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Abstract:  An efficient diastereo- and enantioselective synthesis of syn-
2,3-disubstituted 1,4-diketones 4 is described. Key step of the procedure
is the oxidative coupling of the metalated SAMP/RAMP-hydrazones 2
with iodine, followed by oxidative cleavage of the dimerized
bishydrazones 3 with ozone and subsequent separation of the minor
meso-isomer by chromatography. The d,l-isomers of the title 1,4-
diketones 4 are obtained in good overall yields (20 - 64%) and high
diastereo- and enantiomeric excesses (de ≥ 98%, ee = 80 − ≥95%).

1,4-Diketones constitute an important class of compounds1, for instance
as precursors of cyclopentanoids and five-membered heteroaromatics2.
Although numerous synthetic routes to 1,4-diketones are known3, there
are only a few asymmetric syntheses of the title compounds published
so far4, and the direct approach via auxiliary controlled oxidative
coupling has very recently been reported only for the related 1,4-
dicarboxylic acid derivatives5-7. The latter reports prompt us to disclose
our own early results8 on the asymmetric synthesis of 1,4-diketones via
oxidative coupling of metalated SAMP/RAMP-hydrazones with iodine
and subsequent removal of the auxiliary by ozonolysis.

As is shown in Scheme 1, symmetrical and unsymmetrical acyclic and
cyclic ketones 1 are converted into their corresponding SAMP-
hydrazones9-11, followed by metalation with t-BuOK/n-BuLi12 in ether
at −78°C. The resulting azaenolates are trapped with a solution of iodine
in THF at the same temperature and, after aqueous work up, the light
sensitive bishydrazones 3 are used in the next step without further
purification (d/l:meso up to 86:14). Oxidative cleavage with ozone and
flash chromatography affords the 2,3-disubstituted 1,4-diketones 4. The
minor meso-isomer is easily separated by further chromatography
(MPLC) and the syn-configured title diketones 4a-e are isolated in
diastereomerically pure form (de ≥ 98%), in good to excellent
enantiomeric excesses (ee = 80 - ≥95%) and in good overall yields (20 -
64%). In the case of sterically demanding groups R1 (e.g.: 4d, R1=t-Bu)
only low overall yields were obtained, even employing KDA as base
(see Table 1)13.

The (S,S)-configuration of the 1,4-diketones 4 shown is based on the
stereochemical outcome of our previous results9 employing SAMP-
hydrazones, but not yet confirmed. However, as shown in the case of 4d
the (R,R)-enantiomers are accessible in the same way by using RAMP
instead of SAMP as the chiral auxiliary. The diastereomeric excesses of
the diketones were determined by 13C NMR spectroscopy, and the
enantiomeric excesses were measured by 1H NMR shift experiments
with Eu(hfc)3.

In a futher experiment trifluoromethyl iodide was used instead of iodine
as dimerization reagent. Subsequent ozonolysis of the crude product 3a
and purification by flash chromatography gave the 2,3-disubstituted 1,4-
diketone 4a with an overall yield of 11%, a d/l:meso ratio of 67:33 and
an enantiomeric excess of 83%. This example shows that
trifluoromethyl iodide can be used as reagent for the oxidative coupling
besides the well known reagents like iodine3i,6,7, Cu(II)-salts3p,q,6,7,
Ce(IV)-salts3j and TiCl4

3b,6. In comparison with iodine, trifluoromethyl
iodide leads to similar diastereo- and enantiomeric excesses, but in a
much lower yield.

In summary a novel diastereo- and enantioselective synthesis of syn-2,3-
disubstituted 1,4-diketones via oxidative coupling of metalated SAMP-
hydrazones with good overall yields of up to 64% and with high
diastereo- and enantiomeric excesses (de ≥ 98%, ee = 80 - ≥ 95%) has
been developed14.

Scheme 1
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