Solid-Phase Synthesis of New S-Glycoamino Acid Building Blocks

Laurence Jobron and Gerd Hummel*

Jerini Bio Tools GmbH, Rudower Chaussee 29, 12489 Berlin, Germany hummel@jerini.de

Received May 5, 2000

ORGANIC LETTERS 2000 Vol. 2, No. 15 2265–2267

ABSTRACT

Efficient synthesis of unprotected S-glycoamino acid building blocks in the solid phase by coupling a sugar 1-thiolate with iodine activated fluoren-9-ylmethoxycarbonyl (Fmoc) protected amino acids.

Glycoconjugates have been implicated in many biological events important in inflammation, immune response, and tumor metastasis.¹ Of special interest are glycoproteins containing modified glycosyl amino acids, thus exhibiting new properties. While *S*-glycopeptides have been isolated from nature,² the driving force behind the synthesis of *S*-glycosides has been the production of glycopeptidomimetics with enhanced stability toward chemical and enzymatic degradation.³ Several attempts have been made to introduce the *S*-linkage by chemical synthesis.⁴ A variety of glycosylation methods have been applied including Koenigs–Knorr,⁵ glycosyl fluorides,⁶ Lewis acid-catalyzed glycosylation,⁷ trichloroacetimidates⁸ and isothiouronium salts.⁹ These methods generally use protected carbohydrates and cysteine derivatives. We present here the solid-phase

- (4) Taylor, C. M. Tetrahedron 1998, 54, 11317.
- (5) Baran, E.; Drabarek S. Pol. J. Chem. 1978, 52, 941. Gerz, M.; Matter, H.; Kessler, H. Angew. Chem., Int. Ed. Engl. 1993, 32, 269.
- (6) Nicolaou, K. C.; Chucholowski, A.; Dolle, R. E.; Randall, J. L. J. Chem. Soc., Chem. Commun. 1984, 1155.
 - (7) Salvador, L. A.; Elofsson, M.; Kilberg J. *Tetrahedron* 1995, *51*, 5643.
 (8) Käsbeck, L.; Kessler, H. *Liebigs Ann./Recueil* 1997, 165.
- (9) Monsigny M. L. P.; Delay, D.; Vaculik, M. Carbohydr. Res. 1977, 59, 589.
 - (10) Hummel, G.; Hindsgaul, O. Angew. Chem., Int. Ed. 1999, 38, 1782.

10.1021/ol0060190 CCC: \$19.00 © 2000 American Chemical Society Published on Web 06/28/2000

synthesis of new *S*-glycoamino acid building blocks. The key feature of this method is that a nucleophilic sugar 1-thiolate without protective groups is used for coupling with an iodine activated fluoren-9-ylmethoxycarbonyl (Fmoc)/*t*-Bu protected amino acid.

Hummel and Hindsgaul¹⁰ described the use of a sugar-1thiolate without protective groups in the solid phase as the nucleophile for coupling with trifluoromethanesulfonate (triflate)-activated glycosides. Since the use of triflates with Fmoc-protected amino acids is not compatible, we decided to prepare amino acid iodo derivatives for the synthesis of *S*-glycoamino acid building blocks.

First the free acid functions of the *N*-Fmoc/*t*-Bu ester protected glutamic and aspartic acid derivatives were reduced to the corresponding alcohols **2**, **4**, **6**, and **8** (Scheme 1,

^aReagents and conditions:(a) CICO₂C₂H₅, Et₃N, THF, -30°C, 30 min; (b) NaBH₄, H₂O, THF, 0°C to 20°C, 4 h, 74%; (c) I₂, PPh₃, imidazole, PhCH₃, 120°C, 20 min, 80%.

⁽¹⁾ Varki, A. *Glycobiology* **1993**, *3*, 97. Lee, Y. C.; Lee, R. T. *Acc. Chem. Res.* **1995**, 28, 322. Chambers, W. H.; Brisette-Storkus, C. S. *Chem. Biol.* **1995**, *2*, 429.

⁽²⁾ Lote, C. J.; Weiss, J. B. *Biochem. J.* **1971**, *123*, 25p. Lote, C. J.; Weiss, J. B. *FEBS Lett.* **1971**, *16*, 81. Weiss, J. B.; Lote, C. J.; Bobinski, H. *Nature New Biol.* **1971**, *234*, 25.

⁽³⁾ Michael, K.; Wittmann, V.; König, W.; Sandow, J.; Kessler, H. Int. J. Pept. Protein Res. **1996**, 48, 59.

shown for Fmoc-Asp(O'Bu)) using ethyl chloroformate and sodium borohydride in tetrahydrofuran (yields are given in Table 1).

Fable 1				
amino acids	reduction to alcohol	conversion into iodide		
Fmoc-Asp(O ^t Bu)-OH	2 (74%)	3 (80%)		
Fmoc-Asp-O'Bu	4 (81%)	5 (81%)		
Fmoc-Glu(O'Bu)-OH	6 (86%)	7 (95%)		
Fmoc-Glu-O'Bu	8 (83%)	9 (76%)		

Treatment of the different alcohols **2**, **4**, **6**, and **8** with triphenylphosphine—iodine—imidazole¹¹ in toluene at 120 °C afforded the corresponding iodo derivatives **3**, **5**, **7**, and **9** in 76–95% yields after purification by flash chromatography on silica gel.

The same procedure applied to Fmoc-Thr-O'Bu 10 and Fmoc-Ser-O'Bu 13^{12} gave only low yields with threonine and no product with serine (Scheme 2). In the case of

threonine, we observed the formation of elimination product **12** and iodo compound **11** in a ratio of 1:1. No better results could be obtained by decreasing reaction time or temperature; therefore we tried different conditions. The use of polystyryl diphenylphosphine—iodine (PDPI) complex was previously described¹³ for the conversion of *N*-Fmoc β -amino alcohols into their corresponding iodides in high yields and without any detectable epimerization of the chiral center. Similar

reaction of the alcohols **10** and **13** with triphenylphosphine– iodine complex in the presence of imidazole in anhydrous dichloromethane gave the iodides **11** (with inversion of configuration) and **14** in high yield (**11** 88% and **14** 99%) under very mild conditions (3 h reflux for Thr **11** and 10 min for Ser **14**). No elimination product was observed with Ser and only 7% in the case of Thr. Both iodo compounds were used without further purification in the following steps.

Thiol 15 immobilized on a trityl chloride derivatized polystyrene resin was obtained after reduction of the disulfide¹⁰ (Scheme 3). The loading of the thiol on the solid

^aReagents and conditions: (a) NaOMe, THF, 20°C, 2 h; (b) [15] Crown-5, iodo derivatives **3-6**, THF, 45°C, 3 d; (c) 50% TFA, CH_2CI_2 , 20°C, 30 min.

support was determined by elemental analysis (sulfur content) and was 1.2 mmol/g. **15** was treated for 2 h with NaOMe/ THF to enhance its nucleophilicity¹⁰ and washed with a mixture of MeOH/THF to eliminate traces of NaOMe. The resulting sodium thiolate was coupled with amino acid iodo derivatives **3**, **5**, **7**, **9**, and **14** in THF at 45 °C in the presence of [15]crown-5 as complexing agent. After 3 days, the resin was washed and the glyco amino acids were cleaved from the resin by treatment with 50% TFA in CH₂Cl₂. All final derivatives **16**–**20** were obtained after reverse-phase HPLC purification in good yields (75 to 82%).

Reaction of the immobilized thiolate with threonine derivative 11 however gave only poor yields (<5%).

⁽¹¹⁾ Garegg, P. J.; Samuelsson, B. J. Chem. Soc., Chem. Commun. 1979
979.
(12) Liebe, B.; Kunz, H.: Angew. Chem., Int. Ed. Engl. 1997, 36,

⁽¹²⁾ Liebe, Б.; Kunz, H.: Angew. Chem., Int. Ed. Engl. 1997, 36, 618.

⁽¹³⁾ Caputo, R.; Cassano E.; Longobardo, L.; Palumbo, G. *Tetrahedron* **1995**, *51*, 12337.

To achieve better results we studied the influence of different conditions such as solvent (THF or DMF), temperature (20 or 45 °C), and complexing agent ([15]crown-5 or Kryptofix 221). The results are summarized in Table 2.

Table 2			
temperature	solvent	complexing agent	yield, %
20 °C	THF	[15]crown-5	<20
		Kryptofix 221	
20 °C	DMF	[15]crown-5	30
		Kryptofix 221	
45 °C	THF	[15]crown-5	<5
		Kryptofix 221	
45 °C	DMF	[15]crown-5	50
		Kryptofix 221	<10

Best yields were obtained using DMF at 45 °C in the presence of [15]crown-5 as complexing reagent (Scheme 4). We observe that compound **21** reverts back to its threo configuration after the substitution.

In conclusion, we present here an efficient synthesis of new *S*-glycoamino acid building blocks in the solid phase which are ideal building blocks for the solid-phase synthesis

of *S*-glycopeptides using the Fmoc strategy. All glycosides were obtained stereoselectively and in high yields. Using iodine-activated amino acids gives the corresponding *S*-glycosides under very mild conditions with retention of configuration (double inversion) if the iodine is part of an asymmetric carbon atom.

Supporting Information Available: Experimental procedures for preparation of compounds 2-9, 11, 14, and 16-21 and analytical data for 2-9, 11, 14, and 16-21. This material is available free of charge via the Internet at http://pubs.acs.org.

OL006019O