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A new efficient route for the synthesis of substituted 2H-pyrrolopyrimidines (9-deazaxanthine analogs)
via thiophenol mediated radical cyclization has been achieved. The stereochemistry of the newly syn-
thesised compounds has been settled from NOE data.
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Pyrimidines, being an integral part of DNA and RNA, exhibit
diverse pharmacological properties as effective bactericides,
fungicides, viricides, insecticides, and medicides.1–3 Numerous
pyrimidine and uracil-based molecules,4 for example, 30-azido-
30-deoxythymidine (AZT), 20,30-dideoxycytidine (DDC), (E)-5-[2-
(bromovinyl)-20-deoxyuridine] (BVDU), active against cancer
and AIDS viruses,5 have already been synthesised. Particularly,
pyrrolo[3,2-d]pyrimidines (9-deazaxanthines) are important due
to their proven biological activity and medicinal utility. 9-Deazax-
anthines showed structure-activity relationships that are similar
to those of xanthines. They were shown to be more or less
equipotent to the corresponding xanthines at A2a adenosine recep-
tors. 9-Deazaxanthines are generally at least 2–3-fold more potent
than xanthines at A1 receptors and, therefore, exhibit higher A1
selectivities compared to the xanthines.6 Moreover, pyrrolopyrimi-
dine ring system has aroused considerable interest due to its
presence in several natural products like toyocamycin, sangivamy-
cin, tubercidin etc.7,8

On the other hand, free radical cyclization is regarded as a
versatile route for the construction of carbocycles as well as het-
erocycles.9 In particular; the formation of C–S bonds by the inter-
molecular addition of S-centerd radicals to p-systems is a major
challenge in organic synthesis. Intermolecular addition of radicals
to terminal alkynes offers an attractive strategy for the generation
of alkenyl radicals10 and thiophenol11 is a very efficient reagent for
this purpose. Moreover, during the cyclization process a phenylthio
moiety is incorporated into the final cyclized products, which is
7

Scheme 1. Synthesis of 9-deazaxanthines by benzoyl peroxide mediated radical
cyclization.
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Scheme 2. Synthesis of precursors 9a–f. Reagents and conditions: (i) propargyl
bromide, K2CO3, acetone, reflux, 10–12 h.
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Figure 1. nOe of compound 10a.
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particularly attractive for further transformation/
functionalization.11b,11c

In our previous report12 we have published a new synthetic
route for the synthesis of substituted 9-deazaxanthines in excel-
lent yields via aza-Claisen rearrangement followed by benzoyl per-
oxide mediated radical cyclization which is shown in Scheme 1.

Therefore, in continuation of our work in radical chemistry and
the synthesis of biologically active heterocycles,13 we became
interested in the synthesis of novel pyrrolo[3,2-d]pyrimidine
(9-deazaxanthine derivatives) via thiophenol mediated radical
cyclization and herein we report our results.

The requisite starting materials for our study, 9a–f were syn-
thesised in 90–95% yield by refluxing various substituted 5-amino
uracil derivatives 8a–f and propargyl bromide in dry acetone-
K2CO3 for 10–12 h. The amino uracil derivatives 8a-f were in turn
prepared from the bromouracil derivatives according to our earlier
published procedure.13g The synthetic route of the aforesaid pre-
cursors is shown in Scheme 2.

The thiophenol mediated cyclization was then carried out with
9a under standard conditions [PhSH (2 equiv), AIBN (1.5 equiv)] in
dry benzene for 2 h to afford compound 10a in only 30% yield along
with the depropargylated product 8a in 60% yield. Therefore to
establish the optimized conditions of the radical cyclization we
have performed a series of experiments where sequential changes
were made to the radical initiator, amount of thiophenol and the
solvent used. Very slow addition of PhSH (2 equiv) and use of AIBN
(1.5 equiv) as radical initiator in refluxing t-butanol afforded the
cyclized product 10a14 as a white solid, mp 114–116 �C in 65%
yield along with some depropargylated product 8a (25%). The opti-
mization results are shown in Table 1.

The configuration of the exocyclic double bond in 10a was
found to be trans on the basis of only nOe correlation between
Table 1
Optimization of the radical cyclization of 9aa
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Entry Reaction conditions

1 PhSH (2 equiv), AIBN (1.5 equiv), benzene, reflux
2 PhSH (2 equiv), benzoyl peroxide (1.5 equiv), benzene, reflux
3 PhSH (1.5 equiv), benzoyl peroxide (1.2 equiv), t-BuOH, reflu
4 PhSH (2 equiv), AIBN (1.5 equiv), t-BuOH, reflux
5 PhSH (4 equiv), AIBN (3 equiv), t-BuOH, reflux

a All the reactions were carried out under nitrogen atmosphere.
the methylene proton (–NCH2) at d = 4.15 ppm and the –N–CH3

proton at d = 3.79 ppm. There is no nOe correlation between the
methylene proton (–NCH2) at d = 4.15 ppm with the exocyclic pro-
ton at d = 6.63 ppm (Fig. 1).

Encouraged by this result, the other substrates 9b–f were sim-
ilarly treated to give 10b–f in 60–63% yields. The results are sum-
marized in Table 2.

A probable mechanistic rationalization of the thiophenol
mediated radical reaction is shown in Scheme 3. The formation
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Scheme 3. Probable mechanistic path for the formation of 9-deazaxanthines 9.
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of the products 10 from 9 may be explained by the generation of
alkenyl radical 11 by radical addition of thiophenol to the terminal
alkyne 9. The alkenyl radical 11 may undergo either a 4-exo-trig or
a 5-endo-trig cyclization at the double bond of the uracil moiety. A
5-endo-trig cyclization of radical 11 may produce the inter-
mediate radical 14, while 4-exo-trig cyclization may give the
Table 2
2H-Pyrrolo[3,2-d]pyrimidine derivatives

Entry Precursors Products Yields (%)
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spiroheterocyclic radical 12, followed by neophyl rearrangement
of 12 to radical intermediate 13. Oxidative elimination of a hydro-
gen from 14 may afford 10.

In conclusion, we have successfully achieved a practical method
for the synthesis of 2H-pyrrolo[3,2-d]pyrimidine (9-deazaxanthine
analogs) derivatives. We are continuing this work to extend the
scope of this methodology to the synthesis of other bio-active het-
erocycles and the results will be communicated in due course.
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