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Abstract: Herein we would like to communicate that an unstabi-
lized azomethine ylide generated from commercial trimethylamine
N-oxide will undergo a remarkable 1,3-dipolar cycloaddition in
good yield with electron-rich and unpolarized olefins. A broad
range of substituents on the alkenes are tolerated provided they are
compatible with excess LDA. This demonstration of novel reaction
scope should encourage others to try trimethylamine N-oxide as an
azomethine ylide precursor in the synthesis of challenging 3,4-di-
substituted pyrrolidines.
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Substituted pyrrolidines are common structural motifs
present in a wide variety of natural products,1 chiral
ligands,2 and biologically active compounds.3 One of the
most prevalent and reliable methods for the diastereo-
selective construction of 3,4-substituted architecture is the
1,3- dipolar cycloaddition reaction of an azomethine ylide
and an appropriately substituted alkene.4

During the course of our research we became interested in
constructing novel 3,4-disubstituted pyrrolidine ring sys-
tems. Since we did not require substitution on the 2- and
5-positions of the pyrrolidine ring, the azomethine ylide
derived from the acid-catalyzed decomposition of com-
mercial N-methoxymethyl-N-trimethylsilyl methyl phe-
nyl methanamine (1)5 was deemed a suitable choice
(Scheme 1).

Scheme 1 Acid-catalyzed [3+2]-cycloaddition reaction

In general, with compatible substrates, we found this well-
precedented chemistry to be operationally simple and
scalable. In several cases we obtained multigram quanti-
ties of the corresponding N-benzyl pyrrolidine. A well-
documented drawback of this method is that this type of
unstabilized azomethine ylide does not readily undergo
cycloaddition with unactivated dipolarophiles.6

Pyrrolidines whose requisite alkenes were unreactive un-
der the acid-catalyzed conditions required a different
preparation. A survey of the chemical literature unearthed
a little used, but powerful method wherein a reactive un-
stabilized azomethine ylide can be generated by treating
trimethylamine N-oxide 4 with lithium diisopropylamide
at low temperature.7 Under these strongly basic condi-
tions, ylide formation is thought to proceed by deoxygen-
ation of the N-oxide. The resultant intermediate is
extremely reactive and can be trapped by simple alkenes
such as hex-1-ene, cyclopentene, styrene, and stilbene.8

Scheme 2 Basic [3+2]-cycloaddition reaction

Herein we would like to report that this cycloaddition re-
action furnished targeted N-methyl pyrrolidines in yields
ranging from good to excellent in nearly all cases exam-
ined.9 A broad range of substituents on the alkenes were
tolerated in this transformation provided that functional-
ities were compatible with excess LDA. Among the suc-
cessful dipolarophiles were several examples of electron-
rich olefins including those that failed under the acid con-
ditions (specifically products 8–10, Table 1). We found
this reaction to be operationally straightforward with cy-
cloadditions generally reaching completion in less than
one hour.

Despite its broad substrate scope, superior yields, and fast
reaction times we presume that this reaction has gained
only a modest following10 among the synthetic communi-
ty because the corresponding N-Me group on the pyrroli-
dine is difficult to remove. In our hands, we found 1-
chloroethyl chloroformate (ACE-Cl) to be a useful re-
agent for this cleavage as its purification is operationally
simple.11 Furthermore, we found we could accelerate this
N-demethylation to reach completion in just 30 minutes
using microwave irradiation (Scheme 3).12 For substrates
like those in Table 1, the microwave ACE-Cl deprotection
proceeded in low to moderate yield (Scheme 3).

In summary, we have demonstrated that the 1,3-dipolar
cycloaddition between an unstabilized azomethine ylide
and an unactivated olefin is not only possible, but can be
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high yielding. Electron-rich olefins that did not react un-
der the more traditional acidic conditions5 (Scheme 1),
rapidly underwent a [3+2] cycloaddition in good yield un-
der the basic conditions (Scheme 2) described herein. Use
of this basic [3+2] cycloaddition enabled us to synthesize
pyrrolidines whose assembly would be otherwise inacces-
sible by the acidic route. Application of this methodology

to additional systems is on-going and will be reported in
due time.
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crude reaction mixture was purified by ion exchange on a 
MP-TsOH column to give 51 mg (21%) of pyrrolidine 11 as 
a pale yellow oil: 1H NMR (400 MHz, CDCl3): d = 7.26–
7.20 (m, 2 H), 7.18–7.12 (m, 3 H), 6.73–6.70 (m, 1 H), 6.70–

6.66 (m, 1 H), 6.62 (d, J = 2.0 Hz, 1 H), 3.79 (s, 3 H), 3.75 
(s, 3 H), 3.66–3.54 (m, 2 H), 3.35–3.25 (m, 2 H), 3.24–3.14 
(m, 2 H), 2.62 (br s, 1 H) ppm. LC-MS: m/z = 284.0 [M + 1].
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