Accepted Manuscript

Functionalities of conjugated compounds of γ –aminobutyric acid with salicylaldehye or cinnamaldehyde

Tai-Ti Liu, Yi-Wei Tseng, Tsung-Shi Yang

PII:	S0308-8146(15)00969-3
DOI:	http://dx.doi.org/10.1016/j.foodchem.2015.06.077
Reference:	FOCH 17759
To appear in:	Food Chemistry
Received Date:	21 March 2015
Revised Date:	30 May 2015
Accepted Date:	22 June 2015

11551: 0300 8146
FOOD
CHEMISTRY
Austable of twe sciencedirect con SciVerse ScienceDirect

Please cite this article as: Liu, T-T., Tseng, Y-W., Yang, T-S., Functionalities of conjugated compounds of γ – aminobutyric acid with salicylaldehye or cinnamaldehyde, *Food Chemistry* (2015), doi: http://dx.doi.org/10.1016/j.foodchem.2015.06.077

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Functionalities of conjugated compounds of γ -aminobutyric acid with salicylaldehye
2	or cinnamaldehyde
3	
4	Running title: Functionalities of conjugated compounds of γ -aminobutyric acid
5	
6	Tai-Ti Liu ^{a\$} , Yi-Wei Tseng ^a , and Tsung-Shi Yang ^b *
7	
8	"Department of Food Science, Yuanpei University, No. 306 Yuanpei Street, Hsinchu 30015, Taiwan
9	
10	^b Department of Cosmeceutics, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402,
11	Taiwan
12	
13	
14	*Author to whom correspondence should be addressed (e-mail: tsyang@mail.cmu.edu.tw)
15	Tel.: +886 4 22053366; fax: +886 4 22078083.
16	
17	^s Co- corresponding author: e-mail: taiti@mail.ypuu.edu.tw
18	Tel.: +886 3 5381183
	1

20 ABSTRACT

21 Aldehydes or ketones can react with amino compounds to form Schiff base adducts, which have been widely studied and shown to exhibit antimicrobial, antioxidant or antiviral activity. Salicylaldehye 22 23 (SA) and cinnamaldehyde (CA) are components of plant essential oils. γ -Aminobutyric acid (GA) is 24 an important substance in the mammalian central nervous system and responsible for many bioactivities. This study aimed to synthesize functional Schiff base adducts using GA and SA or CA; 25 26 to study the antimicrobial activity, antioxidant activity and tyrosinase-inhibition activity of these adducts (SA-GA and CA-GA) and their metal complexes SA-GA-Cu (or Zn) and CA-GA-Cu (or 27 28 Zn); and to find their applications in food systems. SA-GA and CA-GA both exhibited good 29 antibacterial effects, and so did their Cu complexes. As for antioxidant activity, SA-GA and CA-GA 30 were superior to their metal complexes in most tests. Regarding inhibition of enzymatic browning of 31 mushrooms, both SA-GA-Cu and CA-GA-Cu could inhibit tyrosinase activity effectively.

- 32
- *Keywords*: Salicylaldehye, Cinnamaldehyde, γ-Aminobutyric acid, Schiff base, Antimicrobial
 activity, Antioxidant activity, Tyrosinase, Mushroom browning.
- 35
- 36
- 37

38 1. Introduction

39

40	Most foods are susceptible to microbial spoilage, or biochemical or chemical deterioration.
41	Therefore, a variety of synthetic food additives are used to enhance safety and quality of food
42	products in order to ensure consumer acceptance. As many negative effects have been reported about
43	synthetic food additives (Soni, Carabin, & Burdock, 2005), consumers have grown more concerned
44	about the safety of synthetic food additives. Regarding food preservatives, plant essential oils have
45	been investigated and found to have the potential to be used as natural preservatives (Yang, Liou, Hu,
46	Peng, & Liu, 2013). However, essential oils (EOs) generally have strong characteristic odours and
47	are immiscible with water due to hydrophobicity, which may limit their applications in many food
48	systems.
49	Aldehydes or ketones can react with amino compounds or amino groups of food proteins to form
50	Schiff base adducts, such as those in the Maillard reaction, which is commonly encountered in food
51	cooking, processing or storage. Schiff base adducts have been widely studied in organic, inorganic
52	and medicinal chemistry and show many biological activities, such as antimicrobial, antioxidant and
53	antiviral activity (Kumar, Dhar, & Saxena, 2009). Although many Schiff base adducts have been
54	synthesized in the literature, few have found applications in food systems because most of the
55	compounds used for the synthesis are not edible or allowed in foods. A recent study used
56	cinnamaldehyde and various amino acids, excluding y-aminobutyric acid (GA), to generate Schiff

57	base adducts and investigated their antimicrobial activity in vitro and in food systems (Wei, Xiong,
58	Jiang, Zhang, & Ye, 2011). The Schiff base adducts can reduce the odour intensity and increase the
59	solubility of cinnamaldehyde in aqueous systems.
60	Cinnamaldehyde and salicylaldehye are components of plant EOs, and both are food flavourings
61	assessed by the Flavor and Extraction Manufacturers Association as generally regarded as safe
62	(GRAS) ingredients (Adams et al., 2004; Adams et al., 2005). In addition, Schiff base adducts can be
63	hydrolyzed into their original reactive components in acidic conditions (Cordes & Jencks, 1963).
64	Therefore, the safety of these adducts can be mainly determined by the reactive components after
65	digestion. For example, Schiff base adducts of cinnamaldehyde and amino acids have been
66	investigated and do not show any oral toxicity in animal tests (Wei etal., 2011).
67	GA is a chief inhibitory neurotransmitter in the mammalian central nervous system. It can
68	regulate neuronal excitability throughout the nervous system. In humans, GA is also directly
69	responsible for the regulation of muscle tone (Watanabe, Maemura, Kanbara, Tamayama, &
70	Hayasaki, 2002). In addition, GA shows relaxation and immunity enhancement effects in humans
71	(Abdou, Higashiguchi, Horie, Kim, Hatta, & Yokogoshi, 2006); it can also reduce the blood pressure
72	in animals and humans (Aoki, Furuya, Endo, & Fujimoto, 2003). As a functional ingredient, GA has
73	been formulated into a number of commercial health-oriented products for use as a dietary
74	supplement. Regarding foods, GA tea is commercially produced in Taiwan with an emphasis on the
75	aforementioned bioactivities (Wang, Tsai, Lin, & Ou, 2006).

76	In this study, we aimed to synthesize functional Schiff base adducts using GA and salicylaldehye
77	or cinnamaldehyde; to study the antimicrobial activity, antioxidant activity and tyrosinase-inhibition
78	activity of these adducts and their metal complexes; and to find their applications in food systems.
79	
80	2. Materials and methods
81	
82	2.1. Chemicals
83	γ -Aminobutyric acid (GA), salicylaldehye (SA), cinnamaldehyde (CA), 2,2'-azino-bis
84	(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), nicotinamide adenine
85	dinucleotide (NADH), phenazine methosulfate (PMS), nitrotetrazolium blue chloride (NBT),
86	tyrosinase (50 KU) and L-3,4-dihydroxyphenylalanine (L-DOPA) were purchased from
87	Sigma-Aldrich Co. (St. Louis, MO, USA). Potassium peroxidisulfate and ferrous chloride were
88	acquired from Mallinekrodt-Baker, Inc. (Phillipsburg, NJ, USA). Sodium nitroprusside (SNP),
89	sulfanilamide and N-(1-naphthyl)-ethylenediamine dihydrochloride, ferrozine were obtained from
90	Alfa Aesar Co. (Ward Hill, MA, USA). Tryptic soy broth (TSB) (Bacto TM), nutrition broth (NB) and
91	agar were obtained from Becton Dickinson & Company (San Jose, CA, USA).

92

a	Λ
2	-

95	Staphylococcus aureus (BCRC10780) and Escherichia coli O157:H7 (BCRC14824) were
96	acquired from Bioresource Collection and Research Center (BCRC) at the Food Industry Research
97	and Development Institute, Hsinchu, Taiwan.
98	
99	2.3. Preparation of Schiff base adducts
100	
101	The preparation of Schiff base adducts followed the methods of Wei, Xiong, Jiang, Zhang and
102	Ye (2011) with some modifications. The KOH (0.38 g) was dissolved in methanol (25 ml) and GA
103	(0.59 g) was added to the solution with stirring for complete dissolution. The above solution was
104	reacted at 50°C for 2 h in a round-bottomed flask equipped with a condenser. The mixture was
105	cooled and filtered to obtain the GA-containing filtrate. The methanol solution of SA or CA was
106	prepared by dissolving 0.7 ml SA or 0.84 ml CA in 10 ml methanol placed in a round-bottomed flask.
107	Then the GA-containing filtrate was added dropwise to the methanol solution of SA or CA within 1 h
108	under N_2 gas. The precipitate was formed during the reaction and it was collected after the solvent
109	was evaporated by the gas. Anhydrous ether was added to the precipitate to remove residual reactants
110	and the precipitate was dried under vacuum.
111	

2.4. Preparation of metal complexes of the adducts

1	1	2
Ŧ	Ŧ	5

114	Metal (II) nitrates (1 mmol) were dissolved in methanol (10 ml) and the solution was filtered
115	and added dropwise into a (15 ml) methanolic solution of SA-GA or CA-GA (1 mmol). The above
116	mixture was stirred for 2 h. The metal complex obtained was filtered off, washed with methanol and
117	ether; and then dried under vacuum (Nair & Joseyphus, 2008).
118	
119	2.5. Infrared spectral analysis
120	
121	The sample was mixed with KBr powder at a 1:100 ratio and dried overnight at 50°C. The
122	sample-KBr pellet was prepared by mechanically pressing the powder mixture. The IR spectra were
123	recorded by a FT-IR spectrophotometer (Prestige 21, Shimazu, Tokyo, Japan) with a scan range of
124	400-4000 cm ⁻¹ using KBr as a reference.
125	
126	2.6. Antimicrobial activity assay for bacteria in vitro
127	
128	A stock solution (7500 μ g/ml) was prepared with SA-GA or CA-GA and its metal ion complexes
129	$(Cu^{2+} and Zn^{2+})$ dissolved in DMSO. The bacteria from stock cultures were inoculated in 5 ml broth
130	and incubated at 37°C for 24 h to increase their population. The enriched cultures were controlled
131	with dilution to optical density of 1 at 630 nm, which were further diluted with appropriate media for

each microbe to 10^3 - 10^4 colony forming units (CFU/ml) as an inoculum. The media for S. aureus, E.

- 133 *coli* O157 were TSB and NB, respectively.
- A microbial suspension was mixed with an amount of the test solution (20:1, v/v) at a series of
- 135 concentrations, and then added to a 96-well microplate. The plate was capped and incubated for 48 h
- 136 at 37°C. The minimal bactericidal concentration (MBC) was determined by visually judging the
- 137 microbial growth in the tubes with a series of broth dilutions. Then, the existence of viable cells was
- 138 verified by a plate count method. An inoculated growth medium without the test compound was
- 139 employed as a control. All of the experiments were performed in triplicate and the average values
- 140 were reported as MBC. The MBC is defined as the lowest concentration of the test solution that
- 141 results in no viable cells in a culture plate.
- 142
- 143 2.7. Antimicrobial activity assay in food

White button mushrooms were used for evaluating the antimicrobial activity of the SA-GA-Cu or CA-GA-Cu in a real food system. Each mushroom $(50\pm1 \text{ g})$ was weighed and dipped into a SA-GA-Cu or CA-GA-Cu solution at a concentration of 187 or 375 µg/ml for 10 s and held until no water dripped from the surface. Then, the samples were placed into a sterilized plastic bag and zipped, followed by storage in a chamber at room temperature for 6 h. At sampling time, the sample (16 g) and 144 ml PBS (0.85%) were added into a sterilized container with blades and then homogenized. The homogenate was used for antimicrobial assay. The homogenate was taken for a

series dilution, 1 ml of which was poured onto plate count agar and incubated for 48 h at 37°C. The 151

152 population of the microorganisms was determined by counting the number of colonies from the

plates with 25-250 colonies and multiplying by the dilution factor. The experiments were performed 153

154 in triplicate.

155

156 2.8. Analysis of antioxidant activity

157

158 2.8.1. Scavange of ABTS radical

The ABTS radical assay followed the method of Debnath, Park, Nath, Samad, Park and Lim 159 (2011) with some modifications. ABTS was dissolved in water to make a solution of 7 mM. Then 10 160 ml of the ABTS solution was mixed with 2 ml potassium peroxidisulfate (14 mM) and 12 ml sodium 161 162 phosphate buffer (0.01M, pH7.4) to generate ABTS by allowing the mixture to stand in the dark at room temperature for 12-16 h before use. For sample testing, the ABTS solution was diluted with the 163 sodium phosphate buffer to an absorbance of 1 at 734 nm. The test samples (0.1 ml), each at a 164 165 different concentration, were mixed with 1 ml ABTS solution and reacted for 10 min in dark. The absorbance was recorded at 734 nm. Each sample was measured in triplicate and averaged. This 166 167 antioxidant effect is given as percentage ABTS scavenging activity that is calculated by the following formula: 168

169 Scavenging activity (%) = $[(Ac-As)/Ac] \times 100$

170 where $A_{\rm C}$ is the absorbance value of the control and $A_{\rm S}$ is the absorbance value of the test samples.

171 *2.8.2. Scavenging of nitrite oxide*

172

173 Test samples (0.3 ml) at various concentrations were mixed with 0.88 ml PBS, and sodium nitroprusside (25 mM) in PBS, and then reacted for 2 h at room temperature. A volume of 0.5 ml of 174 the mixture was taken and added to 0.3 ml 5% H₃PO₄ solution containing 1% sulfanilamide, and 0.3 175 ml 0.1% N-(1-naphthyl)-ethylenediamine dihydrochloride solution (Marcocci, Maguire, Droylefaix, 176 & Packer, 1994). The absorbance of the reacted sample solution was measured at 570 nm. The 177 178 scavenging activity is determined according to the following equation: $[(Ac-As)/Ac] \times 100$ Scavenging 179 activity where $A_{\rm C}$ is the absorbance value of the control and $A_{\rm S}$ is the absorbance value of the test samples. 180

181

- 182 2.8.3. Scavenging of superoxide anion
- 183

184 The stock solutions of PMS (30 μM), NADH (936 μM) and NBT (300 μM) were prepared with
185 0.1 M phosphate buffer (pH 7.4). The 50 μl test solution was added into a 96-well microplate

186 followed by addition of 62.5 µl NBT and 62.5 µl NADH. The mixture was left standing for 2 min for

187 concentration balance. The reaction was started by adding 62.5 µl PMS to the mixture. The reaction

mixture was incubated at room temperature for 5 min and absorbance at 560 nm was recorded (Bi et 188

189 al., 2013). The scavenging activity of superoxide anion is expressed by the following formula:

190 Scavenging activity (%) = $[(Ac-As)/Ac] \times$ 100

where $A_{\rm C}$ is the absorbance value of the control and $A_{\rm S}$ is the absorbance value of the test samples. 191

192

2.8.4. Ferric ion chelating activity 193

194

In the present assay, 0.5 ml of test solution in a series of concentrations was mixed with 1.6 ml 195 of double de-ionized water, 0.1 ml FeCl₂ (2 mM) and 0.1 ml of 5 mM aqueous ferrozine solution. 196 197 The mixture was shaken vigorously and left standing at room temperature for 10 min. The 198 absorbance was measured at 562 nm (Demirtas, Erenler, Elmastas, & Goktasoglu, 2013). EDTA was used as a reference compound for comparison. The calculation was performed using the following 199 formula: 200

201 Chelating activity $(\%) = [(Ac - As)/Ac] \times 100$

202 where $A_{\rm C}$ is the absorbance value of the control and $A_{\rm S}$ is the absorbance value of the test sample 203 solution.

С	n	Λ
Z	υ	4

- 205 2.9. Inhibition of tyrosinase in vitro
- 206

206	
207	The test sample was dissolved in DMSO and diluted to a series of concentrations. An aliquot of
208	14 μl mushroom tyrosinase (30 U, 40 nM) was pre-incubated with the test sample in 76 μl sodium
209	phosphate buffer (50 mM, pH 6.8) for 10 min at 25°C. Then the 100 μ l L-DOPA (4 μ M) was added
210	to the sample mixture, which was allowed to stand for 10 min for the formation of dopaquinone. The
211	absorbance was measured at 475 nm by a microplate reader (SpectraMax® M2, Molecular Devices).
212	The inhibition of the enzyme activity was calculated as follows:
213	
214	Percent inhibition (%) = $[(B - S)/B] \times 100$, where B and S were the absorbance for the blank and
215	samples, respectively (Kumar, Yang, Chu, Chang, & Wang, 2010). Ascorbic acid (5 μ g/ml) was used
216	as a standard tyrosinase inhibitor for comparison.
217	
218	2.10. Inhibition of browning of mushroom
219	
220	White button mushrooms (Agaricus bisporus) with similar size (16 ± 0.5 g; 4 ± 0.2 cm, id) were
221	selected and separated into two groups (10 pieces in each group), one for the treatment and the other

222 as a control. The mushrooms were dipped into a SA-GA-Cu or CA-GA-Cu solution at a

223	concentration of 187 or 375 μ g/ml for 10 s and held until no water dripped from the surface. Each
224	mushroom was weighed before and after the soaking procedure in order to calculate the amount of
225	the active component absorbed by the mushroom. The samples in the control group were subjected to
226	the same procedures except for the double de-ionized water used as the test solution. Each sample in
227	both groups was put in a 100 ml beaker and stored at room temperature. The colour change of
228	samples was monitored at the time period of 0, 4 and 8 h with a colorimeter (CR-200, Minolta, Japan)
229	using a CIE-L*a*b* system for data expression.
230	
231	2.11. Statistical analysis
232	
233	Statistical analysis of variance (ANOVA) was conducted using Statistica for Windows (StatSoft,
234	Tulsa, OK, USA). Duncan's multiple range test was used to compare the mean values of data for
235	significant difference at a 95% level.
236	
237	3. Results and discussion
238	
239	3.1. Infrared spectra of Schiff base adduct
240	
241	The IR spectral data of SA-GA or CA-GA and its metal complex are given in Table 1. The C=N

242	bond can be observed at $v(C-N)$ 1627-1635 cm ⁻¹ due to the azomethine stretching vibration, which
243	indicates the successful synthesis of the Schiff base adduct (Guo et al., 2005). Carboxylate (COO ⁻)
244	stretching occurs at two different spectral regions: an asymmetrical stretching band near 1650-1550
245	cm ⁻¹ , and weaker symmetric stretching bands near 1400 cm ⁻¹ (Gnanasambandam & Proctor, 2000).
246	On complexation in this study, the asymmetric carboxylate stretching $v_{asym}(COO^{-})$ is shifted from
247	1610-1618 cm ⁻¹ to the 1543–1573 cm ⁻¹ range and the symmetric carboxylate stretching vsym (COO ⁻)
248	is shifted from 1404-1408 cm ⁻¹ to 1384 cm ⁻¹ , indicating the linkage between the metal ion and
249	carboxylate oxygen atom (Nair & Joseyphus, 2008). The spectra of the complexes show broad bands
250	in the 3388–3471 cm^{-1} range, which can be attributed to the stretching vibration of the OH group.
251	This indicates the presence of water molecules in the structure (Hassan, Nassar, Hussien, & Elkmash,
252	2012). In the complexes, the bands in the 565–586 and 439–470 cm^{-1} range can be attributed to
253	v(M-N) and v(M-O), respectively (Nair & Joseyphus, 2008).
254	

^{255 3.2.} Antimicrobial activity assay for bacteria in vitro

256

The antimicrobial activity of SA-GA or CA-GA and its metal complex against *S. aureus* and *E. coli* O157 : H7 is shown in Table 2. Regarding SA-GA and its metal complexes, these compounds
exhibited a better antimicrobial effect against *S. aureus* than against *E. coli* O157 : H7. The SA-GA
could inhibit *S. aureus* but failed to inhibit *E. coli* O157 : H7 at the test concentration of 375 µg/ml. In

contrast, both SA-GA-Cu and SA-GA-Zn could eradicate E. coli O157 : H7 at 375 ug/ml. This 261 indicates that the metal complex can enhance the antimicrobial activity of SA-GA. Chelation 262 considerably reduces the polarity of the metal ion because of partial sharing of its positive charge 263 with donor groups and possible electron delocalization over the whole chelate ring. Such a chelation 264 could enhance the lipophilic character of the central metal atom, which subsequently favours its 265 permeation through the lipid layer of the cell membrane (Cevhan, Celik, Urus, Demirtas, Elmastas, 266 & Tümer, 2011). Moreover, SA-GA-Cu exhibited a greater antimicrobial effect than SA-GA-Zn 267 against S. aureus. The reason for the higher antimicrobial activity of Cu^{2+} complex relative to the 268 Zn^{2+} complex may be that Cu^{2+} can form a stronger Cu^{2+} -ligand bond than Zn^{2+} -ligand bond, which 269 increases the lipophilic character of a Cu^{2+} complex compared to a Zn^{2+} complex. In addition, Cu^{2+} 270 has a higher redox activity than Zn^{2+} , which may also account for the higher antimicrobial activity of 271 Cu²⁺ complexes (El-Sherif & Eldebss, 2011). 272 As with SA-GA, CA-GA also had a good antimicrobial activity against S. aureus, which was 273

274 stronger than that of SA-GA by giving lower MBC values at each corresponding concentration. 275 However, as for the antimicrobial effect against *E. coli* O157 : H7, CA-GA could inactivate *E. coli* 276 O157 : H7 at 375 μ g/ml, but SA-GA could not. The metal complexes of CA-GA also enhanced the 277 antimicrobial activity of CA-GA against *S. aureus*. Noticeably, CA-GA-Cu showed greater 278 antimicrobial activity than CA-GA against *E. coli* O157 : H7. In addition, CA-GA-Cu was superior to 279 SA-GA-Cu in suppressing *E. coli* O157 : H7. From the results, it seems that Gram (+) bacteria such

280 as S. aureus is more susceptible to the test compounds than Gram (-) bacteria, namely E. coli O157: 281 H7. The resistance of Gram (-) bacteria toward antibacterial substances is ascribed to the hydrophilic surface of their outer membrane, which is rich in lipopolysaccharide molecules, forming a barrier to 282 283 the penetration of numerous antibiotic molecules, and is also relevant to the enzymes in the periplasmic space, which can break down the molecules introduced from outside (Nikaido, 1994; 284 Gao, Van Belkum, & Stiles, 1999). 285 286 Since SA-GA-Cu and CA-GA-Cu showed a better antimicrobial activity than the other test compounds in the SA or CA adduct group, both were selected as a representative for each group to 287 288 further assay their antimicrobial effect in a real food system - mushroom. As the mushrooms were 289 only very briefly (10 s) dipped into the test solutions, the amount of SA-GA-Cu or CA-GA-Cu 290 absorbed into the mushrooms was much lower than that in the test solution, which is listed in Table 3. 291 The initial microbial population in the untreated mushrooms was approximately 10^2 CFU/g. Two concentration levels, 5.8 and 11.6 μ g/g, were used for the test. At the concentration of 5.8 μ g/g, 292 293 SA-GA-Cu gave an 82% inhibition ratio of total microorganisms at 2 h; however, the ratio decreased 294 to 67% at 6 h. This decrease may be due to the resuscitation of surviving microorganisms after the 295 administration of the test compound. In contrast, CA-GA-Cu exhibited a 99% inhibition ratio at either 2 or 6 h at the same concentration. Namely, CA-GA-Cu gave a better antimicrobial effect than 296 SA-GA-Cu at this concentration. 297

At the concentration of 11.6 μ g/g, SA-GA-Cu showed a 99% inhibition ratio of the total

299	microorganisms at 2 h and the ratio slightly declined to 93% at 6 h. This result suggests that
300	SA-GA-Cu at this concentration can effectively inhibit >90% microorganisms during 6 h of storage.
301	Comparatively, at the same concentration CA-GA-Cu exhibited a marked antimicrobial effect, which
302	could be observed from the 44% inhibition ratio at the initial time of administrating the test
303	compound (Table 3). CA-GA-Cu could kill or destroy the microorganisms instantly and the damaged
304	organisms seemed to lose their ability to resume growth in the later incubation period. Therefore, the
305	inhibition ratio remains 100% from 2 h to 6 h of storage.
306	
307	3.3. Antioxidant activity
308	

309 3.3.1. Inhibition of ABTS radical

310 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic of acid (ABTS) Assays and 1,1-diphenyl-2-picrylhydrazyl (DPPH) are the most popular among various spectrophotometric 311 methods for measuring the antioxidant capacity of foods. ABTS assay is superior to DPPH assay 312 when applied to a variety of plant foods containing hydrophilic, lipophilic and high-pigmented 313 antioxidant compounds (Floegel, Kim, Chung, Koo, & Chun, 2011). Therefore, the ABTS assay was 314 315 used in this study. The inhibition of ABTS radical activity by the metal complexes of SA-GA or 316 CA-GA is shown in Table 4. Generally, SA-GA and its metal complexes had a stronger scavenging effect than CA-GA and its metal complexes. Noticeably, SA-GA seemed comparable with ascorbic 317

318	acid in this activity. On the other hand, SA-GA-Cu or SA-GA-Zn did not show any better scavenging
319	activity than SA-GA, which reveals that the metal complexes do not enhance the scavenging effect
320	of SA-GA but slightly reduce it.
321	With respect to CA-GA and its metal complexes, CA-GA had a lower IC_{50} value than that of
322	CA-GA-Cu or CA-GA-Zn, which means that the metal complexes cannot increase the antioxidant
323	activity of CA-GA but slightly decrease it. The effect of metal ions on CA-GA in scavenging ABTS
324	radicals is similar to its effect on SA-GA. In addition, the scavenging activity of CA-GA-Cu is
325	similar to that of CA-GA-Zn. This phenomenon is also applicable to the scavenging activity between
326	SA-GA-Cu and SA-GA-Zn.
327	
327 328	3.3.2. Inhibition of superoxide anion activity
327 328 329	3.3.2. Inhibition of superoxide anion activity Inhibition of superoxide anion activity by SA-GA or CA-GA and its metal complexes are listed
327 328 329 330	3.3.2. Inhibition of superoxide anion activity Inhibition of superoxide anion activity by SA-GA or CA-GA and its metal complexes are listed in Table 4. Regarding SA-GA and its metal complexes, SA-GA exhibited an inhibitory effect with an
327 328 329 330 331	3.3.2. Inhibition of superoxide anion activity Inhibition of superoxide anion activity by SA-GA or CA-GA and its metal complexes are listed in Table 4. Regarding SA-GA and its metal complexes, SA-GA exhibited an inhibitory effect with an IC ₅₀ value of 764 μg/ml. In contrast, SA-GA-Cu and SA-GA-Zn gave IC ₅₀ values of 5.7 and >6000
327 328 329 330 331 332	3.3.2. Inhibition of superoxide anion activity Inhibition of superoxide anion activity by SA-GA or CA-GA and its metal complexes are listed in Table 4. Regarding SA-GA and its metal complexes, SA-GA exhibited an inhibitory effect with an IC ₅₀ value of 764 µg/ml. In contrast, SA-GA-Cu and SA-GA-Zn gave IC ₅₀ values of 5.7 and >6000 µg/ml, respectively. This result reveals that the metal complexes do not show a consistent trend in
327 328 329 330 331 332 333	3.3.2. Inhibition of superoxide anion activity Inhibition of superoxide anion activity by SA-GA or CA-GA and its metal complexes are listed in Table 4. Regarding SA-GA and its metal complexes, SA-GA exhibited an inhibitory effect with an IC ₅₀ value of 764 µg/ml. In contrast, SA-GA-Cu and SA-GA-Zn gave IC ₅₀ values of 5.7 and >6000 µg/ml, respectively. This result reveals that the metal complexes do not show a consistent trend in enhancing or reducing the scavenging effect of SA-GA, but manifests that this effect is dependent on
 327 328 329 330 331 332 333 334 	3.3.2. Inhibition of superoxide anion activity Inhibition of superoxide anion activity by SA-GA or CA-GA and its metal complexes are listed in Table 4. Regarding SA-GA and its metal complexes, SA-GA exhibited an inhibitory effect with an IC ₅₀ value of 764 µg/ml. In contrast, SA-GA-Cu and SA-GA-Zn gave IC ₅₀ values of 5.7 and >6000 µg/ml, respectively. This result reveals that the metal complexes do not show a consistent trend in enhancing or reducing the scavenging effect of SA-GA, but manifests that this effect is dependent on the species of the metal ion. In this case, Cu ²⁺ enhances the scavenging effect of SA-GA, while Zn ²⁺

336 strongest scavenging effect (IC₅₀: 5.8 μ g/ml) among the test compounds, which is comparable with

that (IC₅₀: 5.7 μ g/g) of SA-GA-Cu. The IC₅₀ value for CA-GA for its inhibitory effect was 1482 337 338 µg/ml, which is about twice the value for SA-GA. Meanwhile, as with SA-GA-Zn, CA-GA-Zn did not express any scavenging effect with an IC₅₀ value > 6000 μ g/ml. 339 Superoxide dismutases (SODs) are a diverse group of metalloenzymes, and they can catalyze 340 dismutation of two negatively charged superoxide radicals to molecular oxygen and hydrogen 341 peroxide. The redox potential of SOD containing Cu^{2+} and Zn^{2+} (CuZnSOD) during catalysis has 342 been investigated, and the result indicates that copper is the redox partner of the superoxide radical, 343 whereas the oxidative state of Zn^{2+} does not change during the dismutation reaction (Konecny et al., 344 1999). Several other studies also showed that Cu²⁺complex of Schiff base adducts can mimic the 345 346 function of CuZnSOD in dismutating a superoxide anion (Bian et al., 2015; Patel, Patel, Shukla, & Singh, 2013). From these studies, Cu^{2+} seems to play a more important role than Zn^{2+} in scavenging 347 superoxide anion, which is also evidenced from the results of this research. 348

349

350 3.3.3. Inhibition of nitric oxide

Nitric oxide (NO), one of the smallest known bioactive products of mammalian cells, has multiple biological effects. However, a number of disease states are characterized by abnormally high NO production and removing the excess NO could have beneficial effects. In the inhibition of NO radical assay, SA-GA was better than SA-GA-Cu or SA-GA-Zn (Table 4). In contrast, surprisingly CA-GA and its metal complexes did not show any scavenging effect. This may be

356	attributed to the effect of structural difference. The SA has an OH group on the aromatic ring but CA
357	does not. From literature, a study that compares the reactivity of NO with the metal complexes of
358	Schiff base ligand derived from SA or pyridine-2-carboxaldehyde shows that the
359	pyridine-2-carboxaldehyde-derived ligands do not promote reactivity with NO, whereas, the
360	SA-derived ligands do. Therefore, it is concluded that the substituents on the aromatic moiety have a
361	dramatic effect on the reactivity (Coleman & Taylor, 1980).
362	
363	3.3.4. Ferrous ion chelating activity

- 362
- 3.3.4. Ferrous ion chelating activity 363

The assay is based on the principle that ferrozine can bind Fe^{2+} rather than Fe^{3+} into a complex 364 that absorbs strongly at 562 nm (Im, Lee, & Löffler, 2013). If the Fe²⁺ is chelated by the test 365 compound, the absorption signal will be reduced. SA-GA or CA-GA shows higher Fe^{2+} chelating 366 activity than its metal complexes (Table 4), which is expected because it is a common characteristic 367 of many synthesized Schiff bases in chelating metal ions (Monier, Ayad, & Abdel-Latif, 2012). 368 However, it is noted that the metal complexes of SA-GA or CA-GA also give certain Fe²⁺ chelating 369 activity even though the ability is lower than that of the metal-free adduct. Several possibilities are 370 hypothesized to explain this. First, Fe^{2+} may compete with the metal ions in the complexed adducts 371 because of relatively high concentration gradient, and partly replace Cu²⁺ or Zn²⁺ in the chelated 372 structure, which may decrease the amount of Fe^{2+} available in the solution for binding ferrozine. 373

374	Second, because the Cu^{2+} can catalyze the autoxidation of Fe^{2+} to Fe^{3+} (Sayin, 1982), SA-GA-Cu or
375	CA-GA-Cu may also have this ability to convert Fe^{2+} into Fe^{3+} , and thus reduce the amount of Fe^{2+}
376	for the reaction with ferrozine. In contrast, Zn^{2+} does not alter the absorbance of the Fe ²⁺ -ferrozine
377	complex (Sayin, 1982); therefore, this may account for the fact that SA-GA-Cu or CA-GA-Cu has
378	greater Fe ²⁺ chelating activity than SA-GA-Zn or CA-GA-Zn. Comparatively, SA-GA-Zn has a
379	lower IC ₅₀ value (207µg/ml) than that (4341µg/ml) of CA-GA-Zn, which may be attributed to the
380	OH group present in the SA structure. The unpaired electrons on the OH group may provide a
381	chelating site for Fe ²⁺ , which is not structurally available in the CA.
382	
202	3.3.5 Inhibition of throsingse activity

3.3.5. Inhibition of tyrosinase activity 383

Tyrosinase is a copper dependent enzyme which catalyzes two different reactions using 384 385 molecular oxygen: the hydroxylation of monophenols to o-diphenols (monophenolase activity) and the oxidation of the o-diphenols to o-quinones (diphenolase activity) (Chen & Kubo, 2002). With 386 respect to SA-GA and its metal complexes, SA-GA-Cu and SA-GA-Zn exhibited a better inhibitory 387 effect on tyrosinase than SA-GA (Table 5). Moreover, SA-GA-Cu is better than SA-GA-Zn at this 388 effect. Similarly, CA-GA-Cu and CA-GA-Zn also gave a stronger inhibitory effect on tyrosinase than 389 390 CA-GA. In addition, CA-GA-Cu is superior to CA-GA-Zn in exhibiting this effect. From these 391 results, the metal complexes can reinforce the inhibitory ability of SA-GA or CA-GA on tyrosinase, especially the CA-GA. The reason may be that the Cu²⁺ complex of Schiff base adducts could be 392

attracted to tyrosinase and the Cu^{2+} in the structure could interfere with the electron transferring 393 394 process at the active site of tyrosinase, which would lead to inactivation of tyrosinase activity. In one study, which used synthetic membranes to immobilize tyrosinase, the researchers found that when 395 Cu^{2+} is chelated on the membrane surfaces, the tyrosinase absorption efficiency can increase due to 396 the effect of binding affinity between the enzyme and the chelated Cu^{2+} (Arica & Bayramoğlu, 397 2004).

398

As for the effect of Zn^{2+} on tyrosinase, it has been suggested in a study that Zn^{2+} can directly 399 form a ligand-binding with tyrosinase at a position near or inside the active site, which induces 400 conformational change that inactivates the enzyme (Han et al., 2007). Although the Zn^{2+} is chelated 401 in the Schiff base adducts, the active site might not be shielded or might be only partially affected by 402 the structure of adducts, depending on the position and orientation of where the Zn^{2+} is present in the 403 structure. Thus, the Zn^{2+} adducts may still retain certain inhibitory effects on the tyrosinase activity. 404 On the other hand, it is probable that the metal ions complexed with the adducts form a more stable 405 or special conformational structure that is favourable for binding tyrosinase and interferes with its 406 activity. The interactive effects of chelators on metal ions have been reported in literature. For 407 408 example, EDTA and several other metal-ion chelators have been shown to enhance or inhibit 409 iron-dependent lipid peroxidation depending on the types of chelator and the ratio of iron salt to the chelator in the reaction mixture. Regarding the enhancive effect, EDTA can increase the ability of 410 411 complexed iron to undergo redox cycling and thus accelerate the lipid peroxidation (Gutteridge,

412 1984).

413

414 3.3.6. Inhibition of mushroom browning

The white button mushroom is widely recognized for its nutritional, organoleptic and medicinal 415 properties, and is highly popular among consumers (Beelman, Royse, & Chikthimmah, 2003). 416 However, the mushrooms are perishable during storage with a shelf life of about 3-4 days. Their 417 commercial value is lost within a few days due to browning, water loss, senescence and microbial 418 attack (Gao, Feng, & Jiang, 2014). As SA-GA-Cu and CA-GA-Cu display good effects on the 419 420 inhibition of tyrosinase activity in vitro, both compounds were used for inhibition of mushroom browning. The colour change of the untreated and treated mushrooms during storage was compared. 421 422 A colorimeter with a colour scale- CIE-L*a*b* system was used for recording the colour change. L* (0-100) represents lightness from low to high; a* is red, and -a* is green; b* and -b* stand for yellow 423 and blue, respectively. Regarding the colour scale of the control sample, the L* value decreased 424 while the a^* and b^* values both increased as the storage time increased. Compared with the $L^*a^*b^*$ 425 values of the control sample at the initial time, the colour scale differences (ΔE^*) were 4.42 and 8.32 426 427 for the same sample measured at 4 and 8 h, respectively (Table 6). This indicates that the colour of 428 mushrooms turns darker and consists of more red and yellow components, which is consistent with 429 the browning effect observed visually. When the mushrooms were treated with SA-GA-Cu at 5.8 430 $\mu g/g$, the ΔE^* values were reduced to 3.57 and 6.85 at 4 h and 8 h, respectively. In addition, the

431 ΔE^* values were 2.23 and 4.67 at 4 h and 8 h, respectively, for the samples treated with CA-GA-Cu 432 at the same concentration (Table 6). The results show that SA-GA-Cu and CA-GA-Cu can effectively inhibit the mushroom browning and that CA-GA-Cu gives a stronger effect than 433 SA-GA-Cu, which is consistent with the results obtained from the in vitro test of tyrosinase 434 inhibition. 435 Zn and Cu are essential trace elements for human health but over intake of them may cause health 436 risks. Regarding the safety of Zn and Cu intakes, the tolerable upper levels for Zn and Cu are 40 mg/d 437 and 10 mg/d, respectively (Goldhaber, 2003). The effective antimicrobial or antibrowning 438 concentration of the metal complexes used in the mushrooms is ca 12 μ g/g. This means that if 200 g 439 440 (approximately 12 pieces) of the mushrooms are consumed at a meal, the intake of these elements is 441 approximately 2.4 mg, which is lower than the tolerable upper levels of both elements. It is worth 442 noting that the calculation is based on the raw materials; in practice, the mushrooms must be washed or soaked and boiled in water before consumption, which may lead to a marked loss of the added 443 compounds. Therefore, the actual intake of these elements is much lower than the above estimated 444 value. In addition, Zn can compete with Cu and reduce the Cu absorption in digestion (de Romaña, 445 446 Olivares, Uauy, & Araya, 2011); as a result, one may also use both of the synthesized compounds 447 together as a mixture and adjust to an appropriate ratio between them by taking advantage of the 448 characteristic of Zn that has a higher tolerable upper level. Accordingly, the safety concern can be 449 eliminated when using these adducts and their metal complexes.

4. Conclusions

453	The Schiff base adducts of GA and SA or CA were synthesized and their functionalities were
454	assessed. These adducts and their metal complexes can impart antibacterial, antioxidant, and/or
455	tyrosinase-inhibition activities. Regarding antibacterial activity, SA-GA and CA-GA both exhibit
456	good antibacterial effects, which can be further enhanced by forming a complex with Cu^{2+} or Zn^{2+} .
457	As for antioxidant activity, SA-GA and CA-GA adducts are more effective than their metal
458	complexes in ABTS, nitric oxide, and ferric ion chelating analyses, whereas their Cu metal
459	complexes are superior to these adducts in superoxide anion analysis. With respect to inhibition of
460	enzymatic browning of mushrooms, both SA-GA-Cu and CA-GA-Cu can inhibit tyrosinase activity
461	effectively. The multiple functionalities of these adducts render them very suitable for preservation of
462	foods such as mushrooms in extension of shelf life.

465 Acknowledgment

467	This research was supported by Ministry of Science and Technology, Taiwan, R.O.C. (project no.:
468	NSC 102-2221-E-264 -004).
469	
470	References
471	
472	Abdou, A. M., Higashiguchi, S., Horie, K., Kim, M., Hatta, H., & Yokogoshi, H. (2006). Relaxation
473	and immunity enhancement effects of γ -aminobutyric acid (GABA) administration in humans.
474	Biofactors, 26(3), 201-208.
475	Adams, T. B., Cohen, S. M., Doull, J., Feron, V. J., Goodman, J. I., Marnett, L. J., Munro, I. C.,
476	Portoghese, P. S., Smith, R. L., & Waddell, W. J. (2004). The FEMA GRAS assessment of
477	cinnamyl derivatives used as flavor ingredients. Food and Chemical Toxicology, 42(2),
478	157-185.
479	Adams, T. B., Cohen, S. M., Doull, J., Feron, V. J., Goodman, J. I., Marnett, L. J., Munro, I. C.,
480	Portoghese, P. S., Smith, R. L., & Waddell, W. J. (2005). The FEMA GRAS assessment of
481	hydroxy-and alkoxy-substituted benzyl derivatives used as flavor ingredients. Food and
482	<i>Chemical Toxicology, 43</i> (8), 1241-1271.
483	Aoki, H., Furuya, Y., Endo, Y., & Fujimoto, K. (2003). Effect of γ-aminobutyric acid-enriched
484	tempeh-like fermented soybean (GABA-tempeh) on the blood pressure of spontaneously
485	hypertensive rats. <i>Bioscience, Biotechnology, and Biochemistry,</i> 67(8), 1806-1808. 26

486	Arıca, M. Y., & Bayramoğlu, G. (2004). Reversible immobilization of tyrosinase onto
487	polyethyleneimine-grafted and Cu (II) chelated poly (HEMA-co-GMA) reactive membranes.
488	Journal of Molecular Catalysis B: Enzymatic, 27(4), 255-265.
489	Beelman, R. B., Royse, D. J., & Chikthimmah, N. (2003). Bioactive components in button
490	mushroom Agaricus bisporus (J. Lge) imbach (Agaricomycetideae) of nutritional, medicinal,
491	and biological importance (review). International Journal of Medicinal Mushrooms, 5(4),
492	321-337.
493	Bi, H., Gao, T., Li, Z., Ji, L., Yang, W., Iteku, B. J., Liu, E., & Zhou, Y. (2013). Structural elucidation
494	and antioxidant activity of a water-soluble polysaccharide from the fruit bodies of Bulgaria
495	inquinans (Fries). Food Chemistry, 138(2), 1470-1475.
496	Bian, H. D., Wang, J., Wei, Y., Tang, J., Huang, F. P., Yao, D., Yu, Q., & Liang, H. (2015).
497	Superoxide dismutase activity studies of Mn (III)/Cu (II)/Ni (II) complexes with Schiff base
498	ligands. Polyhedron, 90, 147-153.
499	Ceyhan, G., Çelik, C., Uruş, S., Demirtaş, İ., Elmastaş, M., & Tümer, M. (2011). Antioxidant,
500	electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff
501	base ligands and their metal complexes. Spectrochimica Acta Part A: Molecular and
502	Biomolecular Spectroscopy, 81(1), 184-198.
503	Chen, Q. X., & Kubo, I. (2002). Kinetics of mushroom tyrosinase inhibition by quercetin. Journal of

Agricultural and Food Chemistry, 50(14), 4108-4112.

505	Coleman, W. M., & Taylor, L. T. (1980). Reactivity of dioxygen and nitric oxide with manganese
506	complexes containing hexadentate ligands. Journal of Inorganic and Nuclear Chemistry,
507	42(5), 683-687.
508	Cordes, E. H., & Jencks, W. P. (1963). The mechanism of hydrolysis of Schiff bases derived from
509	aliphatic amines. Journal of the American Chemical Society, 85(18), 2843-2848.
510	Debnath, T., Park, P. J., Nath, N. C. D., Samad, N. B., Park, H. W., & Lim, B. O. (2011). Antioxidant
511	activity of Gardenia jasminoides Ellis fruit extracts. Food Chemistry, 128(3), 697-703.
512	Demirtas, I., Erenler, R., Elmastas, M., & Goktasoglu, A. (2013). Studies on the antioxidant potential
513	of flavones of Allium vineale isolated from its water-soluble fraction. Food Chemistry, 136(1),
514	34-40.
515	de Romaña, D. L., Olivares, M., Uauy, R., & Araya, M. (2011). Risks and benefits of copper in light
516	of new insights of copper homeostasis. Journal of Trace Elements in Medicine and Biology,
517	25(1), 3-13.
518	El-Sherif, A. A., & Eldebss, T. M. A. (2011). Synthesis, spectral characterization, solution equilibria,
519	in vitro antibacterial and cytotoxic activities of Cu (II), Ni (II), Mn (II), Co (II) and Zn (II)
520	complexes with Schiff base derived from 5-bromosalicylaldehyde and
521	2-aminomethylthiophene. Spectrochimica Acta Part A: Molecular and Biomolecular
522	Spectroscopy, 79(5), 1803-1814.
523	Floegel, A., Kim, D. O., Chung, S. J., Koo, S. I., & Chun, O. K. (2011). Comparison of ABTS/DPPH

- 524 assays to measure antioxidant capacity in popular antioxidant-rich US foods. *Journal of Food*
- 525 *Composition and Analysis, 24*(7), 1043-1048.
- 526 Gao, M., Feng, L., & Jiang, T. (2014). Browning inhibition and quality preservation of button
- 527 mushroom (*Agaricus bisporus*) by essential oils fumigation treatment. *Food Chemistry*, 149,
- **528** 107-113.
- 529 Gao, Y., Van Belkum, M. J., & Stiles, M. E. (1999). The outer membrane of Gram-negative bacteria
- 530 inhibits antibacterial activity of brochocin-C. Applied and Environmental Microbiology,
- **531** *65*(10), 4329-4333.
- 532 Gnanasambandam, R., & Proctor, A. (2000). Determination of pectin degree of esterification by
- diffuse reflectance Fourier transform infrared spectroscopy. *Food Chemistry*, 68(3), 327-332.
- 534 Goldhaber, S. B. (2003). Trace element risk assessment: essentiality vs. toxicity. *Regulatory*
- *Toxicology and Pharmacology, 38*(2), 232-242.
- 536 Guo, Z., Xing, R., Liu, S., Yu, H., Wang, P., Li, C., & Li, P. (2005). The synthesis and antioxidant
- 537 activity of the Schiff bases of chitosan and carboxymethyl chitosan. *Bioorganic & Medicinal*
- 538 *Chemistry Letters, 15*(20), 4600-4603.
- 539 Gutteridge, J. M. (1984). Ferrous ion-EDTA-stimulated phospholipid peroxidation. A reaction
 540 changing from alkoxyl-radical-to hydroxyl-radical-dependent initiation. *Biochemical Journal*,
 541 224, 697-701.
- 542 Han, H. Y., Zou, H. C., Jeon, J. Y., Wang, Y. J., Xu, W. A., Yang, J. M., & Park, Y. D. (2007). The

Biophysica Acta (BBA)-Proteins and Proteomics, 1774(7), 822-827.
Hassan, A. M., Nassar, A. M., Hussien, Y. Z., & Elkmash, A. N. (2012). Synthesis, characterization
and biological evaluation of Fe (III), Co (II), Ni (II), Cu (II), and Zn (II) complexes with
tetradentate schiff base ligand derived from protocatechualdehyde with 2-aminophenol.
Applied Biochemistry and Biotechnology, 167(3), 581-594.
Im, J., Lee, J., & Löffler, F. E. (2013). Interference of ferric ions with ferrous iron quantification
using the ferrozine assay. Journal of Microbiological Methods, 95(3), 366-367.
Konecny, R., Li, J., Fisher, C. L., Dillet, V., Bashford, D., & Noodleman, L. (1999). CuZn
superoxide dismutase geometry optimization, energetics, and redox potential calculations by
density functional and electrostatic methods. Inorganic Chemistry, 38(5), 940-950.
Kumar, K., Yang, J. C., Chu, F. H., Chang, S. T., & Wang, S. Y. (2010). Lucidone, a novel melanin
inhibitor from the fruit of Lindera erythrocarpa Makino. Phytotherapy Research, 24(8),
1158-1165.
Kumar, S., Dhar, D. N., & Saxena, P. N. (2009). Applications of metal complexes of Schiff bases-a
review. Journal of Scientific and Industrial Research, 68(3), 181-187.
Marcocci, L., Maguire, J. J., Droylefaix, M. T., & Packer, L. (1994). The nitric oxide-scavenging
properties of Ginkgo biloba extract EGb 761. Biochemical and Biophysical Research
Communications, 201(2), 748-755.

- 562 Monier, M., Ayad, D. M., & Abdel-Latif, D. A. (2012). Adsorption of Cu (II), Cd (II) and Ni (II) ions
- by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff's base. *Colloids and*

564 *Surfaces B: Biointerfaces, 94, 250-258.*

- 565 Nair, M. S., & Joseyphus, R. S. (2008). Synthesis and characterization of Co (II), Ni (II), Cu (II) and
- 566 Zn (II) complexes of tridentate Schiff base derived from vanillin and DL-α-aminobutyric acid.
- 567 *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 70(4), 749-753.
- 568 Nikaido, H. (1994). Prevention of drug access to bacterial targets: permeability barriers and active
- 569 efflux. *Science*, *264*(5157), 382-388.
- 570 Patel, R. N., Patel, D. K., Shukla, K. K., & Singh, Y. (2013). Carboxylate-bridged copper (II)
- 571 complexes: synthesis, crystal structures, and superoxide dismutase activity. Journal of
- 572 *Coordination Chemistry*, 66(23), 4131-4143.
- 573 Sayin, M. (1982). Catalytic action of copper on the oxidation of structural iron in vermiculitized
- 574 biotite. *Clays Clay Minerals*, *30*(4), 287-290.
- Soni, M. G., Carabin, I. G., & Burdock, G. A. (2005). Safety assessment of esters of *p*-hydroxybenzoic acid (parabens). *Food and Chemical Toxicology*, 43(7), 985-1015.
- 577 Wang, H. F., Tsai, Y. S., Lin, M. L., & Ou, A. S.-m. (2006). Comparison of bioactive components in
- 578 GABA tea and green tea produced in Taiwan. *Food Chemistry*, *96*(4), 648-653.
- 579 Watanabe, M., Maemura, K., Kanbara, K., Tamayama, T., & Hayasaki, H. (2002). GABA and GABA
- 580 receptors in the central nervous system and other organs. *International Review of Cytology*,

- **581** *213*, 1-47.
- Wei, Q. Y., Xiong, J. J., Jiang, H., Zhang, C., & Ye, W. (2011). The antimicrobial activities of the
- 583 cinnamaldehyde adducts with amino acids. International Journal of Food Microbiology,
- 584 *150*(2), 164-170.
- 585 Yang, T. S., Liou, M. L., Hu, T. F., Peng, C. W., & Liu, T. T. (2013). Antimicrobial activity of the
- essential oil of *Litsea cubeba* on cariogenic bacteria. *Journal of Essential Oil Research*, 25(2),

MAN

587 120-128.

588

589 Table 1

SA-GA	1(22					
	1633	3446	1610	1408	_	- 0
SA-GA-Cu	1627	3444	1554	1384	574	439
SA-GA-Zn	1631	3427	1543	1384	570	453
CA-GA	1635	3471	1618	1404	- (-
CA-GA-Cu	1633	3388	1570	1384	586	457
CA-GA-Zn	1631	3415	1573	1384	565	470

590 Infrared spectral data of SA-GA or CA-GA and its metal complexes (cm⁻¹)

591 Table 2

592 Antimicrobial activity of SA-GA or CA-GA and its metal complexes against selected bacteria

Compound	M	ſBC (μg/ml)
	Staphylococcus aureus	<i>Escherichia coli</i> O157 : H7
SA-GA	93	>375
SA-GA -Cu	23	375
SA-GA -Zn	46	375
CA-GA	46	375
CA-GA-Cu	11	187
CA-GA -Zn	23	375

594 Inhibition ratios of total microorganisms in the mushrooms by SA-GA or CA-GA and its metal

595 complex

Compound	Compound/ mushroom (µg/g)		Inhibition ratio (9	6)	
		0 h	2 h	6 h	
SA-GA-Cu	5.8	0 ^a	82±5 ^a	67±2 ^a	2-
SA-GA-Cu	11.6	0 ^a	99±1 ^b	93±1 ^b	
CA-GA-Cu	5.8	0 ^a	99±1 ^b	99±1°	
CA-GA-Cu	11.6	44±8 ^A	100±0 ^b	100±0 ^c	

MM

596 ¹ Superscripts in the same column with the same letter are not significant different at p<0.05

- 598 Table 4
- 599 Antioxidant activity of SA-GA or CA-GA and its metal complex expressed as IC_{50} (µg/ml)
- 600 determined by free radical scavenging or metal chelating methods

Compound	ABTS	Superoxide anion	Nitric oxide	Ferric ion
SA-GA	5.7±0.1	764±3	908±23	26±0.1
SA-GA-Cu	12.4±0.2	5.7±0.1	1078±22	105±0.4
SA-GA-Zn	16±0.3	>6000	1006±9	207±0.8
CA-GA	124.4±1.3	1482±6	>6000	83±0.3
CA-GA-Cu	162.5±2.8	5.8±0.1	>6000	111±0.1
CA-GA-Zn	165.7±2.7	>6000	>6000	4341±51

⁵⁹⁷

Ascorbic acid	2.7±0.01	NA ^a	NA	NA
EDTA	NA	NA	NA	13.2±0.1

^aNA: not analyzed.

605	Inhibition	of tyrosi	nase activity	by the	metal com	plexes c	of SA-GA	or CA-GA
		2	<i>.</i>	2				

01 ^a NA: not an	alyzed.			
02 03				
04 Table 5				0
05 Inhibition o	f tyrosinase activity l	by the metal com	plexes of SA-GA or CA-	GA
Compound	Concentration range(µg/g)	$IC_{50}(\mu g/g)$	Regression equation	R ²
SA-GA	187-1250	899	y=0.001x+39.16	0.99
SA-GA-Cu	93-750	345	y=0.004x+22.41	0.95
SA-GA-Zn	93-750	556	y=0.003x+16.64	0.96
CA-GA	187-1250	459	y=0.002x+31.63	0.95
CA-GA-Cu	39-312	73	y=0.0071x+39.65	0.98
CA-GA-Zn	39-312	118	y=0.003x+42.92	0.97
Ascorbic acid	12-50	22	y=0.073x+18.16	0.95
06 07 08 09 10 11 12 13				
1				

Table 6

619 Color change of the mushrooms with or without the treatment of SA-GA-Cu or CA-GA-Cu during

Treatment	Concentration			Time (h)			
	(µg/g)						
			0	4	8		
Control		L*	90.81±0.3 ^{a2}	87.79±1.12 ^b	84.26±0.99 ^c		
		a*	0.24 ± 0.03^{a}	0.21 ± 0.04^{a}	1.41±0.16 ^b		
		b*	12.33±0.33 ^a	15.55±0.71 ^b	17.33±0.64 ^b		
		ΔE^{*1}	—	4.42±0.29 ^{A3}	8.32±0.38 ^A		
SA-GA-Cu	5.8	L*	90.86±0.44 ^a	88.43±0.91 ^a	87.06±1.51 ^b		
		a*	0.00 ± 0^{a}	0.47 ± 0.04^{a}	1.40 ± 0.28^{b}		
		b*	11.63±0.91 ^a	14.2±0.34 ^b	17.15±0.37 ^c		
		ΔE^*		3.57±0.72 ^A	6.85 ± 0.97^{AB}		
SA-GA-Cu	11.6	L*	90.44 ± 0.2^{a}	88.63±0.31 ^b	87.09±0.17 ^c		
		a*	-0.24 ± 0.06^{a}	0.03 ± 0.01^{b}	$0.65 \pm 0.04^{\circ}$		
		b*	10.23 ± 0.33^{a}	13.68 ± 0.49^{b}	15.89±0.59 ^c		
		ΔΕ*	_	3.91±0.31 ^A	6.64±0.25 ^B		
CA-GA-Cu	5.8	L*	90.88±0.33 ^a	88.84 ± 0.98^{ab}	87.38±0.55 ^b		
		a*	0.01 ± 0.03^{a}	0.65 ± 0.04^{b}	0.71 ± 0.08^{b}		
		b*	12.71±0.58 ^a	13.33±0.48 ^a	15.72±0.65 ^b		
		ΔE^*	_	2.23 ± 0.6^{B}	4.67±0.08 ^C		
CA-GA-Cu	11.6	L*	90.82+0.03 ^a	90.21 ± 0.47^{a}	89.03+0.18 ^b		
		 a*	$-0.03+0.0^{a}$	$0.16+0.06^{b}$	$0.46+0.06^{\circ}$		
V		- b*	$11.68+0.08^{a}$	13.29+0 44 ^b	15.37+1 16 ^b		
		ΔF*	_	$1.73+0.18^{B}$	4 13+0 89 ^C		

620 storage at room temperature

621 $^{1}\Delta E^{*} = [(\Delta L^{*})^{2} + (\Delta a^{*})^{2} + (\Delta b^{*})^{2}]^{1/2}$

622 ² Superscripts in the same row with the same letter are not significant different at p < 0.05

- ³ Superscripts in the same column for the ΔE^* values with the same capital letter are not significant 623
- Acceleration different at p<0.05 624

- 626 >We synthesize adducts using **y**-aminobutyric acid and salicylaldehye or cinnamaldehyde.
- 627 > These adducts have antibacterial, antioxidant, or tyrosinase-inhibition activity.
- Accepter 628
- 629
- 630