Subscriber access provided by Lulea University of Technology

I2-Mediated Oxidative C-O Bond Formation for the Synthesis of 1,3,4-Oxadiazoles from Aldehydes and Hydrazides

Wenquan Yu, Gang Huang, Yueteng Zhang, Hongxu Liu, Lihong Dong, Xuejun Yu, Yujiang Li, and Junbiao Chang

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/jo401751h • Publication Date (Web): 23 Sep 2013

Downloaded from http://pubs.acs.org on September 24, 2013

Just Accepted

Article

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

I₂-Mediated Oxidative C–O Bond Formation for the Synthesis of 1,3,4-Oxadiazoles from Aldehydes and Hydrazides

Wenquan Yu, *[†] Gang Huang,[†] Yueteng Zhang,[†] Hongxu Liu,[†] Lihong Dong,[‡] Xuejun Yu,[‡] Yujiang Li,[‡] Junbiao Chang*^{†,‡}

[†]College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province 450001, China

[‡]High and New Technology Research Center of Henan Academy of Sciences, Zhengzhou, Henan Province 450002, China

changjunbiao@zzu.edu.cn; wenquan yu@zzu.edu.cn

$$R^{1}CHO + H_{2}N \underset{H}{\overset{N}{\longrightarrow}} R^{2} \xrightarrow{(1) \text{ EtOH, reflux}} M^{-N} \underset{(1) \text{ } 2) \text{ } I_{2}, \text{ } K_{2}CO_{3}, \text{ } DMSO, 100 \ ^{\circ}C}{transition-metal free} R^{1}, R^{2} = aryl, alkyl \text{ or vinyl} \\ gram-scale 24 \text{ examples, } 53-97\%$$

Abstract: A practical and transition metal-free oxidative cyclization of acylhydrazones into 1,3,4-oxadiazoles has been developed by employing stoichiometric molecular iodine in the presence of potassium carbonate. The conditions of this cyclization reaction also work well with crude acylhydrazone substrates obtained from the condensation of aldehydes and hydrazides. A series of symmetrical and asymmetrical 2,5-disubstituted (aryl, alkyl and/or vinyl) 1,3,4-oxadiazoles can be conveniently generated in an efficient and scalable fashion.

Introduction

The intramolecular carbon–oxygen (C–O) bond formation via the oxidation of carbon–hydrogen (C–H) and oxygen–hydrogen (O–H) bonds has become a very useful tool for the construction of oxygen-containing heterocycles, which resulted in the discovery of numerous novel synthetic methods.¹⁻¹⁰ Compared with the coupling cyclization (Scheme 1), this oxidative cyclization strategy does not require prefunctionalization of the reaction center, which makes the substrates

more accessible and allows more efficient synthesis of structurally diverse products. Many recent developments published in literature, however, require the use of hypervalent iodine,^{1,2} transition metal-catalyzed aerobic oxidative cyclization,³ FeCl₃,⁴ etc. In this work, we report a simple, molecular iodine-mediated and transition metal-free approach that oxidatively forms the C–O bond in an intramolecular setting.

Scheme 1. Coupling and Oxidative Cyclization for the Construction of Oxygen-containing Heterocycles

1,3,4-Oxadiazoles are important five-membered aromatic heterocycles that have been widely used in many compounds with broad pharmaceutical and biological activities,¹¹⁻¹⁷ including antibacterial, anti-inflammatory, anticonvulsant, anticancer, anti-diabetic, analgesic, antiviral and antifungal properties. A number of methods have been developed for the synthesis of 1,3,4-oxadiazoles.^{3,18-22} Generally, these methodologies can be divided into two classes (Scheme 2): a) dehydrative cyclization of 1,2-diacylhydrazines using reagents such as SOCl₂, PPA, POCl₃, H₂SO₄; b) oxidative cyclization of acylhydrazones utilizing oxidants (e.g. hypervalent iodines, chloramine T, CAN, FeCl₃, PbO₂, Br₂, KMnO₄, HgO/I₂) or via Cu(II) catalyzed aerobic oxidation. Yet, there are still limitations associated with these methods, such as, harsh reaction conditions, hazardous materials, limited substrate scope and/or scalability. Therefore, more general and eco-friendly procedures for the synthesis of 1,3,4-oxadiazoles from easily available starting materials are still highly desirable. This promoted us to explore for a simpler and more efficient methodology.

Scheme 2. Two Classical Strategies for the Construction of 1,3,4-Oxadiazole Framework

Results and Discussion

Molecular iodine plays an important role in organic synthesis, owing to its commercial availability, low cost, and low toxicity.²³⁻²⁴ Recently, it has been successfully employed to synthesize indole derivatives²⁵⁻²⁷ and oxazoles.²⁸⁻³⁰ Inspired by these advances, we sought to investigate the application of this reagent in oxadiazole synthesis.³¹ Our investigation started with the cyclization of benzoyl hydrazone **4b** to the corresponding 1,3,4-oxadiazole **1b** (Table 1). The substrate **4b** was readily prepared via the condensation of 4-methylbenzaldehyde (**2b**, 1 equiv) and benzohydrazide (**3b**, 1 equiv) in ethanol at refluxing temperature in 90% yield. The oxidative cyclization of **4b** was acheived by ultilizing molecualr iodine in the presence of cesium carbonate. Our initial screening of reaction conditions indicated that DMSO was the most effective media for this conversion, with 100 °C being the optimal temperature. It needs at least 1.2 equiv of iodine, 3.0 equiv of the base to complete the transformation with the yield of 84% (entry 1). Further optimization demonstrated that the usage of potassium carbonate as base gave the best result (96% yield, entry 2). With organic base, like triethylamine (entry 3) or DBU (entry 4), the yields of product **1b** were significantly lower.

Table 1. Screening of Reaction Conditions for the Synthesis of 1,3,4-Oxadiazole 1b from BenzoylHydrazone $4b^a$

	Me CHO + H ₂ N	B B B B B B B B B B B B B B B B B B B	
Me	N [−] N [−] O [−] DMSO, 4b	ase 100 °C Me	b
entry	base	time	yield ^b
1	Cs_2CO_3	0.5 h	84%
2	K ₂ CO ₃	1.0 h	96%
3	NEt ₃	6.0 h	trace
4	DBU	1.5 h	58%
^a Optimal reaction conditions	s: I ₂ (1.2 mmol), K ₂ CO ₃ (3.0 m	nol), DMSO, 100 °C. ^b Isolated	yields after silica gel column

chromatography.

With these results in hand, we sought to probe the feasibility of using crude benzoyl hydrazone **4b** for this transformation. After the first-step condensation was complete (monitored by TLC), the solvent was evaporated under reduced pressure to give the crude intermediate **4b**, which was then re-dissolved in DMSO, followed by the treatment of molecular iodine and potassium carbonate. To our delight, the desired oxadiazole **1b** was generated in equally good yield (95%) at 100 °C, when 1.2 equiv of iodine and 3 equiv of potassium carbonate were used (Scheme 3).

Scheme 3. Direct Synthesis of 1,3,4-Oxadiazole 1b from benzaldehyde 2b and hydrazide 3b^a

^{*a*} Optimal reaction conditions: 1) condensation of **2** (1 mmol) and **3** (1 mmol) in EtOH at refluxing temperature; 2) I_2 (1.2 mmol), K_2CO_3 (3 mmol), DMSO, 100 °C.

Then, a variety of aryl aldehydes (2a-2m), entries 1-13, Table 2) were subjected to these optimal reaction conditions to examine the scope and generality of this method. These aldehydes were first condensed with benzohydrazide, followed by the iodine-mediated oxidative cyclization to afford a series of symmetric (1a) and asymmetric (1b-1m) oxadiazoles. As shown in Table 2, this methodology is compatible with a variety of electron-donating groups (EDGs, 2b-2c, 2j) and electron-withdrawing groups (EWGs, 2d-2i) on the arylaldehydes. Methyl- and nitro- substituting groups (2b, 2g-2h) are among the best, giving excellent yields of products. Taking 3-nitrobenzaldehyde (2h) as an example, the reaction was successfully carried out in gram scale. Multiple substituted arylaldehydes produced the oxadiazole products (1i-1j) in as good yields as the mono-substituted ones did (entry 9 *vs* entries 5-6; entry 10 *vs* entry 2). α -Naphthylaldehyde (2k, entry 11) and pyridine-2-aldehyde (2l, entry 12) were also converted to the desired oxadiazoles in good yield. 2-Furyl oxadiazole (1m) was obtained from 2-furaldehyde (2m) in moderate yield with some unidentified byproducts during both the first-step condensation and the following cyclization (entry 13).

K₂CO₃ (3 mmol), DMSO, 100 °C. ^b Isolated yields after silica gel column chromatography. ^c The reaction was conducted on gram-scale. ^d This oxadiazole was obtained from the purified acyl hydrazone.

In light of these encouraging results, we initiated further studies with aliphatic aldehydes (entries 14-17, Table 2). The desired oxadiazoles (1n-1q) were successfully obtained under the optimal reaction conditions. Interestingly, we noticed that the yields of products were somehow related to the degree of the α -carbons of aldehydes in this order: 4° carbon (2q) > 3° carbon (2p) > 2° carbon (2n-2o). In addition, reaction of cinnamaldehyde (2r) with benzohydrazide formed 5-vinyl substituted oxadiazole 1r in 71% yield.

To further explore the reaction scope, we replaced benzohydrazide with other hydrazides (Table 3). 4-Methyl benzohydrazide (**3s**) reacted with 4-methylbenzaldehyde and 3-nitrobenzaldehyde under the optimal reaction conditions to give symmetric (**1s**) and asymmetric (**1t**) oxadiazoles, respectively. Isonicotinohydrazide (**3u**) was converted to the desired product **1u** in good yield with the corresponding aldehyde. Aliphatic hydrazides (\mathbb{R}^2 group in hydrazides **3** is alkyl) also work well (**3v-3x**). Oxadiazoles **1v-1w** were successfully achieved in moderate to good yields. The relatively low yield of **1w** might be due to the side reaction of the acetyl group in acyl hydrazone **4w** (e.g. haloform reaction). Reaction of dihydrazide **3x** and 4-methylbenzaldehyde afforded the symmetric dioxadiazole **1x**.

Table 3. Scope of Hydrazides 3^a

^{*a*} Optimal reaction conditions: 1) condensation of **2** (1 mmol) and **3** (1 mmol) in EtOH at refluxing temperature; 2) I_2 (1.2 mmol), K_2CO_3 (3 mmol), DMSO, 100 °C. ^{*b*} Isolated yields after silica gel column chromatography. ^{*c*} Oxadiazoles were obtained from purified acyl hydrazones. ^{*d*} 2 mmol of I_2 was used in this reaction.

A plausible reaction mechanism for the formation of 1,3,4-oxadiazoles 1 is proposed (Schems 4).²⁵ Taking the formation of 1b as an example, the base-promoted oxidative iodination of benzoyl hydrazone 4b generates an iodide intermediate A. Consequently, the intermediate B is formed via a S_N2' -type cyclization of A, with a new C–O bond formed. Finally, the subsequent deprotonation by base affords the oxadiazole structure 1b.

Scheme 4. Proposed Mechanism for the Formation of 1,3,4-Oxadiazole 1b

Conclusions

In summary, we have developed a simple and convenient oxidative C-O bond formation reaction

for the synthesis of 1,3,4-oxadiazoles. This reaction can be applied to the crude acylhydrazones, obtained via the condensation of aldehydes and hydrazides, to give a series of symmetrical and asymmetrical 2,5-disubstituted 1,3,4-oxadiazoles. It works with a range of aldehydes (aryl, alkyl and vinyl substituted) and hydrazides (both aryl and alkyl substituted), showing good functional-group tolerance. This versatility allows the efficient synthesis of structurally diverse 1,3,4-oxadiazoles under mild reaction conditions. In this transition metal-free methodology, the oxidative cyclization was accomplished by employing stoichiometric molecular iodine in the presence of potassium carbonate, which makes it friendlier to the environment. In addition, the reaction can be safely conducted on gram scale.

Experimental Section

General Information. ¹H NMR spectra were recorded on a 400 MHz or 300 MHz (¹³C NMR spectra were recorded on a 100 MHz) spectrometer. Chemical shift values are given in ppm and referred as the internal standard to TMS (tetramethylsilane). The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quadruplet; m, multiplet and dd, doublet of doublets. The coupling constants (*J*) are reported in Hertz (Hz). Melting points were determined on a micromelting point apparatus without corrections. Flash column chromatography was performed over silica gel 200-300 mesh, and the eluent was a mixture of ethyl acetate (EA) and petroleum ether (PE). High-resolution mass spectra (HRMS-ESI) were obtained on a Q-TOF Mass Spectrometer. Infrared (IR) spectra were obtained on a FTIR spectrometer.

General Procedure for the Synthesis of 2,5-Disubstituted-1,3,4-oxadiazoles 1. A solution of aldehydes 2 (1.0 mmol) and acyl hydrazine 3 (1.0 mmol) in EtOH (10 mL) was refluxed until the condensation was complete (monitored by TLC, 3-11 h), and then the solvent was evaporated under reduced pressure, and the resulting residue was re-dissolved in DMSO (5 mL), followed by addition of potassium carbonate (3 mmol), iodine (1.2 mmol) in sequence. The reaction mixture was stirred at 100 °C until the conversion was complete (monitored by TLC, 1–4 h). After cooled to room temperature, it was treated with 5% Na₂S₂O₃ (20 mL), extracted with EA (10 mL x 3). The combined organic layer was washed with brine (10 mL x 1), dried over anhydrous sodium sulfate and concentrated. The given residue was purified through silica gel column

The Journal of Organic Chemistry

chromatography using a mixture of ethyl acetate (EA) and petroleum ether (PE) as eluent to afford the desired oxadiazoles **1**.

2,5-Diphenyl-1,3,4-oxadiazole (1a). The product was obtained according to the general procedure, as white solid (168 mg, 0.76mmol, 76%). mp 138-139 °C (ref. 138-139 °C);³² $R_F = 0.35$ (EA/PE 15:85); ¹H NMR (400 MHz, CDCl₃): δ 8.15-8.13 (m, 4H), 7.54-7.53 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 164.5, 131.7, 129.0, 126.9, 123.9; IR (KBr): 3057, 3007, 2992, 1604, 1546, 1484, 1445, 1267, 1069, 784, 711, 686; HRMS (m/z) (M+Na) calcd for C₁₄H₁₀N₂ONa: 245.0685, found 245.0677.

2-phenyl-5-(p-tolyl)-1,3,4-oxadiazole (1b). The product was obtained according to the general procedure, as white solid (225 mg, 0.95 mmol, 95%). mp 126-127 °C (ref. 125 °C);³³ $R_{\rm F} = 0.25$ (EA/PE 15:85); ¹H NMR (400 MHz, CDCl₃): δ 8.15-8.13 (m, 2H), 8.04 (d, J = 8.0 Hz, 2H), 7.55-7.53 (m, 3H), 7.34 (d, J = 8.0 Hz, 2H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.7, 164.3, 142.2, 131.6, 129.7, 129.0, 126.8, 124.0, 121.1, 21.6; IR (KBr): 3058, 3025, 2915, 1782, 1550, 1496, 1445, 1174, 1076, 822, 782, 687; HRMS (m/z) (M+Na) calcd for C₁₅H₁₂N₂ONa: 259.0842, found 259.0831.

2-(4-Methoxyphenyl)-5-phenyl-1,3,4-oxadiazole (1c). The product was obtained according to the general procedure, as white solid (210mg, 0.83 mmol, 83%). mp 150-151 °C (ref. 150-151 °C);³⁴ $R_{\rm F} = 0.30$ (EA/PE 15:85); ¹H NMR (400 MHz, CDCl₃): δ 8.14-8.11 (m, 2H), 8.09-8.06 (m, 2H), 7.55-7.51 (m, 3H), 7.04-7.02 (m, 2H), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.5, 164.1, 162.3, 131.5, 129.0, 128.6, 126.8, 124.0, 116.4, 114.5, 55.4; IR (KBr): 3011, 2955, 2843, 1616, 1503, 1313, 1263, 1179, 1078, 831, 738, 684; HRMS (m/z) (M+Na) calcd for C₁₅H₁₂N₂O₂Na: 275.0791, found 275.0791.

2-(2-Fluorophenyl)-5-phenyl-1,3,4-oxadiazole (1d). The product was obtained according to the general procedure, as white solid (223 mg, 0.93 mmol, 93%). mp 120-122 °C; $R_{\rm F}$ = 0.30 (EA/PE 20:80); ¹H NMR (300 MHz, CDCl₃): δ 8.19-8.14 (m, 3H), 7.59-7.53 (m, 4H), 7.37-7.25 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 164.9 (d, $J_{\rm C-F}$ = 1.4 Hz), 161.4 (d, $J_{\rm C-F}$ = 4.8 Hz), 160.0 (d, $J_{\rm C-F}$ = 257 Hz), 133.5 (d, $J_{\rm C-F}$ = 8.4 Hz), 131.8, 129.8 (d, $J_{\rm C-F}$ = 1.5 Hz), 129.1, 127.0, 124.6 (d, $J_{\rm C-F}$ = 3.7 Hz), 123.7, 117.0 (d, $J_{\rm C-F}$ = 20.8 Hz), 112.4 (d, $J_{\rm C-F}$ = 11.7 Hz); HRMS (m/z) (M+Na) calcd for C₁₄H₉FN₂ONa: 263.0591, found 263.0591.

2-(2-Chlorophenyl)-5-phenyl-1,3,4-oxadiazole (1e). The product was obtained according to the general procedure, as white solid (227mg, 0.88 mmol, 88%). mp 95-98 °C (ref. 96-98 °C);³⁵ $R_{\rm F}$ = 0.30 (EA/PE 15:85); ¹H NMR (400 MHz, CDCl₃): δ 8.17-8.15 (m, 2H), 8.12 (dd, J = 7.6, 1.6 Hz, 1H), 7.59-7.42 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 165.1, 163.0, 133.0, 132.4, 131.9, 131.3, 131.2, 129.1, 127.1, 127.0, 123.7, 123.2; IR (KBr): 3067, 2922, 1594, 1550, 1489, 1454, 1433, 1087, 779, 729, 687; HRMS (m/z) (M+Na) calcd for C₁₄H₉ClN₂ONa: 279.0296, found 279.0290.

2-(4-Chlorophenyl)-5-phenyl-1,3,4-oxadiazole (1f). The product was obtained according to the general procedure, as white solid (204 mg, 0.80 mmol, 80%). mp 165-167 °C (ref. 166 °C);³⁶ R_F = 0.35 (EA/PE 10:90); ¹H NMR (400 MHz, CDCl₃): δ 8.16-8.12 (m, 2H), 8.10-8.07 (m, 2H), 7.58-7.51 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 164.7, 163.7, 138.0, 131.8, 129.4, 129.1, 128.1, 126.9, 123.7, 122.4; IR (KBr): 3086, 3061, 2918, 1605, 1550, 1478, 1406, 1089, 1011, 839, 730, 688; HRMS (m/z) (M+Na) calcd for C₁₄H₉ClN₂ONa: 279.0296, found 279.0283.

2-(4-Nitrophenyl)-5-phenyl-1,3,4-oxadiazole (1g). The product was obtained according to the general procedure, as light yellow solid (252 mg, 0.94 mmol, 94%). mp 222-223 °C; $R_{\rm F}$ = 0.25 (EA/PE 15:85); ¹H NMR (400 MHz, CDCl₃): δ 8.42 (d, J = 8.8 Hz, 2H), 8.35 (d, J = 8.8 Hz, 2H), 8.18-8.16 (m, 2H), 7.61-7.55 (m, 3H). ¹³C NMR (100 MHz, DMSO- d_6): δ 165.3, 163.2, 149.6, 132.8, 129.9, 129.4, 128.5, 127.4, 125.0, 123.5; IR (KBr): 3220, 3074, 2844, 1607, 1553, 1515, 1339, 1078, 859, 718, 690; HRMS (m/z) (M+Na) calcd for C₁₄H₉N₃O₃Na: 290.0536, found 290.0533.

2-(3-Nitrophenyl)-5-phenyl-1,3,4-oxadiazole (1h). The product was obtained according to the general procedure, as light yellow solid (1 mmol scale: 261 mg, 0.98 mmol, 98%; 7 mmol scale: 1.71 g, 6.40 mmol, 91%). mp 150-151 °C (ref. 150-151 °C);³⁷ *R*_F = 0.25 (EA/PE 15:85); ¹H NMR (400 MHz, CDCl₃): δ 8.94 (t, *J* = 2.0 Hz, 1H), 8.52-8.50 (m, 1H), 8.43-8.41 (m, 1H), 8.18-8.16 (m, 2H), 7.77 (t, *J* = 8.0 Hz, 1H), 7.61-7.54 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.3, 162.6, 148.6, 132.4, 132.2, 130.4, 129.2, 127.1, 126.1, 125.5, 123.3, 121.7; IR (KBr): 3083, 2924, 2862, 1608, 1526, 1443, 1349, 1269, 1091, 779, 713, 690; HRMS (m/z) (M+Na) calcd for C₁₄H₉N₃O₃Na: 290.0536, found 290.0522.

2-(2,4-Dichlorophenyl)-5-phenyl-1,3,4-oxadiazole (1i). The product was obtained according to the general procedure, as white solid (259 mg, 0.89 mmol, 89%). mp 121-122 °C; $R_F = 0.25$

(EA/PE 15:85); ¹H NMR (400 MHz, CDCl₃): δ 8.16-8.13 (m, 2H), 8.08 (d, J = 8.4 Hz, 1H), 7.60 (d, J = 2.0 Hz, 1H), 7.58-7.53 (m, 3H), 7.43 (dd, J = 8.4, 2.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 165.1, 162.3, 138.1, 133.8, 132.0, 131.8, 131.2, 129.1, 127.6, 127.0, 123.5, 121.7; IR (KBr): 3085, 2924, 2849, 1593, 1551, 1457, 1400, 1107, 839, 734, 690; HRMS (m/z) (M+H) calcd for C₁₄H₉Cl₂N₂O: 291.0086, found 291.0086.

2-Mesityl-5-phenyl-1,3,4-oxadiazole (1j). The product was obtained according to the general procedure, as yellow solid (256 mg, 0.97 mmol, 97%). mp 92-94 °C (ref. 91-92 °C);³⁸ $R_{\rm F}$ = 0.35 (EA/PE 10:90); ¹H NMR (400 MHz, CDCl₃): δ 8.12-8.10 (m, 2H), 7.55-7.51 (m, 3H), 7.00 (s, 2H), 2.35 (s, 3H), 2.33 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 164.8, 163.9, 141.0, 138.7, 131.6, 129.1, 128.9, 126.8, 124.0, 121.1, 21.3, 20.5; IR (KBr): 3072, 2956, 2918, 2857, 1894, 1609, 1551, 1480, 1448, 1048, 866, 704, 689; HRMS (m/z) (M+Na) calcd for C₁₇H₁₆N₂ONa: 287.1155, found 287.1155.

2-(Naphthalen-2-yl)-5-phenyl-1,3,4-oxadiazole (1k). The product was obtained according to the general procedure, as yellow solid (247 mg, 0.91 mmol, 91%). mp 120-122 °C (ref. 120 °C);³⁹ R_F = 0.35 (EA/PE 10:90); ¹H NMR (400 MHz, CDCl₃): δ 9.30 (d, J = 8.8 Hz, 1H), 8.28 (dd, J = 7.2, 1.2 Hz, 1H), 8.22-8.18 (m, 2H), 8.04 (d, J = 8.0 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.72-7.68 (m, 1H), 7.62- 7.54 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 164.5, 164.1, 133.8, 132.6, 131.7, 130.1, 129.1, 128.7, 128.3, 128.1, 127.0, 126.7, 126.2, 124.8, 123.9, 120.5; IR (KBr): 3089, 3053, 1549, 1527, 1443, 1249, 1070, 805, 772, 690; HRMS (m/z) (M+Na) calcd for C₁₈H₁₂N₂ONa: 295.0842, found 295.0842.

2-Phenyl-5-(pyridine-2-yl)-1,3,4-oxadiazole (11). The product was obtained according to the general procedure, as yellow solid (184 mg, 0.83 mmol, 83%). mp 123-125 °C (ref. 124-125 °C);⁴⁰ $R_{\rm F}$ = 0.25 (EA/PE 50:50); ¹H NMR (400 MHz, CDCl₃): δ 8.82 (d, *J* = 4.8 Hz, 1H), 8.32 (d, *J* = 8.0 Hz, 1H), 8.23-8.21 (m, 2H), 7.91 (dt, *J* = 8.0, 1.6 Hz, 1H), 7.59-7.51 (m, 3H), 7.48 (dd, *J* = 7.6, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 165.5, 163.8, 150.3, 143.6, 137.2, 132.0, 129.0, 127.2, 125.7, 123.6, 123.2; IR (KBr): 3090, 3051, 1586, 1548, 1486, 1457, 1276, 1069, 970, 794, 714, 688; HRMS (m/z) (M+Na) calcd for C₁₃H₉N₃ONa: 246.0638, found 246.0638.

2-(Furan-2-yl)-5-phenyl-1,3,4-oxadiazole (1m). The product was obtained according to the general procedure, as white solid (117 mg, 0.55 mmol, 55%). mp 101-102 °C (ref. 102-103 °C);⁴¹

 $R_{\rm F} = 0.30$ (EA/PE 30:70); ¹H NMR (400 MHz, CDCl₃): δ 8.12-8.10 (m, 2H), 7.67 (m, 1H), 7.55-7.50 (m, 3H), 7.23 (d, J = 3.2 Hz, 1H), 6.62 (dd, J = 3.6, 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 163.9, 157.4, 145.7, 139.4, 131.8, 129.0, 127.0, 123.5, 114.1, 112.2; IR (KBr): 3141, 3109, 2923, 1633, 1519, 1490, 1450, 1173, 1082, 898, 776, 688; HRMS (m/z) (M+Na) calcd for C₁₂H₈N₂O₂Na: 235.0478, found 235.0475.

2-Phenyl-5-propyl-1,3,4-oxadiazole (1n). The product was obtained according to the general procedure, as pale yellow oil (136 mg, 0.72 mmol, 72%). $R_{\rm F}$ = 0.20 (EA/PE 25:75); ¹H NMR (400 MHz, CDCl₃): δ 8.05-8.02 (m, 2H), 7.52-7.47 (m, 3H), 2.91 (t, *J* = 7.2 Hz, 2H), 1.93-1.84 (m, 2H), 1.06 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.8, 164.6, 131.4, 128.9, 126.7, 124.0, 27.2, 20.1, 13.6; IR (KBr): 3063, 2967, 2875, 1964, 1898, 1609, 1571, 1450, 1252, 1068, 1005, 776, 691; HRMS (m/z) (M+Na) calcd for C₁₁H₁₂N₂ONa: 211.0842, found 211.0849.

2-Pentyl-5-phenyl-1,3,4-oxadiazole (10). The product was obtained according to the general procedure, as pale yellow oil (163 mg, 0.75 mmol, 75%). $R_{\rm F}$ = 0.25 (EA/PE 10:90); ¹H NMR (400 MHz, CDCl₃): δ 8.05-8.02 (m, 2H), 7.54-7.46 (m, 3H), 2.92 (t, *J* = 7.6 Hz, 2H), 1.89-1.81 (m, 2H), 1.44-1.35 (m, 4H), 0.92 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.9, 164.6, 131.4, 128.9, 126.6, 124.0, 31.1, 26.2, 25.3, 22.1, 13.8; IR (KBr): 3063, 2931, 2871, 1728, 1609, 1572, 1450, 1245, 1087, 960, 776, 691; HRMS (m/z) (M+Na) calcd for C₁₃H₁₆N₂ONa: 239.1155, found 239.1153.

2-Isopropyl-5-phenyl-1,3,4-oxadiazole (1p). The product was obtained according to the general procedure, as yellow oil (172 mg, 0.91 mmol, 91%). $R_{\rm F} = 0.25$ (EA/PE 15:85); ¹H NMR (400 MHz, CDCl₃): δ 8.06-8.03 (m, 2H), 7.53-7.47 (m, 3H), 3.33-3.23 (m, 1H), 1.46 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 170.7, 164.5, 131.4, 128.9, 126.6, 124.0, 26.4, 20.0; IR (KBr): 3063, 2976, 2877, 1610, 1568, 1483, 1450, 1366, 1154, 1068, 961, 778, 691; HRMS (m/z) (M+Na) calcd for C₁₁H₁₂N₂ONa: 211.0842, found 211.0833.

2-(Tert-butyl)-5-phenyl-1,3,4-oxadiazole (1q). The product was obtained according to the general procedure, as colorless oil (195 mg, 0.97 mmol, 97%). $R_{\rm F} = 0.25$ (EA/PE 20:80); ¹H NMR (400 MHz, CDCl₃): δ 8.06-8.03 (m, 2H), 7.52-7.48 (m, 3H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 173.0, 164.5, 131.4, 128.9, 126.7, 124.1, 32.4, 28.2; IR (KBr): 3062, 2974, 2873, 1609, 1561, 1449, 1355, 1158, 1084, 779, 705, 692; HRMS (m/z) (M+Na) calcd for C₁₂H₁₄N₂ONa:

225.0998, found 225.0998.

(*E*)-2-Phenyl-5-styryl-1,3,4-oxadiazole (1r). The product was obtained according to the general procedure using purified acyl hydrazone 4r, as white solid (177 mg, 0.71 mmol, 71%). mp 123 °C; $R_{\rm F}$ = 0.29 (EA/PE 10:90); ¹H NMR (400 MHz, CDCl₃): δ 8.14-8.11 (m, 2H), 7.64 (d, *J* = 16.4 Hz, 1H), 7.60-7.57 (m, 2H), 7.56-7.50 (m, 3H), 7.45-7.39 (m, 3H), 7.10 (d, *J* = 16.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 164.2, 164.0, 138.9, 134.7, 131.7, 130.0, 129.05, 129.00, 127.5, 126.9, 123.8, 110.0; IR (KBr): 3062, 2621, 2850, 1644, 1547, 1523, 1446, 1014, 971, 760, 694; HRMS (m/z) (M+H) calcd for C₁₆H₁₃N₂O: 249.1022, found 249.1027.

2,5-Di-p-tolyl-1,3,4-oxadiazole (1s). The product was obtained according to the general procedure, as white solid (218 mg, 0.87 mmol, 87%). mp 175-177 °C; $R_{\rm F}$ = 0.30 (EA/PE 15:85); ¹H NMR (300 MHz, CDCl₃): δ 8.02-8.00 (m, 4H), 7.33-7.30 (m, 4H); 2.43 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): 164.4, 142.1, 129.7, 126.8, 121.2, 21.6; IR (KBr): 3064, 1616, 1589, 1546, 1492, 1468, 1063, 780, 738, 689; HRMS (m/z) (M+Na) calcd for C₁₆H₁₄N₂ONa: 273.0998, found 273.0998.

2-(3-Nitrophenyl)-5-(p-tolyl)-1,3,4-oxadiazole (1t). The product was obtained according to the general procedure, as white solid (256 mg, 0.91 mmol, 91%). mp 177-178 °C; $R_{\rm F}$ = 0.25 (EA/PE 25:75); ¹H NMR (300 MHz, CDCl₃): δ 8.94-8.93 (m, 1H), 8.52-8.49 (m, 1H), 8.43-8.39 (m, 1H), 8.06-8.04 (m, 2H), 7.76 (t, *J* = 8.4 Hz, 1H), 7.38-7.35 (m, 2H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 165.4, 162.4, 148.6, 142.9, 132.4, 130.3, 129.9, 127.0, 125.9, 125.6, 121.6, 120.5, 21.7; IR (KBr): 3094, 2922, 2860, 1612, 1528, 1495, 1347, 1087, 823, 729, 705; HRMS (m/z) (M+Na) calcd for C₁₅H₁₁N₃O₃Na: 304.0693, found 304.0685.

2-(Pyridin-4-yl)-5-(p-tolyl)-1,3,4-oxadiazole (1u). The product was obtained according to the general procedure, as white solid (187 mg, 0.79 mmol, 79%). mp 143-144 °C; $R_{\rm F}$ = 0.25 (EA/PE 50:50); ¹H NMR (400 MHz, CDCl₃): δ 8.84 (d, J = 5.6 Hz, 2H), 8.04 (d, J = 8.0 Hz, 2H), 7.99-7.98 (m, 2H), 7.35 (d, J = 8.0 Hz, 2H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 165.5, 162.4, 150.8, 142.9, 131.0, 129.9, 127.0, 120.5, 120.2, 21.6; IR (KBr): 3043, 2919, 1610, 1538, 1495, 1481, 1412, 1059, 828, 728, 700; HRMS (m/z) (M+Na) calcd for C₁₄H₁₁N₃ONa: 260.0794, found 260.0794.

2-pentyl-5-(p-tolyl)-1,3,4-oxadiazole (1v). The product was obtained according to the general

procedure using purified acyl hydrazone **4v**, as pale yellow oil (184 mg, 0.80 mmol, 80%). $R_{\rm F}$ = 0.20 (EA/PE 20:80); ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 2.91 (t, J = 7.6 Hz, 2H), 2.42 (s, 3H), 1.88-1.81 (m, 2H), 1.44-1.35 (m, 4H), 0.92 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 164.7, 141.9, 129.6, 126.6, 121.3, 31.1, 26.3, 25.4, 22.2, 21.5, 13.8; IR (KBr): 3030, 2969, 2870, 1915, 1618, 1571, 1500, 1458, 1181, 1083, 1009, 824, 792; HRMS (m/z) (M+Na) calcd for C₁₄H₁₈N₂ONa: 253.1311, found 253.1311.

2-Methyl-5-(p-tolyl)-1,3,4-oxadiazole (1w). The product was obtained according to the general procedure using purified acyl hydrazone **4w**, as yellow solid (92 mg, 0.53 mmol, 53%). mp 99-101 °C; $R_{\rm F} = 0.30$ (EA/PE 30:70); ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 2.60 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.0, 163.3, 142.0, 129.7, 126.6, 121.2, 21.6, 11.0; IR (KBr): 3046, 2919, 2849, 1593, 1498, 1248, 1089, 829, 734, 700; HRMS (m/z) (M+Na) calcd for C₁₀H₁₀N₂ONa: 197.0685, found 197.0685.

1,4-Bis(5-(p-tolyl)-1,3,4-oxadiazol-2-yl)butane (1x). The product was obtained according to the general procedure, as yellow solid (303 mg, 0.81 mmol, 81%). mp 150-154 °C; $R_F = 0.20$ (EA/PE 20:80); ¹H NMR (300 MHz, CDCl₃): δ 7.95 (d, J = 8.4 Hz, 4H), 7.28 (d, J = 8.1 Hz, 4H), 3.03-2.98 (m, 4H), 2.42 (s, 6H), 2.05-2.01 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): 165.9, 164.9, 142.0, 129.6, 126.7, 121.1, 25.7. 25.0. 21.5; IR (KBr): 3031, 2921, 2850, 1613, 1571, 1499, 1177, 1085, 823, 724; HRMS (m/z) (M+Na) calcd for C₂₂H₂₂N₄O₂Na: 397.1635, found 397.1623.

Acknowledgements

We acknowledge the National Natural Science Foudation of China (No. 21172202) and the China Postdoctoral Science Foundation (No. 2013M530341) for financial support.

Supporting Information. Copies of ¹H and ¹³C NMR spectra of all the oxadiazoles **1**. This material is available free of charge via the Internet at http://pubs.acs.org.

References

Zheng, Y.; Li, X.; Ren, C.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. J. Org. Chem. 2012, 77, 10353.

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
20
20
21
20
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
50
50
29
60

- (2) Yu, Z.; Ma, L.; Yu, W. Synlett 2012, 23, 1534.
 - (3) Guin, S.; Ghosh, T.; Rout, S. K.; Banerjee, A.; Patel, B. K. Org. Lett. 2011, 13, 5976.
 - (4) Liang, Z.; Hou, W.; Du, Y.; Zhang, Y.; Pan, Y.; Mao, D.; Zhao, K. Org. Lett. 2009 11, 4978.
 - (5) Cheung, C. W.; Buchwald, S. L. J. Org. Chem. 2012, 77, 7526.
 - (6) Wendlandt, A. E.; Stahl, S. S. Org. Biomol. Chem. 2012, 10, 3866.
 - (7) Cheng, X.-F.; Li, Y.; Su, Y.-M.; Yin, F.; Wang, J.-Y.; Sheng, J.; Vora, H. U.; Wang, X.-S.;
 Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 1236.
 - (8) Gallardo-Donaire, J.; Martin, R. J. Am. Chem. Soc. 2013, 135, 9350.
 - (9) Li, Y.; Ding, Y.-J.; Wang, J.-Y.; Su, Y.-M.; Wang, X.-S. Org. Lett. 2013, 15, 2574.
 - (10) Wei, Y.; Yoshikai, N. Org. Lett. 2011, 13, 5504.
 - (11) Sharma, S.; Sharma, P. K.; Kumar, N.; Dudhe, R. Der Pharma Chemica 2010, 2, 253.
 - (12) Bhatia, S.; Gupta, M. J. Chem. Pharm. Res. 2011, 3, 137.
 - (13) Li, Z.; Zhan, P.; Liu, X. Mini. Rev. Med. Chem. 2011, 11, 1130.
 - (14) Sahu, V. K. R.; Singh, A. K.; Yadav, D. Int. J. ChemTech Res. 2011, 3, 1362.
 - (15) Singh, A. K.; Sahu, V. K. R.; Yadav, D. *IJPSR* 2011, 2, 135.
 - (16) de Oliveira, C. S.; Lira, B. F.; Barbosa-Filho, J. M.; Lorenzo, J. G.; de Athayde-Filho, P. F. Molecules 2012, 17, 10192.
 - (17) Khalilullah, H.; Ahsan, M. J.; Hedaitullah, M.; Khan, S.; Ahmed, B. *Mini. Rev. Med. Chem.* **2012** *12*, 789.
 - (18) Sharma, S.; Sharma, P. K.; Kumar, N.; Dudhe, R. Der Pharma Chemica 2010, 2, 253.
 - (19) Bhatia, S.; Gupta, M. J. Chem. Pharm. Res. 2011, 3, 137.
 - (20) de Oliveira, C. S.; Lira, B. F.; Barbosa-Filho, J. M.; Lorenzo, J. G.; de Athayde-Filho, P. F. Molecules 2012, 17, 10192.
 - (21) Jakopin, Z.; Dolenc, M. S. Curr. Org. Chem. 2008, 12, 850.
 - (22) Sanchit, S.; Pandeya, S. N. *IJRAP* 2011, 2, 459.
 - (23) Banerjee, A. K.; Vera, W.; Mora, H.; Laya, M. S.; Bedoya, L.; Cabrera, E. V. JSIR 2006, 65, 299.
 - (24) Ren, Y.-M.; Cai, C.; Yang, R.-C. *RSC Advances* **2013**, *3*, 7182.

- (25) He, Z.; Li, H.; Li, Z. J. Org. Chem. 2010, 75, 4636.
- (26) He, Z.; Liu, W.; Li, Z. Chem. Asian J. 2011, 6, 1340
- (27) Gao, W.-C.; Jiang, S.; Wang, R.-L.; Zhang, C. Chem. Commun. 2013, 49, 4890.
- (28) Jiang, H.; Huang, H.; Cao, H.; Qi, C. Org. Lett. 2010, 12, 5561.
- (29) Wan, C.; Gao, L.; Wang, Q.; Zhang, J.; Wang, Z. Org. Lett. 2010, 12, 3902
- (30) Wan, C.; Zhang, J.; Wang, S.; Fan, J.; Wang, Z. Org. Lett. 2010, 12, 2338.
- (31) Synthesis of 2-(4,5-dihydronaphtho[1,2-c]-pyrazolyl)-5-phenyl-1,3,4-oxadiazoles and 2-naphtho[2,1-b]furan-2-yl-5-aryl-1,3,4-oxadiazoles were acheived by using I₂/HgO in moderate yields, see: (a) Flidallah, H. M.; Sharshira, E. M.; Basaif, S. A.; A-Ba-Oum, A. E.-K. *Phosphorus, Sulfur Silicon Relat. Elem.* 2002, *177*, 67. (b) Ravindra, K. C.; Vagdevi, H. M.; Vaidya, V. P.; Padmashali, B. *Indian J. Chem.* 2006, *45B*, 2506.; Synthesis of 2-quinolyl-5-(pyridin-4-yl)-1,3,4-oxadiazoles were acheived by using catalytic amount of I₂ in DMSO at reluxing temperature in moderate yields, see: (c) Joshi, R. S.; Mandhane, P. G.; Khan, W.; Gill, C. H. *J. Heterocyclic Chem.* 2011, *48*, 872.
- (32) Ono, K.; Wakida, M.; Hosokawa, R.; Saito, K.; Nishida, J.; Yamashita, Y. *Heterocycles* 2007, 72, 85.
- (33) Stabile, P.; Lamonica, A.; Ribecai, A.; Castoldi, D.; Guercio, G.; Curcuruto, O. *Tetrahedron Lett.* 2010, , 4801.
- (34) Kawano, T.; Yoshizumi, T.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2009, 11, 3072.
- (35) Li, Z.; Zhu, A.; Mao, X.; Sun, X.; Gong, X. J. Braz. Chem. Soc. 2008, 19, 1622.
- (36) Somogyi, L. J. Heterocycl. Chem. 2007, 44, 1235.
- (37) Dabiri, M.; Salehi, P.; Baghbanzadeh, M.; Zolfigol, M. A.; Bahramnejad, M. Synth. Commun. 2007, 37, 1201.
- (38) Hartmann, K. P.; Heuschmann, M. Tetrahedron 2000, 56, 4213.
- (39) Grekov, A. P.; Azen, R. S. Zhurnal. Obshchei. Khimii. 1959, 29, 1995.
- (40) Efimova, Y. A.; Artamonova, T. V.; Koldobskii, G. I. Russ. J. Org. Chem. 2008, 44, 1345.
- (41) Shang, Z. Synth. Commun. 2006, 36, 2927.

ACS Paragon Plus Environment