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ABSTRACT: Using water as the sole solvent, the
bifunctional molecule tetrakis(methylthio)-1,4-benzenedi-
carboxylic acid (TMBD) was reacted with Cu-
(CH3CN)4BF4 to form a robust microporous metal−
organic framework (MOF, CityU-7) featuring Cu(I) ions
being simultaneously bonded to the carboxyl and thioether
donors. The MOF solid is stable in air and can be easily
activated by heating, without the need for treatment with
organic solvents. The subnanoscopic pores (ca. 0.6 nm) of
the host net allow for uptake of CO2 and H2O but exhibit
lesser sorption for N2 at 77 K. The microporous net can
also be penetrated by I2 molecules.

In the study of metal−organic frameworks (MOFs) as a
promising class of porous materials, water stability and

environmentally friendly, green assembly of MOF solids are
two topics of industrial and academic importance.1−6 For
example, most MOF solids are solvothermally prepared using
organic solvents (e.g., dimethylformamide (DMF)) and acid/
base additives such as HCl or amines, limiting their production
on commercial scales. It is therefore of interest to develop
MOF materials that can be directly assembled by using water as
the sole solvent without use of any additives. Here we report a
microporous MOF material (denoted as CityU-7) that is
conveniently made by heating water, Cu(CH3CN)4BF4, and the
sulfur-equipped dicarboxylic linker H2TMBD (Scheme 1).

The synthesis of CityU-7 as a water-stable MOF also offers
fundamental insight into materials design. In general, better
water stability can be achieved by enlisting hard−hard (e.g., as
in Cr3+, Zr4+-carboxylate) bonding7−12 or using softer
coordination bonds based on, for example, nitrogen donors
and metal ions including Cu(I) and other transition
metals.13−19 That is to say, most Cu(I)-based MOF solids are
constructed through N-donor linkers such as pyrazolate and
pyridine,20−24 while Cu(I)-carboxylate links are rarely featured
in MOF structures.25,26 This observation is partly due to the
soft nature of Cu(I) that tends to refrain from the hard carboxyl
group and partly due to Cu(I) being prone to oxidization and
disproportionation.
Part of our long-standing studies on the carboxyl−thioether

duo (e.g., Scheme 1 and Scheme S1) is to access stable Cu(I)-
carboxylate nets. Namely, the soft thioether groups serve to
stabilize the soft Cu(I) center, while the rigid, charge-balancing
carboxylate units bond with the Cu(I) cations to enhance the
strength and directionality conducive to open-framework metal-
carboxylate compounds. Previously, a nonporous, close-packed
network based on Cu(I) and TMBD (denoted as Cu2TMBD-
np) had been reported.27,28 The MOF solid of CityU-7
disclosed herein, with its distinct microporous features,
represents a step forward in this direction.
CityU-7 was accidentally discovered as a minor phase (in the

form of large block-like brown single crystals) using a recipe for
synthesizing the nonporous Cu2TMBD-np, for example, by
heating Cu(NO3)2·3H2O (3.0 mg), H2TMBD (3.5 mg), and
water (0.5 mL) in a sealed glass tube at 140 °C for 48 h.27 The
Cu(I) ions apparently were generated in situ from redox
reactions between the Cu(II) ions and the TMBD sulfide units,
a type of reaction that often occurs under the conditions of
hydro(solvo)thermal reactions.29,30 The Ag(I) analog of CityU-
7, that is, Ag2TMBD, was also obtained, albeit in poor yields,
because of severe ligand oxidation by the Ag(I) ions.31 While
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Scheme 1. Linker H2TMBD
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studying Cu2TMBD-np, we had attempted to increase the yield
of the porous CityU-7. All attempts utilizing Cu(II) as reactants
had not been successful. In our continuing search we realized
that a nonoxidizing Cu(I) salt such as Cu(CH3CN)4BF4 should
be investigated, as higher Cu(I) concentrations may accelerate
reaction with the TMBD linker for forming a kinetically
controlled, porous product.
Indeed, by heating H2TMBD (7.0 mg, 0.020 mmol),

Cu(CH3CN)4BF4 (18.9 mg, 0.060 mmol), and water (1.0
mL) in a sealed Pyrex tube at 120 °C for 24 h, we obtained a
yellow-greenish power that turned out to be a polycrystalline
sample of pure porous CityU-7, as verified, for example, by the
PXRD (powder X-ray diffraction) patterns and SEM imaging
(scanning electron microscope; showing square-prismatic
crystallites of ca. 5 × 5 × 10 μm3) (Figure 1). The access to
pure bulk samples of CityU-7 has greatly facilitated the study of
its properties as a porous material.

The single-crystal structure of CityU-7 adopts the space
group P42/ncm (no. 138). The Cu(I) atoms occur in pairs
(Cu···Cu distance: 3.172 Å; Figure 2a), with each pair being
symmetrically bridged by two straddling carboxyl groups (Cu−
O distance: 2.032 Å) to form half of a paddle wheel, which is a
familiar motive in Cu(II)-based MOF structures. Each Cu(I) is
also chelated by two sulfur atoms (Cu−S distances: 2.235,
2.413 Å) to complete (together with the two O donors) a
roughly tetrahedral geometry that is typical of the Cu(I) d10

electronic configuration. Treating the center of the Cu pair as a
tetrahedral node and the center of the TMBD linker as a square
planar node (Figure 2b), one obtains a four-connected net of
the PtS type (Figure 2d). Substantial cavity volume was
observed in the crystal structure (Figure 2c), which is filled by
disordered water molecules. If overlapping spheres with van der
Waals radii (1.20, 1.70, 1.52, 1.80, 1.40 Å for H, C, O, S, Cu,
respectively) are placed at the atomic positions, then the void
fraction is calculated to be 45.5%.
The framework composition of CityU-7 was revealed by the

crystal structure to be charge-neutral Cu2TMBD, that is,
Cu2C12H12S4O4, which is isomeric with the previous nonporous
Cu2TMBD-np. Such a composition is also supported by
chemical analysis; that is, the product Cu2(C12H12S4O4)(H2O)2
yields the following: calcd [C (28.17%), H (3.15%), S
(25.07%)], found [C (28.44%), H (3.00%), S (23.02%)].
Thermogravimetric analysis (TGA (Figure 3) on the
polycrystalline sample indicated no weight loss up to 250 °C,

with a stable weight percentage of ∼30% above 850 °C, being
consistent with the formation of a Cu2O residue (e.g.,
calculated from Cu2C12H12S4O4: 30.1%).
CO2 sorption at 273 K (pressure range: from 8 × 10−3 to 780

mmHg) on CityU-7 (activated by heating under vacuum at 90
°C, no need for solvent exchange) revealed a typical type-I gas
adsorption isotherm (Figure 4) with a BET surface area of 197
m2/g. NLDFT analysis on pore-size distribution and pore
volume (Figure S2) indicated an average pore width of 0.48 nm
and a modest micropore volume of 0.149 cm3/g. The small
pore size thus uncovered is consistent with the ultra-
microporous character of the crystal structure and helps to
explain the lesser N2 sorption (measured at the lower
temperature of 77 K; Figure S3). Despite the relative pressure
(p/p0) and pore filling being low at 273 K for CO2, the BET
surface area thus determined has been found to be reasonable
for uniformly ultramicroporous sorbents,32 even though
sorption at lower temperatures (e.g., 195 K)33 ought to afford
more complete pore filling.
The micropores of CityU-7 can also be penetrated by I2

molecules. For example, when a powder sample of CityU-7 (5.0

Figure 1. PXRD patterns (Cu Kα, λ= 1.5418 Å) of (a) a powder solid
sample of CityU-7 (with the SEM image shown in the inset) and (b) a
simulation from the single-crystal structure.

Figure 2. (a) Local coordination environment of linker TMBD and
Cu(I) centers in the crystal structure of CityU-7. (b) Corresponding
topological representation of panel a, with the TMBD treated as a
node (orange sphere) connected by four half-paddle-wheel Cu2 nodes
(greenish yellow spheres). (c) Overview of the 3D net of CityU-7,
with the same color code as panel a. The dotted line indicates the
window size of the open channel. (d) Topological representation of
panel c, with the same color code as panel b, showing the bonding
geometries of the TMBD linker (square planar) and metal nodes
(tetrahedral).

Figure 3. TGA plots of CityU-7 and CityU-7-H2O.
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mg) was added to a hexane solution of I2 (2.0 mL, 178 mg·L−1;
total I2 0.356 mg), >99% of the I2 solute was removed from the
solution within 6 h (see Figure S4 for the calibration curve).
For a sample fully loaded with I2 (e.g., by immersing in a
saturated I2/hexane solution for 15 h, denoted as CityU-7-I2),
TGA indicates a distinct step (as compared with the original
CityU-7 sample; see Figure S5) of weight losses of ∼15% below
250 °C, suggesting a formula Cu2TMBD·0.5I2. The PXRD
pattern of the I2-loaded sample shows the diffraction peaks at
angles corresponding to the original lattice of CityU-7 but with
increased intensity observed for the higher angle peaks (Figure
S6), which is consistent with the added electron intensity
associated with the I2 guests. The I2 guests can be largely
evacuated by heating under vacuum at 130 °C, as shown by the
EDX elemental analysis (cf. Figures S7−S9) and the recovered
PXRD intensity profile in pattern c of Figure S6. This pattern,
however, features a distinct hump at 2θ of 20−35, pointing to
some amorphous phase. Also, the evacuated sample (CityU-7-
I2-re) differs from the original CityU-7 sample in TGA graphs
(Figure S5), further indicating the incomplete recovery of the
CityU-7 phase by evacuating on the CityU-7-I2 sample.
The activated sample of CityU-7 can also take up water

molecules. For example, by immersing CityU-7 in saturated
water vapor at room temperature for 12 h, TGA of the resultant
sample CityU-7-H2O (see Figure S11 for the PXRD patterns)
exhibits a rapid weight loss of ∼10% from RT to 65 °C (Figure
3), corresponding to the formula Cu2TMBD·3H2O. The water
sorption isotherm for CityU-7 (Figure S10), on the contrary,
indicates a maximum uptake of 96.7 cm3/g (STP conditions;
equivalent to ∼7.2% w/w of water in CityU-7-H2O) at P/P0 =
0.95.
In conclusion, we have succeeded in assembling a micro-

porous Cu(I)-carboxylate framework (CityU-7) by enlisting
chelating thioether units. The microporosity of CityU-7 is
demonstrated in the CO2 and N2 sorption and the I2 uptake
tests. Besides the green advantage of water-based synthesis and
activation procedures, the small pore size of the robust CityU-7
solid may prove to be useful for selective sorption of small
molecules of more topical interests (such as acetylene from
ethylene).34−53 Furthermore, one may use thiol analogs of
DMBD (with −SH replacing −SMe) to install covalent Cu−S
bonds to enhance electronic interaction and to access anionic
frameworks with ion exchange properties.
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