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Abstract: 3-Aroylindoles have been prepared via copper-catalyzed
cyclization of N-(2-iodoaryl)enaminones, readily available from 2-
iodoanilines and a,b-ynones. The reaction tolerates a variety of use-
ful functionalities including ether, keto, cyano, bromo, and chloro
substituents. This indole synthesis can also be carried out from 2-
iodoanilines and a,b-ynones through a sequential process that omits
the isolation of enaminone intermediates.
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3-Acylindoles are useful intermediates for the preparation
of pyridocarbazole alkaloids1 and important therapeutic
agents.2 For example, A-85783 is a potent and selective
antagonist of PAF2e and pravadoline (Figure 1) is a non-
acidic analogue of nonsteroidal anti-inflammatory drugs
(NAID).2a

Figure 1

A variety of methods have been used for their preparation.
The vast majority of them rely on the acylation of pre-
formed indole derivatives.3 Direct construction of the 3-
acylindole skeleton from acyclic precursors has received
less attention. This protocol has been used in the palladi-
um-catalyzed cyclization of 2-(alkynyl)trifluoroacetanil-
ides in the presence of carbon monoxide and aryl halides
or vinyl triflates4 and in the copper-promoted5 cyclization
of N-(2-haloaryl)enaminones. As to the latter, only two N-
(2-haloaryl)enaminones, derived from acyclic b-di-
ketones, were converted into the corresponding 3-acyl-

indoles using 1.5–2.0 equivalents of CuI and NaH as the
base in HMPA at 100–170 °C.

During the past few years there have been remarkable ad-
vances in the use of copper in organic synthesis.6 Particu-
larly, it has been shown that by using appropriate ligands
a large number of reactions can be carried out in the pres-
ence of catalytic amounts of copper, often providing an at-
tractive economic alternative to palladium-catalyzed
reactions. Therefore, because of our continuing interest in
indole synthesis7,8 and our recent studies on the chemistry
of enaminones,9 we became interested in investigating the
feasibility of a copper-catalyzed cyclization of N-(2-
haloaryl)enaminones via substitution of the C–C bond for
the C–halogen bond. Herein we report the results of this
study.

N-(2-Haloaryl)enaminones 1 were prepared via Sono-
gashira cross-coupling of terminal alkynes with aroyl
chlorides10 followed by the conjugate addition of 2-halo-
anilines with the resultant a,b-ynones4a (Scheme 1). N-(2-
Haloaryl)enaminones 1 have always been isolated as sin-
gle isomers. The Z-stereochemistry of 1a has been as-
signed by NOESY experiments which showed also the
presence of an intramolecular hydrogen bond (N–H···O).
That of the other enaminones has been assigned on the
basis of these data.

We started our study by examining the conversion of 1a
into the corresponding indole derivative 2a using CuI as
the precatalyst, K2CO3 as the base at 100 °C, and explor-
ing the influence of solvents and ligands on the reaction
outcome. No indole formation was observed omitting
copper and ligands (Table 1, entry 1) whereas moderate to
good yields were obtained with 0.05 equivalents of CuI
and omitting ligands in DMSO and DMF (Table 1, entries
2 and 3). Utilization of phosphine ligands (Table 1, entries
5–7) showed that 2a could form in high yield with dppp
(Table 1, entry 7) but the best result in terms of yield and
reaction time was achieved using 0.05 equivalents of CuI
and 0.05 equivalents of 1,10-phenanthroline: 2a was iso-
lated in 92% yield after 2.5 hours at 100 °C in DMF
(Table 1, entry 11).

Using the optimized conditions, we next explored the
scope and generality of the process.11 As shown in
Table 2, a variety of indoles can be prepared in high to ex-
cellent yields. Several useful functionalities are tolerated,
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including ether, keto, cyano, bromo, and chloro substitu-
ents.

We next explored the extension of this indole synthesis to
bromo-containing enaminones. However, when the N-(2-
bromoaryl)enaminone 1a¢ (R1 = Ar = Ph; R2 = H; X = Br)
was subjected to our standard conditions, we were sur-
prised to find that the formation of the expected indole
product was accompanied by the formation of the benzox-
azepine derivative 3 (Scheme 2). Most probably its for-
mation involves an intramolecular copper-catalyzed
substitution of the C–O bond for the C–Br bond.12 No

such a competition between C- and O-cyclization was ob-
served with the iodo derivatives that we have investigated.

Scheme 1 

Ar

Cl

O R1

PdCl2(PPh3)2
CuI, Et3N

THF, r.t., 1 h

Ar

O

R1

NH2

X

MeOH, 120 °C, 24–48 h
N
H

X
O

Ar

1X = I, Br

R1

R2

R2

+

Table 1 Optimization of Reaction Conditionsa

Entry Ligand (equiv) Solvent Time (h) Yield (%)b

1 – DMF 7 –c

2 – DMSO 8 51

3 – DMF 8 69

4 – dioxane 8 –d

5 Ph3P (0.05) DMF 6 67

6 dppe (0.05) DMF 7 47

7 dppp (0.05) DMF 7 80

8 TMEDA (0.05) DMF 7 65

9 DMEDA (0.05) DMF 7 69

10 L-proline (0.1) DMF 20 63

11 1,10-phenanthroline 
(0.05)

DMF 2.5 92

a Unless otherwise stated, reactions were carried out at 100 °C on a 
0.25 mmol scale using 0.05 equiv of CuI, 2 equiv of K2CO3, in 2.5 mL 
of solvent.
b Yields are given for isolated products.
c In the absence of CuI.
d Compound 1a was recovered in 93% yield.
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Table 2 Synthesis of 3-Acylindoles 2 via Copper-Catalyzed 
Cyclization of N-(2-Iodoaryl)enaminones 1a

Entry Product Time 
(h)

Yield 
(%)b

1 2a 2.5 92

2 2b 5 95

3 2c 3.5 93

4 2d 10 96

5 2e 10 91

6 2f 3 87

7 2g 4 89

8 2h 13 86

9 2i 8 88
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This indole synthesis can also be carried out through a
process that omits the isolation of the enaminone interme-
diates. In practice, excellent results can be obtained by
adding CuI, 1,10-phenanthroline, K2CO3, and DMF to the
crude mixture derived from the reaction of 2-iodoanilines
with a,b-ynones after evaporation of the volatile materi-

als.13 Under these conditions, 2a was isolated in 76%
overall yield (Scheme 3).

On the basis of the recently reported tendency of N-aryl
enaminones to coordinate to palladium(II) electrophiles14

and previous observations on related Cu-catalyzed hetero-
cyclizations involving Caromatic–X bonds,15 a plausible
mechanism for this indole ring formation begins with the
initial coordination of carbon with copper (Scheme 4).
The resulting complex A undergoes an oxidative addition
of the C–X bond to copper to afford the Cu(III) interme-
diate B. Subsequent reductive elimination releases the
product with concomitant regeneration of the Cu(I) spe-
cies. Another possible mechanism involves the formation
of B via oxidative addition of the C–I bond to CuI to pro-
duce a Cu(III) intermediate followed by nucleophilic dis-
placement of iodide by the anionic fragment.

Scheme 4

In conclusion, we have shown that N-(2-iodoaryl)enami-
nones can be converted into the corresponding 3-acyl-
indoles in the presence of catalytic amounts of CuI.16,17

The new method tolerates a variety of useful functional-
ities including ether, keto, cyano, bromo, and chloro sub-
stituents. 3-Acylindoles can also be prepared via a
sequential process from a,b-ynones and 2-iodoanilines,
omitting the isolation of the enaminone intermediates.
Since multisubstituted indoles are essentially formed by

10 2j 4 96

11 2k 8 88

12 2l 3 91

13 2m 2 93

14 2n 6 92

15 2o 1 73

a Reactions were carried out at 100 °C on a 0.25 mmol scale using 
0.05 equiv of CuI, 0.05 equiv of 1,10-phenathroline, 2 equiv of 
K2CO3 in 2.5 mL of DMF.
b Yields are given for isolated products.

Table 2 Synthesis of 3-Acylindoles 2 via Copper-Catalyzed 
Cyclization of N-(2-Iodoaryl)enaminones 1a (continued)

Entry Product Time 
(h)

Yield 
(%)b
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assembling 2-iodoanilines, aroyl chlorides, and terminal
alkynes, a wide variety of indole derivatives can be syn-
thesized by using this protocol that can be particularly
useful for the preparation of libraries.
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