ^a	11 : 12 ^b	Total Yield (%) ^c
1	<i>t</i> -BuLi (2 equiv.), Et ₂ O, –78 °C	36 : 64	83
2	t-BuLi (2 equiv.), Et ₂ O, -78 °C CuCN (0.1 equiv.)	26 : 74	90
3	Mg (1.5 equiv.), ZnCl ₂ (0.03 equiv.), (CH ₂) ₂ Br ₂ ,THF, reflux, then , –40 °C	0 : 100	87
4	CrCl ₂ (2 equiv.), NiCl ₂ (0.01 equiv.) DMSO, room temperature	0:100	75

a) PhCHO (1.0 equiv.). b) determined by ¹H NMR analysis of the mixture. c) inseparable mixture.

Acknowledgment. We thank Dr. Mitsuhiro Kawamura for his collaboration in the early stage of this work in Pharmaceutical Institute of Tohoku University.

References and Notes

- (1) For the chemistry of 1-trimthylsilyl-2,3-butadienes, see: Hatakeyama, S.; Kawamura, M.; Takano, S. J. Am. Chem. Soc. 1994, 116, 4081-4082 and earlier papers.
- (2) Hatakeyama, S.; Sugawara, K.; Takano, S. J. Chem. Soc. Chem. Commun. 1993, 125-127.
- (3) For example, when 1-trimethylsilyl-2-phenyl-2,3-butadiene 1 (R = Ph) was allowed to react with iodine in CDCl₃ at -20 °C in a NMR tube, the ¹H NMR spectrum of the reaction mixture showed the existence of the corresponding *vic*-diiodoallylsilane 2 and 2-iodobuta-1,3-diene 3 in a ratio of 11:1.
- (4) Ratovelomanana, V.; Hammoud. A.; Linstrumelle, G. Tetrahedron Lett. 1987, 28, 1649-1650. Mitani, M.; Kobayashi, Y.; Koyama, K. J. Chem. Soc. Perkin Trans. 1. 1995, 653-655. Zheng, B.; Srebnik, M. Synth. Commun. 1996, 26, 393-405. Okamoto, S.; Sato, H.; Sato, F. Tetrahedron Lett. 1996, 37, 8865-8868.
- (5) All new compounds reported herein exhibited satisfactory spectral data (¹H and ¹³C NMR, IR, MS).
- (6) Cf.: Yanagisawa, A.; Noritake, Y.; Nomura, N.; Yamamoto, H. Synlett 1991, 251-253.
- (7) Montury, M.; Psaume, B.; Goré, J. Tetrahedron Lett. 1980, 21, 163-166.
- (8) Hegedus, L. S. In *Organometallics in Synthesis*; Schlosser, M. Ed.; John Wiley & Sons: New York, 1994; pp 383-459.
- (9) Aufdermarsh, Jr. C. A. J. Org. Chem. 1964, 29, 1994-1996. Kondo, K.; Dobashi, S.; Matsumoto, M. Chemistry Lett. 1976, 1077-1080. Nunomoto, S.; Yamashita, Y. J. Org. Chem. 1979, 44, 4788-4791. Shea, K. J.; Pham, P. Q. Tetrahedron Lett. 1983, 24, 1003-1006.
- (10) Takai, K.; Kimura, K.; Kuroda, T.; Hiyama, T.; Nozaki, H. Tetrahedron Lett. 1983, 24, 5281. Jin,
 H.; Uenishi, J.; Christ, W. J.; Kishi, Y. J. Am. Chem. Soc. 1986, 108, 5644. Takai, K.; Tagashira, M.;
 Kuroda, T.; Oshima, K.; Utimoto, K.; Nozaki, H. ibid. 1986, 108, 6048.