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Figure 1. 2L+2B+M.
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a b s t r a c t

The synthesis of oligo(ethylene glycol) with biphenolic gallates as termini and their assembly to dimeric
structures upon spiroborate formation are described. Complexation of these dimeric structures with
alkali metal ions showed selectivity to lithium and potassium by tuning the length of the ethyleneoxy
units. The methoxycarbonyl group on the dimeric compound could be manipulated in harsh conditions
without destruction of the dimeric structure.

� 2016 Published by Elsevier Ltd.
Introduction

Since the classical crown ethers, cryptands, and calixarenes pio-
neered by Pedersen, Lehn, and Cram,1 boron-assisted crown
ethers,2 borocryptands,3 and other boron-based molecular assem-
blies4 also have been attracting much attention. For example,
spiroborate linkage has been utilized for the synthesis of double-
stranded supramolecular architectures,5 which consist of
ortho-linked oligophenol chains bearing bipyridine units. Herein,
we would like to report the preparation of oligo-ethyleneoxy ether
strands bearing two gallic acid esters as termini, and their assem-
bly to dimeric structures (Fig. 1. 2L+2B+M) upon spiroborate for-
mation on the catechol-like motifs, and their complexation with
alkali metal ions.

Results and discussions

As shown in Scheme 1, the synthesis was straightforward from
gallic acid methyl ester 1, which was converted into compound 2
in 61% yield by reacting with triethyl orthoformate in the presence
of p-toluenesulfonic acid,6 and subsequent alkylation with bis-
tosylates of oligo(ethylene glycol) with K2CO3 as the base in DMF
gave 3a–e in 80–89% yields.7 Liberation of the ortho-biphenolic
motifs with 2 M aq HCl in methanol afforded the oligo-ethyleneoxy
chain-linked bis-biphenolic compound 4a–e in nearly quantitative
yields.

To examine whether the assembly of the single stand ligands
with boron and alkali metal ions could occur, the simple mixing
experiments of 4a–e with Na2B4O7 were conducted and measured
by ESI-MS (negative mode) with results shown in Table 1. The data
revealed that m/z peaks bearing negative charges corresponding to
[2L+2B]2� and [2L+2B+Na]� had been detected. Therefore, we pos-
tulated that dimeric structures of 4a–e upon spiroborate linkage
formation could be generated and their complexes with alkali
metal ions would be attainable. As shown in Scheme 2, when
refluxing 4a–e with boric acid (1.03 equiv) in THF and toluene
(v/v = 4/1) in the presence of 4A molecular sieves, the dimeric
compound 5a–e were obtained in 72–88% yields.
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Scheme 1. Synthesis of oligo(ethylene glycol) with end-functionalities.

Table 1
ESI-MS (negative mode) of 4a–e with Na2B4O7

Entry M H4L1-5 (n = 0–4) MS-1
m/z

Composition MS-2
m/z

Composition

1 Na 4a (n = 0) 401 [2L1+2B]2� 825 [2L1+2B+Na]�

2 Na 4b (n = 1) 445 [2L2+2B]2� 913 [2L2+2B+Na]�

3 Na 4c (n = 2) 489 [2L3+2B]2� 1001 [2L3+2B+Na]�

4 Na 4d (n = 3) 533 [2L4+2B]2� 1089 [2L4+2B+Na]�

5 Na 4e (n = 4) 577 [2L5+2B]2� 1177 [2L5+2B+Na]�
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Then ion-exchange experiments of the dimeric 5a–e with
MClO4 (M = Li, Na, K) were carried out. The reactions were moni-
tored by NMR analysis, and significant changes in chemical shifts
for combinations of 5c with LiClO4 and 5d with KClO4 compared
to those of 5c and 5dwere observed. As shown in Figure 2, addition
of 2 equiv of LiClO4 to 5c resulted in downfield shifts for the aro-
matic Ha and Hb of 5c (0.017 and 0.71 ppm), while the NMR spec-
tra remained essentially the same upon addition of NaClO4 and
KClO4. The lithium ion adduct was measurable by ESI-MS (negative
mode) with m/z 489 and 985, which could be assigned to
[5c�2H]2� and [5c�2H+Li]�, respectively.

When mixing of 5d with KClO4, upfield shifts were observed as
shown in Figure 3 for the aromatic Hb (�0.08 ppm), and the ethy-
lene Hc (�0.068 and �0.175 ppm), and Hd (�0.041 ppm), which
probably resulted from the inclusion of potassium-ions and their
coordination to oxygen atoms. The potassium ion adduct was mea-
surable by ESI-MS (negative mode) with m/z: 533 and 1105, corre-
sponding to [5d�2H]2� and [5d�2H+K]�, respectively. The dimeric
structure was further supported by high resolution mass spectrum
(positive mode): calcd for C48H52B2O26K2H+: 1145.2296, found
1145.2299, corresponding to [5d�2H+2K+H]+; calcd for
C48H52B2O26K3

+: 1183.1855, found 1183.1860, corresponding to
[5d�2H+3K]+.

Slow evaporation of the solution of 5d and KClO4 in water and
DMF precipitated single crystals for X-ray diffraction analysis. The
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Scheme 2. Preparation of dimeric 5a–e with spirobor
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X-ray crystallographic data8 unambiguously revealed that the
[5d�2H+2K] complex adopts a pseudo-D2-symmetry (Fig. 4). Each
spiroborate bridges two catechol-like biphenolic aromatic rings
perpendicular to each other (O23/O24, B1, O25/O26; O19/O20,
B2, O21/O22). Each potassium ion is embraced in the center of
the tetra(ethylene glycol) loop and coordinated by five oxygen
atoms (K1, O6–O10; K2, O1–O5) of the oligoether chain and two
oxygen atoms (K1, O21/O25; K2, O19/O23) of the spiroborate link-
ages. According to the stereochemical arrangement, the [5d�2H
+2K] complex should be in racemic form.

As for 5a, 5b, and 5e, their 1H NMR spectra showed no changes
in chemical shifts upon addition of LiClO4, NaClO4, or KClO4. We
deduced that the above differences in binding affinities might have
resulted from the variable cavity spaces, being limited in 5a (n = 0)
and 5b (n = 1), loose in 5e (n = 4), and optimal in 5c (n = 2) for
lithium ions and 5d (n = 3) for potassium ions.

In order to test the stability of the dimeric assembly, as shown
in Scheme 3, under nitrogen atmosphere, compound 5d was trea-
ted with LiAlH4 at 0 �C in THF, and further reaction with NaH and
CH3I afforded compound 7 in 60% yield over two steps. The NMR
analysis showed that the tetrakis(methoxycarbonyl) groups had
been converted into tetrakis(methoxymethyl) groups on the ben-
zene ring, and the mass spectroscopic data9 indicated that the
dimeric structure had survived the harsh conditions without
destruction during the post-modification process.
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Figure 2. 1H NMR spectra of (a) 5c-KClO4, (b) 5c-NaClO4, (c) 5c-LiClO4, (d) 5c.

Figure 3. 1H NMR spectra of (a) 5d-LiClO4, (b) 5d-NaClO4, (c) 5d-KClO4, (d) 5d.
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Figure 4. X-ray crystal structure of [5d�2H+2K] complex (hydrogen atoms and solvent molecules omitted for clarity).
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Scheme 3. Post-modification of dimeric compound 5d.

4 J.-P. Yang et al. / Tetrahedron Letters xxx (2016) xxx–xxx
Conclusion

In summary, we have prepared a series of oligo(ethylene glycol)
compounds with end-functionalities as gallate motifs from easily
available starting materials. The spiroborate linkage formation on
the catechol-like termini afforded dimeric structures. The flexible
and tunable structures of the oligoether compounds make them
potentially selective hosts for alkali metal ions. Further work on
the supramolecular structure of these boron-assisted dimeric
macrocyclic oligoethers and their applications for selective separa-
tion of alkali metal salts are underway in this laboratory.
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