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Abstract: The Michael addition-cyclodehydration of a 6-aminou-
racil and alkynone proceeds to give 5-deazapterin derivatives with
total control of regiochemistry. This simple and facile cycloconden-
sation process is catalyzed by zinc(II) bromide or ytterbium(III) tri-
fluoromethanesulfonate at 110 °C, providing the heteroannulated
products in up to 94% yield.
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The versatility of uracil derivatives for the synthesis of ni-
trogen-containing heteroaromatic species of biological
importance has been well documented in the literature.1

Pyrazolopyridines,2 pyrimidopyrimidines,3 pyridopu-
rines,4 pyrazolopyrimidines5 and xanthine derivatives6

have all been prepared by the functionalization of these
important heterocyclic building blocks, whose structures
are interesting in their own right as biologically-active
pyrimidine nucleosides.7 In recent years, interest in pyri-
do[2,3-d]pyrimidine derivatives has increased drama-ti-
cally as the structural relationship between 5-deazapterins
and the vitamin folic acid,8 with its essential role in the
prevention of disease,9 has been recognised. The diverse
range of biological properties and highly species-specific
tissue responses elicited by compounds containing the 5-
deazapterin motif have been well documented.10 Howev-
er, although pyrido[2,3-d]pyrimidines have been prepared
from uracil derivatives in the past, many of these reactions
suffer from low yields, use expensive or not readily avail-
able starting materials and exhibit limited substrate toler-
ance.11 This paper describes the facile synthesis of a
number of 5-deazapterins from commercially available 6-
aminouracil derivatives using a simple one-pot Bohl-
mann–Rahtz heteroannulation procedure.

The two-step Bohlmann–Rahtz reaction,12 which pro-
ceeds by Michael addition-cyclodehydration of an enam-
ine and alkynone, was first reported in 1957 for the
synthesis of simple pyridines but has seen very little use
since that date.13 Following our discovery of a facile one-
pot heteroannulation procedure, catalysed by acetic acid,
amberlyst 15 ion exchange resin14 or a Lewis acid,15 we
developed new conditions for the synthesis of 5-deazap-
terin 2 from 2,4-diaminopyrimidinone 1 (Scheme 1).16

Replacing pyrimidinone 1 with a range of different uracil
derivatives will not only increase the scope of this hitherto
poorly understood reaction, but it will expand the synthet-
ic versatility of uracil derivatives and provide diversity in
the nature of the heterocyclic motif in a targeted library of
potential folate antagonists that could be elaborated from
these compounds in subsequent studies.

Scheme 1

Judging by the poor reactivity exhibited by 6-aminouracil
derivatives in related cyclocondensation reactions,11 it re-
mained to be established whether the Bohlmann–Rahtz
heteroannulation of these substrates would proceed at all.
To this end, a solution of 6-aminouracil 3a and 4-(trime-
thylsilyl)but-3-yn-2-one (4a) in DMSO was stirred at
room temperature. However, after 72 hours, 1H NMR
spectroscopic analysis established that no reaction had oc-
curred. When the procedure was repeated at 110 °C using
3 equivalents of alkynone 4a, Michael addition product 5a
(Figure) was generated in 97% isolated yield after addi-
tion of water and precipitation of the product. The cyclo-
dehydration of 5a failed according to standard conditions
(returning unreacted starting material 5a), even at temper-
atures of 180 °C, but when a solution of this intermediate
in DMSO was stirred at 110 °C overnight in the presence
of zinc(II) bromide or ytterbium(III) triflate, the heteroan-
nulated product pyridine 6a (Figure) was generated in
quantitative yield. This new modified two-step procedure
demonstrated both the advantage of our new Lewis acid
catalysed cyclodehydration conditions and the poor/un-
predictable reactivity of 6-aminouracil derivatives (lack-
ing 1,3-substitution) in heteroannulation reactions. 

Following the success of our two-step modified Bohl-
mann–Rahtz reaction, it remained to be seen if a one-pot
heteroannulation procedure could be facilitated in the
presence of a Lewis acid catalyst. A solution of 6-aminou-
racil 3a and one equivalent of 4-(trimethylsilyl)but-3-yn-
2-one (4a) in DMSO was stirred at 110 °C for 72 hours in
the presence of either zinc(II) bromide17 or ytterbium(III)
triflate (20 mol%) to give 5-deazapterin 6a as the sole
product in 60% or 52% yield, respectively. Spontaneous
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desilylation occurred throughout the course of the reac-
tion. Although the yield in this case was lower than for the
two-step process, the simplicity of the facile one-pot
Michael addition-cyclodehydration reaction made it an at-
tractive alternative that warranted further study.

With successful conditions established for the one- and
two-step heteroannulation of 6-aminouracil, it remained
to explore whether these conditions were appropriate for
a range of different uracil derivatives. 6-Amino-1-methyl-
and 6-amino-1,3-dimethyluracil, 3b and 3c respectively,
were stirred for 72 h with one equivalent of 4-(trimethyl-
silyl)but-3-yn-2-one (4a) in DMSO either in the presence
or absence of a Lewis acid. Although uracil 3b gave het-
eroannulation product 6b in excellent yield (Scheme 2)
under Lewis acid catalysed conditions at elevated temper-
atures, 1,3-dimethyluracil 3c yielded the Michael addition
product 5c at room temperature and cyclodehydration
could not be completed under any of the conditions inves-
tigated (Table 1).

Scheme 2

To examine further the scope of the heteroannulation re-
action, uracils 3a–c were treated with different 4-substi-
tuted alkynones 4b–d in DMSO at 110 °C for 72 hours in
the presence of a Lewis acid catalyst (Scheme 3). When
ethyl propynoate 4b was reacted with uracil 3a,b (entries
1–4, Table 2) spontaneous desilylation accompanied
Michael addition-cyclodehydration to generate pyridopy-
rimidine 7,8 (R5 = H). When these reactions were con-
ducted either in the absence of a Lewis acid (entry 2) or at
room temperature (entry 3) the efficiency of reaction was
reduced. The optimum experimental conditions reacted
uracil 3a–c with alkynone 4b–d at 110 °C in the presence
of zinc(II) bromide for 72 h to give product 7–12 in good

yield (60–75%). Replacing zinc(II) bromide with ytterbi-
um(III) triflate (entries 6 and 10) always caused a small
reduction in the efficiency of the cyclocondensation pro-
cess, but offered some improvement over the uncatalysed
reaction (entry 8, 42% yield) which always proceeded in
a low yield. It was apparent that the new Lewis acid catal-
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Table 1 Heteroannulation Reactions of Uracil Derivatives 3a–c

Entry 3 R1 R3 Temp. 
°C

Lewis acid Com-
pound

Yielda 
%

1 3a H H 110 None 5a 97

2 3a H H 110 ZnBr2 6a 60

3 3b Me H 110 None 6b 74

4 3b Me H 110 ZnBr2 6b 94

5 3b Me H 110 Yb(OTf)3 6b 90

6b 3c Me Me r.t. ZnBr2 5c 53

7b 3c Me Me r.t. Yb(OTf)3 5c 54

a Isolated yield.
b Reactions were run over 96 hours.

Scheme 3
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Table 2 Reaction of Uracil 3a–c with 4-Substituted Alkynone 4b–d

Entry 3 4 R5 R7 Lewis 
acid

Com-
pound

Yielda 
%

1 3a 4b SiMe3 CO2Et ZnBr2 7 60b

2 3b 4b SiMe3 CO2Et None 8 43b

3 3b 4b SiMe3 CO2Et ZnBr2 8 39b,c

4 3b 4b SiMe3 CO2Et ZnBr2 8 65b

5 3b 4c Et Me ZnBr2 9 71

6 3b 4c Et Me Yb(OTf)3 9 68

7 3b 4d Ph Me ZnBr2 10 62

8 3c 4c Et Me None 11 42

9 3c 4c Et Me ZnBr2 11 75

10 3c 4c Et Me Yb(OTf)3 11 72

11 3c 4d Ph Me ZnBr2 12 72

a Isolated yield;
b Spontaneous disilylation accompanied the reaction (R5 = H).
c Reaction was carried out at room temperature.
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ysed cyclocondensation reaction was appropriate for a
number of different alkynones and a range of uracil deriv-
atives 3a–c.

In conclusion the zinc(II) bromide catalysed heteroannu-
lation, for the synthesis of pyrido[2,3-d]pyrimidines 6–12
in up to 94% yield, proceeds by cyclocondensation of a 6-
aminouracil 3a–c and alkynone 4a–d in a single prepara-
tive step using a simple and facile experimental proce-
dure. Work is now underway to apply this new general
method to the synthesis of a number of biologically active
heterocycles based upon modified uracil derivatives for
the preparation of diverse 5-deazapterin libraries as inhib-
itors of folate-dependent enzymes.
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