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Abstract Stereodefined α-iodovinyl sulfoxides bearing a sulfinyl group
and an iodo group were prepared by a one-pot iodination/Horner–
Wadsworth–Emmons reaction protocol. This reaction can be applied to
a wide range of aldehydes, and further application was demonstrated.
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α-Halovinyl sulfoxides are useful building blocks in or-
ganic synthesis.1 For example, they have been used as pre-
cursors of vinylidene carbene species for various synthetic
transformations,2 and also as a platform for the stereoselec-
tive synthesis of hetero- and carbocyclic compounds.3 Al-
though further potential utilities are expected, the existing
synthetic approaches to their availability have been limited
in terms of synthetic efficacy and stereoselectivity.

In our recent study on the modular synthesis of planar
chiral carba-paracyclophanes (Scheme 1), we employed
stereodefined α-iodovinyl sulfoxide III as a building block,
which was prepared by exploiting iodo-sulfinylphospho-
nate V for the Horner–Wadsworth–Emmons (HWE) reac-
tion with aldehydes.4 Recognizing the potential utility of III
in broader sense of organic synthesis, we became interested
in addressing the scope and limitation of the above-stated
preparative method.

In this communication, we report a synthetic protocol
for the highly Z-selective synthesis of α-iodovinyl sulfox-
ides from various aldehydes. In particular, the protocol has
been made convenient by the in situ generation of V by
iodination of phosphonate followed by HWE reaction with
aldehydes. The details of this optimization processes are
now disclosed.

Scheme 2 illustrates the preparation of iodo-phospho-
nates 4a (R = Me) and 4b (R = i-Pr). Upon treatment of An-
dersen’s sulfinate5 (2) in THF with two mole equivalents of
the anion, generated from dimethyl methylphosphonate
(1a) or diisopropyl methylphosphonate (1b) by treatment
with n-BuLi at –30 °C, the corresponding sulfinyl-phospho-
nates 3a and 3b were obtained in 75% and 95% yield, re-
spectively.6 Iodination of phosphonates 3a and 3b was car-
ried out by using iodine in the presence of K2CO3 in metha-
nol, giving iodo-phosphonate 4a and 4b in 85% and 90%
yield, respectively. However, these compounds are unstable
because the carbon–iodine bond is labile and easily cleaved
during workup (10% Na2S2O3) and purification.7 In addition,
4a and 4b gradually decomposed even when stored in the
refrigerator. Therefore, freshly prepared 4a and 4b were
needed to be employed in the HWE reaction.

Scheme 1  Use of α-halovinyl sulfoxides in carba-paracyclophane syn-
thesis
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Scheme 2  Synthesis of iodophosphonates 4a and 4b

Having iodo-phosphonates 4a and 4b in hand, the HWE
reaction with aldehyde 58 was examined by the combined
use of LiCl and organic bases (Scheme 3).9 As an initial at-
tempt, the reaction of methyl derivative 4a was examined
by using Hünig’s base, giving the desired product 6 in 22%
yield with poor stereoselectivity (Scheme 3, entry 1). By us-
ing 1,8-diazabicylo[5.4.0]undec-7-ene (DBU), the yield was
improved to 68%, albeit poor stereoselectivity (Scheme 3,
entry 2). In contrast, the reaction of isopropyl derivative 4b
with Hünig’s base showed excellent stereoselectivity
(Scheme 3, entry 3).10 Furthermore, use of DBU gave 6 in
better yield (60%) without any decrease in the stereoselec-
tivity (Scheme 3, entry 4).

The Z/E stereochemistry of 6 was assigned by the 1H
NMR chemical shift of the vinyl proton according to the lit-
erature.11 The signal of a vinyl proton with cis relationship

to a sulfinyl group appears at a lower field compared to that
of the trans counterpart (Figure 1, a). By considering this
general tendency, the major isomer of 6 was assigned to be
Z, while the minor isomer was assigned to be E.12

Figure 1  Stereoidentification of vinyl sulfoxides

We next screened bases to improve the yield in the re-
action of isopropyl derivative 4b (Scheme 4). The use of
1,1,3,3-tetramethylguanidine (TMG) as a base gave the de-
sired product in 74% yield with an excellent Z/E selectivity
(Scheme 4, entry 1). When 1,5,7-triazabicyclo[4.4.0]dec-5-
ene (TBD) was used as the base, product 6 was obtained in
comparable yield (Scheme 4, entry 2). Furthermore, use of
excess 4b (1.5 equiv) over aldehyde 5 resulted in the com-
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plete consumption of aldehyde 5, giving 6 in high yield
(Scheme 4, entry 3).

Although an optimal set of reaction conditions was thus
secured, a difficulty that still remained was the instability
of iodo-sulfinylphosphonate 4b. To resolve this issue, a one-
pot protocol was examined to generate 4b in situ, followed
by HWE reaction (Scheme 5).13 Upon treatment of phos-
phonate 3b with TBD and LiCl in MeCN, I2 was added at
room temperature.14 After consumption of 3b and genera-
tion of 4b assured by TLC monitoring (3b: Rf = 0.40, 4b: Rf =
0.58, EtOAc), aldehyde 5 was added. Further stirring for ten
minutes at room temperature gave α-iodovinyl sulfoxide 6
in 94% yield with excellent stereoselectivity (Z/E =97:3,
Scheme 5, entry 1). Comparably, when DBU was employed,
a high yield (86%) and excellent Z-stereoselectivity (Z/E =
97:3, Scheme 5, entry 2) resulted, while the use of TMG
gave poor yield (Scheme 5, entry 3).

Scheme 5  Optimization of conditions by varying bases

This one-pot protocol would be useful for the prepara-
tion of various α-iodovinyl derivatives, and for the large-
scale preparation, DBU (less expensive base) is more attrac-
tive. Indeed, when the same reaction was conducted with
DBU on a 16 g scale, the desired product 6 was obtained in
82% yield without any loss of the stereoselectivity. Charac-
teristics of this protocol are: 1) the one-pot procedure
avoids tedious handling of iodo-phosphonate, 2) excellent
Z/E selectivity, 3) use of inexpensive base (DBU), in particu-
lar for the large-scale synthesis.

We next focused on the scope of the reaction, employ-
ing several carbonyl compounds (Table 1). For comparison,
DBU and TBD were employed as the base. With DBU, the
stereoselectivity was poor in some cases, which can be
compensated by the use of TBD.15

Hydrocinnamaldehyde (7) gave the corresponding prod-
uct 8 in high yields with excellent Z selectivities (Table 1,
entries 1, 2). Aromatic aldehydes, such as benzaldehyde (9,

Table 1, entries 3, 4) and furfural (11, Table 1, entries 5, 6),
worked well. When TBD was used as a base, the products 10
and 12 were obtained in 71% yield (Table 1, entry 3) and
85% yield (Table 1, entry 6), respectively, with excellent Z
selectivities. In contrast, use of DBU decreased the Z/E se-
lectivity to 77:23 (Table 1, entry 4) or 90:10 (Table 1, entry
5), though the yields were good. The reaction of conjugated
aldehyde 13 gave the desired trisubstituted olefin 14 in ex-
cellent yield with perfect Z selectivity in both cases of DBU
(Table 1, entry 7) and TBD (Table 1, entry 8). Unfortunately,
α-methyl cinnamaldehyde (15) resulted in low yield (Table
1, entries 9, 10). Moreover, branched aliphatic aldehydes 17
and 19 gave only moderate yields with the significantly de-
creased stereoselectivities (Table 1, entries 11–14). In addi-
tion, this protocol turned out to be inapplicable for ketone
such as 2116 (entries 15, 16), indicating a limitation of this
procedure toward tetrasubstituted olefins.

Some utility of α-halovinyl sulfoxide in the synthesis of
trisubstituted olefin was demonstrated by successive cross-
coupling and sulfoxide–lithium exchange followed by trap-
ping with electrophile (Scheme 6). The cross-coupling reac-
tion of 10 with p-methoxyphenylboronic acid by using
Pd(PPh3)4 and K3PO4 gave 22 in stereospecific manner (70%
yield). Sulfoxide–lithium exchange17 of 22 with t-BuLi fol-
lowed by the trapping with DMF gave trisubstituted olefin
23 in 73% yield. The diagnostic NOE correlation between the
vinyl proton and the formyl group verified the E stereo-
chemistry of 23. This result shows potential utility of α-
halovinyl sulfoxides for the preparation of various trisubsti-
tuted olefins with a high stereoselectivity.
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In conclusion, the stereoselective synthesis of α-iodo-
vinyl sulfoxides became possible by a one-pot iodination–
HWE protocol employing sulfinyl phosphonate, iodine, and
aldehyde. The resulting α-iodovinyl sulfoxides serve as

potential precursors for the preparation of trisubstituted
olefins, by subsequent coupling and sulfoxide–lithium
exchange. Further studies on applications are in progress
in our group.

Table 1  Substrate Scope

Entry Aldehyde Product Base Yield (%) Z/E
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4
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