Special Topic

Oxidative Cyclization of β,γ-Unsaturated Carboxylic Acids Using Hypervalent Iodine Reagents: An Efficient Synthesis of 4-Substituted Furan-2-ones

Α

Kensuke Kiyokawa* Kenta Takemoto Shunsuke Yahata Takumi Kojima Satoshi Minakata*

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan kiyokawa@chem.eng.osaka-u.ac.jp minakata@chem.eng.osaka-u.ac.jp

Published as part of the Special Topic Modern Strategies with Iodine in Synthesis

Received: 16.02.2017 Accepted after revision: 09.03.2017 Published online: 30.03.2017 DOI: 10.1055/s-0036-1588987; Art ID: ss-2017-c0096-st

Abstract The oxidative cyclization of β -substituted β , γ -unsaturated carboxylic acids using a hypervalent iodine reagent to provide 4-substituted furan-2-one products, is reported. In this cyclization, the use of a highly electrophilic PhI(OTf)₂, which is in situ prepared from PhI(OAc)₂ and Me₃SiOTf, is crucial. Depending on the substitution pattern at the α -position of the substrates, furan-2(5*H*)-ones or furan-2(3*H*)-ones are produced. Thus, the present method offers a useful tool for accessing various types of 4-substituted furan-2-ones that are important structural motifs in the field of organic chemistry and medicinal chemistry.

Key words hypervalent iodine, oxidation, cyclization, β_{γ} -unsaturated carboxylic acids, furanones

Furan-2(5H)-one derivatives are an important class of compounds that are frequently found in natural products and biologically active molecules.¹ Therefore, the development of simple and efficient methods for the synthesis of furan-2(5H)-one derivatives from readily available starting materials is an important research topic in the field of organic chemistry as well as medicinal chemistry.² An intramolecular cyclization is a fundamental transformation for the construction of furan-2(5H)-one scaffolds, and, indeed, several useful methods have been developed to date.³ However, although the oxidative 5-endo cyclization of β , γ -unsaturated carboxylic acids is one of the most straightforward methods for preparing the furan-2(5H)-one motif, only a limited number of examples of the use of this approach have been reported.⁴ Wirth et al. recently reported that a hypervalent iodine reagent was effective for this type of oxidative cyclization with the rearrangement of 4-arylbut-3enoic acids, affording 4-arylfuran-2(5H)-ones, albeit the substrate scope was limited.⁵ Meanwhile, our group reported on the decarboxylative functionalization of β-substituted β , γ -unsaturated carboxylic acids **1** via the use of hyper-

valent iodine reagents (Scheme 1).⁶ During the course of the study, we observed that oxidative cyclization proceeded smoothly when Me₃SiOTf was added to the reaction mixture, providing 4-substituted furan-2(5*H*)-ones **2**, which are particularly important structural motifs in medicinal chemistry (Scheme 1). This preliminary result prompted us to further investigate this oxidative cyclization to expand the synthetic utility of the method. We herein report the oxidative cyclization of β -substituted β , γ -unsaturated carboxylic acids using a hypervalent iodine reagent, enabling easy access to a variety of 4-substituted furan-2-ones.

Our initial experiments intended to optimize the reaction conditions for the oxidative cyclization were performed with 3-phenylbut-3-enoic acid (**1a**) as a model substrate. When the reactions were carried out using PhI(OAc)₂ and PhI(OCOCF₃)₂ as oxidants in dichloromethane at room temperature, no cyclized product was formed (Table 1, entries 1 and 2). Meanwhile, the highly electrophilic Koser's reagent, PhI(OH)(OTs), was found to provide the furan-2(5H)-one **2a** in a moderate yield (entry 3). Encouraged by this result, we next examined the activation of hypervalent iodine reagents with Me₃SiOTf, to generate the highly electrophilic PhI(OTf)₂.⁷ A brief screening of hypervalent iodine reagents revealed that the use of PhI(OAc)₂ with two equivalents of Me₃SiOTf provided **2a** in the highest yield (88% iso-

lated yield) (entries 4–6). Decreasing the amount of Me_3SiOTf to one equivalent reduced the yield of **2a** slightly, and further decrease of the reagent resulted in an even lower yield (entries 7 and 8). In addition, the oxidative cyclization also proceeded by the use of TfOH instead of Me_3SiOTf , but yields were somewhat lower than those obtained with Me_3SiOTf (entries 9 and 10).⁸ It should be noted that no cyclized products were formed when iodine oxidants that function as an iodonium source, such as bis(pyridine)iodonium tetrafluoroborate (IPy_2BF_4) and *N*-iodosuccinimide (NIS), were used (entries 11 and 12). Solvent screening indicated that a halogenated solvent was effective for the reaction (entry 13). The use of MeCN resulted in low yield, and reactions conducted in toluene and THF did not provide **2a** at all (entries 14–16).

Table 1	Optimization of Reaction Conditions ^a			
	Ph CO ₂ H -	oxidant (1 equiv additive (2 equiv CH ₂ Cl ₂ , r.t., 1.5	$h \rightarrow Ph 2a$	=0
Entry	Oxidant	Additive	Solvent	Yield (%) ^b
1	PhI(OAc) ₂	none	CH ₂ Cl ₂	0
2	PhI(OCOCF ₃) ₂	none	CH_2CI_2	0
3	PhI(OH)(OTs)	none	CH_2CI_2	42
4	PhI(OAc) ₂	Me_3SiOTf	CH_2CI_2	92 (88) ^c
5	PhI(OCOCF ₃) ₂	Me_3SiOTf	CH_2CI_2	62
6	PhIO	Me_3SiOTf	CH_2CI_2	51
7 ^d	PhI(OAc) ₂	Me₃SiOTf	CH_2CI_2	87
8 ^e	PhI(OAc) ₂	Me₃SiOTf	CH_2CI_2	65
9	PhI(OAc) ₂	TfOH	CH_2CI_2	76
10 ^f	PhI(OAc) ₂	TfOH	CH_2CI_2	72
11	IPy ₂ BF ₄	none	CH_2CI_2	0
12	NIS	none	CH_2CI_2	0
13 ^g	PhI(OAc) ₂	Me₃SiOTf	CICH ₂ CH ₂ CI	88
14 ^g	PhI(OAc) ₂	Me ₃ SiOTf	MeCN	40
15 ^g	PhI(OAc) ₂	Me₃SiOTf	toluene	0
16 ^g	PhI(OAc) ₂	Me_3SiOTf	THF	0

^a Standard reaction conditions: **1a** (0.3 mmol), oxidant (0.3 mmol), additive (0.6 mmol), CH₂Cl₂ (3 mL), r.t., 1.5 h.

^b Determined by ¹H NMR analysis of the crude product using 1,1,2,2-tetrachloroethane as an internal standard.

^c Isolated yield in parentheses.

^d Me₃SiOTf (1 equiv) was used.

^e Me₃SiOTf (0.5 equiv) was used.

^f TfOH (1 equiv) was used.

^g Reaction was run for 1 h.

With the optimized reaction conditions identified (Table 1, entry 4), the substrate scope for the oxidative cyclization was investigated next (Scheme 2). Various types of β substituted β , γ -unsaturated carboxylic acids were found to be applicable and were efficiently converted into the corre-

Special Topic

sponding 4-substituted furan-2(5*H*)-ones. Halogen substituents, such as fluoro **2b**, chloro **2c**, and bromo **2d** groups, on the aromatic ring at the β -position were well tolerated and had only a minor effect on product yield. Because substrates bearing a highly electron-withdrawing trifluoromethyl group were less reactive, these reactions were conducted at 80 °C in 1,2-dichloroethane, furnishing furanone products **2e** and **2f** in high yields. On the other hand, under standard reaction conditions, carboxylic acids containing

Scheme 2 Scope of β,γ-unsaturated carboxylic acids. Unless otherwise noted, the following reaction conditions were employed: **1** (0.3 mmol), PhI(OAc)₂ (0.3 mmol), Me₃SiOTf (0.6 mmol), CH₂Cl₂ (3 mL), r.t. Reaction time is shown in parentheses. Yields are isolated yields. ^a The reaction was conducted at 80 °C in ClCH₂CH₂Cl. ^b 2,6-Di-*tert*-butylpyridine (DTBP) (2 equiv) was added. ^c PhI(OAc)₂ (1.5 equiv), Me₃SiOTf (3 equiv), and DTBP (3 equiv) were used. ^d The reaction was conducted at 60 °C in ClCH₂CH₂Cl.

© Georg Thieme Verlag Stuttgart · New York – Synthesis 2017, 49, A–F

an electron-donating methoxy group on the aromatic ring gave a very low yield of 2g, along with the formation of unidentified by-products probably because the substrate underwent decomposition in the presence of the in situ generated TfOH.⁹ To avoid this type of side reaction, we examined the use of a base to trap the TfOH. After screening a number of bases, 2,6-di-tert-butylpyridine (DTBP) was found to increase the yield of 2g, albeit the yield was relatively low. Employing DTBP also improved the yield of 2h and **2i** containing *p*- and *o*-tolyl substituents, respectively. Meanwhile, *m*-tolyl group at the β -position had a negligible effect on reactivity, furnishing **2i** in high yield under the standard reaction conditions. Fused-ring systems 2k and 2l including 1- and 2-naphthyl groups were also well tolerated. In addition to substrates with aromatic substituents. this oxidative cyclization could also be expanded to substrates with β -aliphatic substituents, such as benzyl **2m** and *n*-butyl **2n** groups. Notably, benzylic and allylic C-H bonds were well tolerated under the oxidative reaction conditions. Furthermore, the cyclization of a carboxylic acid with an α -substituent proceeded successfully to afford the 3,4-disubstituted furan-2(5H)-one 20.

To expand the utility of this method, the use of α , α disubstituted acids in the reaction was examined next (Scheme 3). It is noteworthy that 3-aryl-2,2-dimethylbut-3enoic acids **1p** and **1q** underwent oxidative cyclization on treatment with PhI(OTf)₂ in dichloromethane at room temperature, furnishing the corresponding furan-2(3*H*)-one products, which are difficult to access by other methods.

A plausible reaction pathway is shown in Scheme 4. According to previous reports,⁷ the highly electrophilic PhI(OTf)₂ is generated in situ by a ligand exchange between PhI(OAc)₂ and Me₃SiOTf (Scheme 4, a). In addition, the oxidative cyclization proceeded effectively with one equivalent of Me₃SiOTf (Table 1, entry 7), indicating that PhI(OAc)(OTf) and [PhIOIPh](OTf)₂ (the Zefirov's reagent) would also function as active iodine reagents.¹⁰ The resulting PhI(OTf)₂ then participates in the activation of the alkene moiety of acid 1 via the formation of a cyclic iodonium intermediate 4, which would subsequently undergo an intramolecular cyclization rather than decarboxylation, thus constructing a γ -lactone framework (Scheme 4, b). Finally, the elimination of iodobenzene as well as TfOH from intermediate 5 affords the furanone product. Substrates containing a proton at the α -position provide furan-2(5H)ones **2**, while, in the case of α , α -disubstituted substrates, furan-2(3H)-ones 3 are formed.

In conclusion, we have developed the oxidative cyclization of β -substituted β , γ -unsaturated carboxylic acids using a highly electrophilic PhI(OTf)₂. The use of PhI(OTf)₂ was found to be crucial for achieving this oxidative cyclization to occur in preference to decarboxylation.⁶ The present method provides valuable furan-2(5*H*)-one and furan-2(3*H*)-one derivatives, some of which are difficult to synthesize by other methods, thus offering a new, straightforward approach to the preparation of furanones.

New compounds were characterized by ¹H, ¹³C, and ¹⁹F NMR, IR, MS, and HRMS. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded on a Jeol JMTC-400/54/SS spectrometer (1H NMR, 400 MHz; 13C NMR, 100 MHz; ¹⁹F NMR, 377 MHz). ¹H NMR chemical shifts were determined relative to Me₄Si (0.0 ppm) as an internal standard. ¹³C NMR chemical shifts were determined relative to CDCl₃ (77.0 ppm). ¹⁹F NMR chemical shifts were determined relative to C_6F_6 (-164.9 ppm) as an external standard. IR spectra were recorded on a Shimadzu IRAffinity-1 FT-IR spectrophotometer. Mass spectra were obtained on a Shimadzu GCMS-QP2010 and a Jeol JMS-DX303HF mass spectrometer. Highresolution mass spectra were obtained on a Jeol JMS-DX303HF mass spectrometer. Melting points were determined on a Stanford Research Systems MPA100 OptiMelt Automated Melting Point System. All reactions were carried out under N₂. Products were purified by chromatography on silica gel BW-300 (Fuji Silysia Chemical Ltd.). Analytical TLC was performed on precoated silica gel glass plates (Merck silica gel 60 F₂₅₄). Compounds were visualized with UV lamp or treatment with an ethanolic solution of phosphomolybdic acid followed by heating. Anhyd CH₂Cl₂ was used as obtained. β,γ-Unsaturated carboxylic acids were prepared according to literature procedures.⁶ All other solvents and reagents were purchased and used as obtained.

Furan-2(5H)-ones 2 and Furan-2(3H)-ones 3; General Procedure

A heat-gun-dried two-necked reaction flask containing a magnetic stir bar was charged with Phl(OAc)₂ (0.30 mmol), CH_2CI_2 (3 mL), and Me₃SiOTf (0.60 mmol), and the reaction mixture was stirred for 10 min. To the mixture, carboxylic acid **1** (0.30 mmol) was added. The resulting solution was stirred at r.t. for the appropriate time. The reaction was quenched with aq 1 M Na₂S₂O₃ (5 mL). The mixture was extracted with CH₂Cl₂ (3 × 10 mL), and the combined organic layers were dried (Na₂SO₄). The solution was concentrated under reduced pressure to give the crude product, which was analyzed by ¹H NMR spectroscopy using 1,1,2,2-tetrachloroethane as an internal standard. Purification was performed by flash column chromatography on silica gel (hexane/EtOAc).

4-Phenylfuran-2(5H)-one (2a)

According to the general procedure, the reaction using $PhI(OAC)_2$ (96.9 mg, 0.30 mmol), Me_3SiOTf (109 µL, 0.60 mmol), and 3-phenylbut-3-enoic acid (48.4 mg, 0.30 mmol) in CH_2Cl_2 (3 mL) was conducted at r.t. for 1.5 h. Purification by flash column chromatography on silica gel (hexane/EtOAc) gave the product as a white solid; yield: 42.0 mg (88%). The analytical and spectral data for this compound were in excellent agreement with the reported data.¹¹

4-(4-Fluorophenyl)furan-2(5H)-one (2b)

According to the general procedure, the reaction using $PhI(OAC)_2$ (96.9 mg, 0.30 mmol), Me_3SiOTf (109 µL, 0.60 mmol), and 3-(4-fluorophenyl)but-3-enoic acid (53.7 mg, 0.30 mmol) in CH_2Cl_2 (3 mL) was conducted at r.t. for 1.5 h. Purification by flash column chromatography on silica gel (hexane/EtOAc) gave the product as a white solid; yield: 44.4 mg (82%); mp 155.3–155.7 °C.

IR (ATR): 1732, 1510, 1159, 835 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.56–7.48 (m, 2 H), 7.22–7.10 (m, 2 H), 6.34 (t, J = 1.6 Hz, 1 H), 5.21 (d, J = 1.6 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 173.7, 164.6 (d, $J_{C,F}$ = 252.8 Hz), 162.6, 128.6 (d, $J_{C,F}$ = 9.0 Hz), 126.0 (d, $J_{C,F}$ = 3.3 Hz), 116.6 (d, $J_{C,F}$ = 22.3 Hz), 112.8 (d, $J_{C,F}$ = 1.6 Hz), 70.9.

¹⁹F NMR (377 MHz, CDCl₃): δ = -109.8

MS (EI): m/z (%) = 178 (M⁺, 66), 149 (100), 121 (76), 120 (100), 101 (49), 75 (22).

HRMS (EI): *m*/*z* [M]⁺ calcd for C₁₀H₇FO₂: 178.0430; found: 178.0429.

4-(4-Chlorophenyl)furan-2(5H)-one (2c)

According to the general procedure, the reaction using $PhI(OAC)_2$ (96.4 mg, 0.30 mmol), Me_3SiOTf (109 µL, 0.60 mmol), and 3-(4-chlorophenyl)but-3-enoic acid (58.7 mg, 0.30 mmol) in CH_2Cl_2 (3 mL) was conducted at r.t. for 1.5 h. Purification by flash column chromatography on silica gel (hexane/EtOAc) gave the product as a yellow solid; yield: 52.5 mg (90%). The analytical and spectral data for this compound were in excellent agreement with the reported data.^{3d}

4-(4-Bromophenyl)furan-2(5H)-one (2d)

According to the general procedure, the reaction using $PhI(OAC)_2$ (96.7 mg, 0.30 mmol), Me₃SiOTf (109 µL, 0.60 mmol), and 3-(4-bro-mophenyl)but-3-enoic acid (73.6 mg, 0.31 mmol) in CH₂Cl₂ (3 mL) was conducted at r.t. for 2.5 h. Purification by flash column chromatography on silica gel (hexane/EtOAc) gave the product as a yellow solid, yield: 50.9 mg (77%). The analytical and spectral data for this compound were in excellent agreement with the reported data.¹¹

4-[4-(Trifluoromethyl)phenyl]furan-2(5H)-one (2e)

According to the general procedure, the reaction using $Phl(OAc)_2$ (96.7 mg, 0.30 mmol), Me₃SiOTf (109 µL, 0.60 mmol), and 3-[4-(trifluoremethyl)phenyl]but-3-enoic acid (68.6 mg, 0.30 mmol) in 1,2-dichloroethane (3 mL) was conducted at 80 °C for 1 h. Purification by flash column chromatography on silica gel (hexane/EtOAc) gave the product as a white solid; yield: 59.7 mg (88%); mp 168.9–169.3 °C.

IR (ATR): 1757, 1323 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.75 (d, *J* = 8.0 Hz, 2 H), 7.64 (d, *J* = 8.0 Hz, 2 H), 6.50 (t, *J* = 2.0 Hz, 1 H), 5.26 (d, *J* = 2.0 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 173.1, 162.1, 133.1 (q, $J_{C,F}$ = 32.9 Hz), 132.9, 126.8, 126.3 (q, $J_{C,F}$ = 3.3 Hz), 123.4 (q, $J_{C,F}$ = 270.8 Hz), 115.3, 70.8.

¹⁹F NMR (377 MHz, CDCl₃): δ = -66.3.

MS (EI): m/z (%) = 228 (M⁺, 60), 199 (79), 171 (44), 170 (47), 151 (100), 120 (32), 115 (28), 102 (45), 75 (37), 69 (56), 63 (30), 62 (24), 51 (34), 50 (30).

HRMS (EI): *m*/*z* [M]⁺ calcd for C₁₁H₇F₃O₂: 228.0398; found: 228.0398.

4-[3,5-Bis(trifluoromethyl)phenyl]furan-2(5H)-one (2f)

According to the general procedure, the reaction using $PhI(OAC)_2$ (96.2 mg, 0.30 mmol), Me_3SiOTf (110 µL, 0.60 mmol), and 3-[3,5-bis(trifluoromethyl)phenyl]but-3-enoic acid (89.4 mg, 0.30 mmol) in 1,2-dichloroethane (3 mL) was conducted at 80 °C for 3 h. Purification by flash column chromatography on silica gel (hexane/EtOAc) gave the product as a white solid; yield: 62.2 mg (70%); mp 138.5-139.1 °C.

IR (ATR): 1802, 1775, 1275, 1111, 1063 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 8.07–7.90 (m, 3 H), 6.60 (t, *J* = 2.0 Hz, 1 H), 5.30 (d, *J* = 2.0 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 172.3, 160.2, 133.1 (q, $J_{C,F}$ = 33.0 Hz), 131.8, 126.3, 125.0–124.8 (m), 122.7 (q, $J_{C,F}$ = 271.8 Hz), 116.8, 70.6.

¹⁹F NMR (377 MHz, CDCl₃): δ = -66.2.

MS (EI): m/z (%) = 296 (M⁺, 22), 277 (21), 267 (100), 239 (36), 238 (29), 219 (41), 169 (24), 69 (35).

HRMS (EI): *m*/*z* [M]⁺ calcd for C₁₂H₆F₆O₂: 296.0272; found: 296.0275.

4-(4-Methoxyphenyl)furan-2(5H)-one (2g)

According to the general procedure, the reaction using Phl(OAc)₂ (96.5 mg, 0.30 mmol), Me₃SiOTf (109 µL, 0.60 mmol), 2,6-di-*tert*-butylpyridine (113.4 mg, 0.59 mmol), and 3-(4-methoxyphenyl)but-3enoic acid (57.4 mg, 0.30 mmol) in CH₂Cl₂ (3 mL) was conducted at r.t. for 1 h. Purification by flash column chromatography on silica gel (hexane/EtOAc) gave the product as a yellow solid; yield: 19.2 mg (34%). The analytical and spectral data for this compound were in excellent agreement with the reported data.¹²

4-(4-Tolyl)furan-2(5H)-one (2h)

According to the general procedure, the reaction using $PhI(OAC)_2$ (96.6 mg, 0.30 mmol), Me₃SiOTf (109 µL, 0.60 mmol), 2,6-di-*tert*-butylpyridine (121.8 mg, 0.64 mmol), and 3-(4-tolyl)but-3-enoic acid (52.6 mg, 0.30 mmol) in CH₂Cl₂ (3 mL) was conducted at r.t. for 1 h. Purification by flash column chromatography on silica gel (hexane/EtOAc) gave the product as a white solid; yield: 43.7 mg (76%). The analytical and spectral data for this compound were in excellent agreement with the reported data.¹²

4-(2-Tolyl)furan-2(5*H*)-one (2i)

According to the general procedure, the reaction using PhI(OAc)₂ (145.1 mg, 0.45 mmol), Me₃SiOTf (164 µL, 0.90 mmol), 2,6-di-*tert*-butylpyridine (170.2 mg, 0.89 mmol), and 3-(2-tolyl)but-3-enoic acid (52.5 mg, 0.30 mmol) in CH₂Cl₂ (3 mL) was conducted at r.t. for 3 h. Purification by flash column chromatography on silica gel (hexane/EtOAc) gave the product as a white solid; yield: 31.7 mg (61%). The analytical and spectral data for this compound were in excellent agreement with the reported data.¹²

4-(3-Tolyl)furan-2(5H)-one (2j)

According to the general procedure, the reaction using $PhI(OAc)_2$ (96.6 mg, 0.30 mmol), Me_3SiOTf (109 µL, 0.60 mmol), and 3-(3-tolyl)but-3-enoic acid (51.8 mg, 0.29 mmol) in CH_2Cl_2 (3 mL) was conducted at r.t. for 1.5 h. Purification by flash column chromatography on silica gel (hexane/EtOAc) gave the product as a yellow solid; yield: 44.2 mg (86%). The analytical and spectral data for this compound were in excellent agreement with the reported data.¹²

4-(1-Naphthyl)furan-2(5H)-one (2k)

According to the general procedure, the reaction using Phl(OAc)₂ (144.3 mg, 0.45 mmol), Me₃SiOTf (165 µL, 0.90 mmol), 2,6-di-*tert*-butylpyridine (174.5 mg, 0.91 mmol), and 3-(1-naphthyl)but-3-enoic acid (63.6 mg, 0.30 mmol) in CH₂Cl₂ (3 mL) was conducted at r.t. for 3 h. Purification by flash column chromatography on silica gel (hexane/EtOAc) gave the product as a yellow solid; yield: 49.1 mg (78%). The analytical and spectral data for this compound were in excellent agreement with the reported data.^{3d}

4-(2-Naphthyl)furan-2(5H)-one (2l)

According to the general procedure, the reaction using Phl(OAc)₂ (96.6 mg, 0.30 mmol), Me₃SiOTf (109 µL, 0.60 mmol), 2,6-di-*tert*-butylpyridine (112.8 mg, 0.59 mmol), and 3-(2-naphthyl)but-3-enoic acid (63.7 mg, 0.30 mmol) in 1,2-dichloroethane (3 mL) was conducted at 60 °C for 3 h. Purification by flash column chromatography on silica gel (hexane/EtOAc) gave the product as a yellow solid; yield: 38.1 mg (60%). The analytical and spectral data for this compound were in excellent agreement with the reported data.^{3d}

4-Benzylfuran-2(5H)-one (2m)

According to the general procedure, the reaction using Phl(OAc)₂ (96.9 mg, 0.30 mmol), Me₃SiOTf (109 µL, 0.60 mmol), and 3-benzylbut-3-enoic acid (52.9 mg, 0.30 mmol) in CH₂Cl₂ (3 mL) was conducted at r.t. for 1.5 h. Purification by flash column chromatography on silica gel (hexane/EtOAc) gave the product as a yellow viscous liquid; yield: 23.3 mg (45%). The analytical and spectral data for this compound were in excellent agreement with the reported data.¹³

4-(n-Butyl)furan-2(5H)-one (2n)

According to the general procedure, the reaction using $Phl(OAc)_2$ (97.2 mg, 0.30 mmol), Me_3SiOTf (109 µL, 0.60 mmol), and 3-methylideneheptanoic acid (40.1 mg, 0.28 mmol) in CH_2Cl_2 (3 mL) was conducted at r.t. for 1.5 h. Purification by flash column chromatography on silica gel (hexane/EtOAc) gave the product as a yellow viscous liquid; yield: 13.3 mg (34%). The analytical and spectral data for this compound were in excellent agreement with the reported data.¹⁴

3-Isopropyl-4-phenylfuran-2(5H)-one (2o)

According to the general procedure, the reaction using PhI(OAc)₂ (94.4 mg, 0.29 mmol), Me₃SiOTf (105 μ L, 0.58 mmol), and 2-isopropyl-3-phenylbut-3-enoic acid (59.5 mg, 0.29 mmol) in CH₂Cl₂ (3 mL) was conducted at r.t. for 3 h. Purification by flash column chromatography on silica gel (hexane/EtOAc) gave the product as a yellow viscous liquid; yield: 23.2 mg (40%).

IR (ATR): 1746, 1649 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.55–7.40 (m, 3 H), 7.40–7.30 (m, 2 H), 4.94 (s, 2 H), 3.07 (sept, *J* = 7.2 Hz, 1 H), 1.30 (d, *J* = 7.2 Hz, 6 H).

 ^{13}C NMR (100 MHz, CDCl_3): δ = 173.4, 155.3, 132.4, 131.6, 129.8, 129.0, 127.4, 70.6, 25.1, 20.1.

 $\begin{array}{l} \mathsf{MS} \ (\mathsf{EI}): \ m/z \ (\%) = 202 \ (\mathsf{M}^+, 91), \ 201 \ (\$1), \ 157 \ (63), \ 143 \ (69), \ 142 \ (38), \\ 141 \ (49), \ 131 \ (28), \ 130 \ (22), \ 129 \ (69), \ 128 \ (100), \ 127 \ (28), \ 117 \ (20), \\ 115 \ (61), \ 105 \ (49), \ 91 \ (56), \ 77 \ (44), \ 51 \ (28). \end{array}$

HRMS (EI): *m*/*z* [M]⁺ calcd for C₁₃H₁₄O₂: 202.0994; found: 202.0992.

3,3-Dimethyl-4-phenylfuran-2(3H)-one (3a)

According to the general procedure, the reaction using $Phl(OAc)_2$ (96.8 mg, 0.30 mmol), Me₃SiOTf (110 µL, 0.60 mmol), and 2,2-dimethyl-3-phenylbut-3-enoic acid (55.8 mg, 0.29 mmol) in CH₂Cl₂ (3 mL) was conducted at r.t. for 3 h. Purification by flash column chromatography on silica gel (hexane/EtOAc) gave the product as a yellow solid; yield: 37.5 mg (68%); mp 68.7–69.6 °C.

IR (ATR): 1798, 1622 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.40–7.30 (m, 5 H), 7.05 (s, 1 H), 1.51 (s, 6 H).

 ^{13}C NMR (100 MHz, CDCl_3): δ = 182.5, 136.2, 131.1, 129.5, 128.8, 128.0, 126.3, 45.0, 23.9.

MS (EI): m/z (%) = 188 (M⁺, 88), 160 (61), 145 (95), 142 (20), 132 (48), 131 (89), 130 (25), 129 (42), 128 (40), 127 (25), 118 (21), 117 (100), 116 (88), 115 (100), 91 (100), 89 (39), 78 (22), 77 (46), 65 (35), 63 (50), 53 (21), 51 (46), 50 (21).

HRMS (EI): *m*/*z* [M]⁺ calcd for C₁₂H₁₂O₂: 188.0837; found: 188.0835.

4-(4-Bromophenyl)-3,3-dimethylfuran-2(3H)-one (3b)

According to the general procedure, the reaction using PhI(OAc)₂ (96.2 mg, 0.30 mmol), Me₃SiOTf (109 µL, 0.60 mmol), and 3-(4-bromophenyl)-2,2-dimethylbut-3-enoic acid (79.9 mg, 0.30 mmol) in CH₂Cl₂ (3 mL) was conducted at r.t. for 3 h. Purification by flash column chromatography on silica gel (hexane/EtOAc) gave the product as a white solid; yield: 42.9 mg (54%); mp 89.8–90.6 °C.

IR (ATR): 1782, 1634 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.50 (d, *J* = 8.4 Hz, 2 H), 7.22 (d, *J* = 8.4 Hz, 2 H), 7.07 (s, 1 H), 1.49 (s, 6 H).

 ^{13}C NMR (100 MHz, CDCl_3): δ = 182.2, 136.6, 132.0, 130.0, 128.5, 127.8, 122.0, 44.9, 23.8.

MS (El): m/z (%) = 266 (M⁺, 58), 268 (59), 240 (29), 238 (31), 159 (100), 144 (26), 131 (97), 130 (46), 129 (37), 128 (20), 116 (35), 115 (71), 91 (26).

HRMS (EI): *m*/*z* [M]⁺ calcd for C₁₂H₁₁BrO₂: 265.9942; found: 265.9944.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number JP16K17868.

Special Topic

Supporting Information

Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588987.

References

Svn thesis

- (1) (a) Kupchan, S. M.; Court, W. A.; Dailey, R. G. Jr.; Gilmore, C. J.; Bryan, R. F. J. Am. Chem. Soc. 1972, 94, 7194. (b) Pelter, A.; Ward, R. S.; Rao, E. V.; Raju, N. R. J. Chem. Soc., Perkin Trans. 1 1981, 2491. (c) De Guzman, F. S.; Schmitz, F. J. J. Nat. Prod. 1990, 53, 926. (d) Bezuidenhoudt, B. C. B.; Swanepoel, A.; Brandt, E. V.; Ferreira, D. J. Chem. Soc., Perkin Trans. 1 1990, 2599. (e) Miao, S.; Andersen, R. J. J. Org. Chem. 1991, 56, 6275. (f) Miles, D. H.; Chittawong, V.; Lho, D.-S.; Payne, A. M.; de la Cruz, A. A.; Gomez, E. D.; Weeks, J. A.; Atwood, J. L. J. Nat. Prod. 1991, 54, 286. (g) Nohara, T.; Kinjo, J.; Furusawa, J.; Sakai, Y.; Inoue, M.; Shirataki, Y.; Ishibashi, Y.; Yokoe, I.; Komatsu, M. Phytochemistry 1993, 33, 1207. (h) Cerri, A.; Mauri, P.; Mauro, M.; Melloni, P. J. Heterocycl. Chem. 1993, 30, 1581. (i) Evidente, A.; Sparapano, L. J. Nat. Prod. 1994, 57, 1720. (j) Figadère, B. Acc. Chem. Res. 1995, 28, 359. (k) Midland, S. L.; Keen, N. T.; Sims, J. J. J. Org. Chem. 1995, 60, 1118. (l) Honda, T.; Mizutani, H.; Kanai, K. J. Org. Chem. 1996, 61, 9374. (m) Gunasekera, S. P.; McCarthy, P. J.; Kelly-Borges, M.; Lobkovsky, E.; Clardy, J. J. Am. Chem. Soc. 1996, 118, 8759. (n) Smith, C. J.; Hettich, R. L.; Jompa, J.; Tahir, A.; Buchanan, M. V.; Ireland, C. M. J. Org. Chem. 1998, 63, 4147. (o) Ortega, M. J.; Zubía, E.; Ocaña, J. M.; Naranjo, S.; Salvá, J. Tetrahedron 2000, 56, 3963. (p) Bellina, F.; Anselmi, C.; Viel, S.; Mannina, L.; Rossi, R. Tetrahedron 2001, 57, 9997. (g) Ueda, J.; Tezuka, Y.; Banskota, A. H.; Tran, Q. L.; Tran, Q. K.; Saiki, I.; Kadota, S. J. Nat. Prod. 2003, 66, 1427. (r) Braña, M. F.; García, M. L.; López, B.; de Pascual-Teresa, B.; Ramos, A.; Pozuelo, J. M.; Domínguez, M. T. Org. Biomol. Chem. 2004, 2, 1864. (s) Keyzers, R. A.; Davies-Coleman, M. T. Chem. Soc. Rev. 2005, 34, 355. (t) Ohsaki, A.; Kobayashi, Y.; Yoneda, K.; Kishida, A.; Ishiyama, H. J. Nat. Prod. 2007, 70, 2003. (u) Zhang, H.; Conte, M. M.; Huang, X.-C.; Khalil, Z.; Capon, R. J. Org. Biomol. Chem. 2012, 10, 2656.
- (2) For reviews, see: (a) Rao, Y. S. Chem. Rev. 1976, 76, 625.
 (b) Avetisyan, A. A.; Dangyan, M. T. Russ. Chem. Rev. 1977, 46, 643. For selected examples, see: (c) Wu, J.; Zhu, Q.; Wang, L.; Fathi, R.; Yang, Z. J. Org. Chem. 2003, 68, 670. (d) Boukouvalas, J.; Loach, R. P. J. Org. Chem. 2008, 73, 8109. (e) Hyde, A. M.; Buchwald, S. L. Org. Lett. 2009, 11, 2663. (f) Matsuo, K.; Shindo, M. Org. Lett. 2010, 12, 5346. (g) Lee, D.; Newman, S. G.; Taylor, M. S. Org. Lett. 2009, 11, 5486. (h) Cheng, J.; Chen, P.; Liu, G. Org. Chem. Front. 2014, 1, 289. (i) Mao, W.; Zhu, C. Org. Lett. 2015, 17, 5710.

- (3) For selected examples, see: (a) Danieli, N.; Mazur, Y.; Sondheimer, F. J. Am. Chem. Soc. 1962, 84, 875. (b) Danieli, N.; Mazur, Y.; Sondheimer, F. Tetrahedron 1966, 22, 3189. (c) Krauser, S. F.; Watterson, A. C. Jr. J. Org. Chem. 1978, 43, 3400. (d) Kagabu, S.; Shimizu, Y.; Ito, C.; Moriya, K. Synthesis 1992, 830. (e) Renard, M.; Ghosez, L. A. Tetrahedron 2001, 57, 2597. (f) Bassetti, M.; D'Annibale, A.; Fanfoni, A.; Minissi, F. Org. Lett. 2005, 7, 1805. (g) Liu, Y.; Song, F.; Guo, S. J. Am. Chem. Soc. 2006, 128, 11332. (h) Tejedor, D.; Santos-Exposito, A.; García-Tellado, F. Synlett 2006, 1607. (i) Alfonsi, M.; Arcadi, A.; Chiarini, M.; Marinelli, F. J. Org. Chem. 2007, 72, 9510. (j) Li, S.; Miao, B.; Yuan, W.; Ma, S. Org. Lett. 2013, 15, 977.
- (4) (a) Kasahara, A.; Izumi, T.; Sato, K.; Maemura, M.; Hayasaka, T. *Bull. Chem. Soc. Jpn.* **1977**, *50*, 1899. (b) Browne, D. M.; Niyomura, O.; Wirth, T. Org. *Lett.* **2007**, *9*, 3169. (c) Bajracharya, G. B.; Koranne, P. S.; Nadaf, R. N.; Gabr, R. K. M.; Takenaka, K.; Takizawa, S.; Sasai, H. *Chem. Commun.* **2010**, *46*, 9064. (d) Kawamata, Y.; Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. **2016**, *138*, 5206.
- (5) Singh, F. V.; Rehbein, J.; Wirth, T. *ChemistryOpen* **2012**, *1*, 245.
- (6) (a) Kiyokawa, K.; Yahata, S.; Kojima, T.; Minakata, S. Org. Lett. 2014, 16, 4646. For iodine-catalyzed decarboxylative amidation, see: (b) Kiyokawa, K.; Kojima, T.; Hishikawa, Y.; Minakata, S. Chem. Eur. J. 2015, 21, 15548.
- (7) (a) Zefirov, N. S.; Safronov, S. O.; Kaznacheev, A. A.; Zhdankin, V. V. Zh. Org. Khim. 1989, 25, 1807. (b) Lutz, K. E.; Thomson, R. J. Angew. Chem. Int. Ed. 2011, 50, 4437. (c) Farid, U.; Wirth, T. Angew. Chem. Int. Ed. 2012, 51, 3462.
- (8) (a) Zefirov, N. S.; Zhdankin, V. V.; Dan'kov, Y. V.; Koz'min, A. S. J. Org. Chem. USSR **1984**, *20*, 401; *Zh. Org. Khim.* **1984**, *20*, 446.
 (b) Zefirov, N. S.; Zhdankin, V. V.; Dan'kov, Y. V.; Sorokin, V. D.; Semerikov, V. N.; Koz'min, A. S.; Caple, R.; Berglund, B. A. Tetrahedron Lett. **1986**, *27*, 3971.
- (9) Upon treatment with TfOH in CH_2Cl_2 , methoxy-substituted substrate **1g** completely isomerized into the corresponding α , β unsaturated carboxylic acid, which decomposed into a complex mixture under the standard cyclization conditions.
- (10) Izquierdo, S.; Essafi, S.; del Rosal, I.; Vidossich, P.; Pleixats, R.; Vallribera, A.; Ujaque, G.; Lledós, A.; Shafir, A. J. Am. Chem. Soc. 2016, 138, 12747.
- (11) Gronnier, C.; Kramer, S.; Odabachian, Y.; Gagosz, F. J. Am. Chem. Soc. **2012**, 134, 828.
- (12) Hu, Y.; Ding, Q.; Ye, S.; Peng, Y.; Wu, J. *Tetrahedron* **2011**, 67, 7258.
- (13) Carter, N. B.; Mabon, R.; Richecœur, A. M. E.; Sweeney, J. B. *Tetrahedron* **2002**, *58*, 9117.
- (14) Pelletier, S. W.; Djarmati, Z.; Lajšić, S. D.; Mićović, I. V.; Yang, D. T. C. *Tetrahedron* **1975**, *31*, 1659.