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Abstract
We report the structure and characterization of 3,4,5-triiodo-2-methylthiophene, obtained as an unexpected, unreported, 
and significant side product from the iodination of 2-methylthiophene using iodine and iodic acid. Identity of this unex-
pected product was confirmed by X-ray crystallography and 1H and 13C NMR. The compound crystallizes in the P21/c 
space group with unit cell parameters a = 16.4183(10) Å, b = 4.1971(3) Å, c = 14.3888(9) Å, β = 111.4442(14), Z = 4, and 
Dcalc = 3.425 g cm−3. Analysis of residual electron density maps indicated the presence of crystallographic disorder between 
the 2-methyl and 5-iodo positions leading to a model of two distinct molecules of 3,4,5-triiodo-2-methylthiophene where 
the atoms of these two groups were exchanged. Non-covalent iodine–iodine and sulfur–iodine interactions are observed.

Graphical Abstract
Three products, two of which are constitutional isomers, are possible when installing multiple iodine atoms on 2-methylth-
iophene; X-ray structural analysis and spectral characterization show that the 4,5-diiodo isomer is not formed and that the 
3,4,5-triiodo isomer is unexpectedly obtained. Halogen and chalcogen bonding are clearly observed. 
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Introduction

Iodinated aromatic compounds are valuable synthetic inter-
mediates with reactivity higher than that of the correspond-
ing brominated and chlorinated aryl species, specifically in 
metalation reactions and metal catalyzed coupling reactions 
[1, 2]. Typically, however, iodinated intermediates are more 
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expensive than their brominated and chlorinated analogues.1 
In some cases, the desired iodine compounds are not com-
mercially available [3]. Consequently, research aimed at 
obtaining aromatic iodides has received much attention.

Relatively mild iodination methods using iodic acid in 
conjunction with iodine or potassium iodide have been 
employed with thiophene and thiophene derivatives [4–6] 
in order to iodinate the less reactive three and four positions 
needed for the synthesis of organic materials [7–10] and in 
particular diarylethene photochromes [11–16]. Other elec-
tron rich substrates are also employed [4–6]. The attempt 
at diiodination of 2-methylthiophene (1), as illustrated in 
Scheme 1, presents a method for acquisition of the highly 
desirable 3,5-diiodo-2-methylthiophene (2), expected to 
be more reactive than the bromine analogue [17, 18]. The 
constitutional isomer 4,5-diiodo-2-methlthiophene (3) has 
been posited as another diiodinated product [4], but it was 
not observed in our hands. Here we report the synthesis and 
characterization of 3,4,5-triiodo-2-methylthiophene (4), an 
unexpected byproduct of the diiodination of 2-methylthio-
phene. Crystallographic data shows the presence of halogen 
and chalcogen bonding.

Materials and Experimental Details

All chemicals were obtained commercially and used as 
received. 1H and 13C NMR spectra were acquired using a 
Varian Inova NMR spectrometer operating at 400 MHz for 
proton NMR and 100 MHz for carbon NMR. All spectra are 
referenced to the residual solvent peak of chloroform-d at 
7.26 ppm. Reagents were combined in air and the reaction 
was refluxed under a nitrogen atmosphere. Silica gel used 
for chromatography was 70–230 mesh. Melting points were 
obtained using a ThermoFisher Scientific IA9000 series 
digital melting point apparatus and are uncorrected.

General Synthetic Procedures

Small‑Scale Synthesis of 3,5‑Diiodo‑2‑Methylthiophene (2) 
and 3,4,5‑Triiodo‑2‑Methyl Thiophene (4)

This procedure is identical to that reported by Sevez and 
Pozzo [4]. To a 25 mL round bottom flask with reflux con-
denser was added 2-methylthiophene (0.500 g, 5.09 mmol), 
acetic acid (3.75 mL), chloroform (3.75 mL), and iodine 
(1.290 g, 5.09 mmol). With stirring, iodic acid (0.448 g, 
2.55 mmol) previously dissolved in water (1.25 mL) was 
added in portions over 5 min and the reaction was refluxed, 
under nitrogen, at 80 °C for 24 h. After cooling to room 
temperature, the reaction was diluted with hexane (30 mL). 
The hexane phase was collected and the aqueous phase 
was diluted with water (30 mL) and extracted with hexane 
(2 × 30 mL). The combined hexane phases were washed 
with water (30 mL), saturated aqueous sodium bicarbonate 
(1 × 30 mL), 10 wt% aqueous sodium thiosulfate (30 mL), 
and finally brine (30 mL). After drying over MgSO4, filtra-
tion, and removal of solvent, a clear, brown oil was obtained. 
By 1H NMR, the product yield was quantitative and two 
products, based on methyl peaks, were present. The products 
were adsorbed onto silica and separated by column chroma-
tography on silica eluting with hexane. The NMR spectra 
obtained for compound 2 were consistent the literature report 
as was the approximate yield [4]. White, needle-like X-ray 
quality crystals of 4 were obtained by slow evaporation of 
hexane. For compound 4: 1H NMR (500 MHz, CDCl3) δ 
2.55 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 146.36, 106.59, 
92.43, 78.23, 20.70.

Large‑Scale Synthesis of 3,5‑Diiodo‑2‑Methylthiophene (2) 
and 3,4,5‑Triiodo‑2‑Methyl Thiophene (4)

Larger scale reactions (one order of magnitude greater) can 
be run with product mixtures and spectral data identical to 
that obtained from the small scale reaction. Running a larger 
scale reaction presents the problem of separating compounds 
2 and 4, which have similar Rf values when chromatograph-
ing on silica eluting with hexanes.

Scheme 1   The iodination of 1 
can give a pair of diiodinated 
regioisomers 2 and 3. A triiodi-
nated side product, 4, however, 
is unexpectedly observed while 
compound 3 is not observed

1  A price comparison can be found in Table S3.
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X‑ray Crystallography

A single crystal of 4 was mounted on a glass fiber using 
Paratone oil under atmospheric conditions. X-ray diffrac-
tion data was collected on a Bruker SMART APEX2 CCD 
diffractometer installed on a rotating anode source (MoKα 
radiation, λ = 0.71073 Å), and equipped with an Oxford 
Cryosystems (Cryostream700) nitrogen gas-flow apparatus. 
The data were collected by the rotation method with a 0.5° 
frame-width (ω scan). Three sets of data (360 frames in each 
set) were collected, nominally covering complete reciprocal 
space. The structure was solved in the Olex2 [19] crystal-
lography program using the XT structure solution program 
[19] using the Intrinsic Phasing method and refined using 
the SHELXL refinement package [20] using least-squares 
minimization. Non-hydrogen atoms were refined anisotropi-
cally and hydrogen atoms were placed at idealized positions 
and then allowed to be freely refined. Analysis of residual 
electron density maps from initial refinements indicated the 
presence of crystallographic disorder between the 2-methyl 
and 5-iodo positions. The atoms of these two groups were 

exchanged leading to two distinct molecules of 4. The posi-
tions of the disordered groups were freely refined. The 
occupancies of the disordered methyl and iodo groups were 
constrained to be equivalent in each of the distinct molecules 
with the additional constraint that the sum of the occupan-
cies for both distinct molecules must sum to 1.0. Ultimately, 
the occupancies for the two disordered parts was determined 
to be approximately 0.55 and 0.45. A summary of the crys-
tallographic data and details of the structure refinements are 
listed in Table 1.

Results and Discussion

When the reaction illustrated in Scheme 1 is examined 
by TLC (polyester backed silica stationary phase, hexane 
mobile phase), two spots of similar Rf are clearly observed. 
However, the 1H NMR spectrum of the crude reaction 
(Fig. 1) does not match the expected pattern if those spots 
were due to a mixture of compounds 2 and 3; were this the 
case, two singlets should appear in the aromatic region. Only 
one singlet is observed at 7.08 ppm, which is consistent with 
the spectrum reported by Sevez and Pozzo [4] for compound 
2. However, two prominent singlets are observed in the ali-
phatic region at 2.55 ppm and 2.42 ppm with a ratio of 1:4.6, 
respectively. The peak at 2.42 ppm correlates with that of the 
methyl peak expected from compound 2 when integration is 
taken into account and according to the work by Sevez and 
Pozzo. However, the source for the peak at 2.55 ppm could 
not be immediately identified. While the 1H NMR spectra of 
various iodinated thiophenes has previously been reported, 
these spectra were run in carbon tetrachloride using a low 
field instrument in contrast to the 400 MHz instrument and 
chloroform-d solvent used in these experiments [21].

Fortuitously, a crystalline solid forms from the initially 
obtained viscous oil. While the obtained solid was impure, 
dissolution of the crude mixture and adsorption on silica fol-
lowed by chromatography on silica eluting with 100% hex-
anes allowed isolation this compound, which we observed 
had limited solubility in hexane and crystallized slowly as 
fractions were collected. The compound has a melting point 
of 97–98 °C, close to the reported melting point of approxi-
mately 100–101 °C reported separately by Steinkopf and 
Takahashi for 3,4,5,-triiodo-2-methylthiophene [21, 22] and 
identical to that reported by Gronowitz [23]. The obtained 
crystals were of X-ray quality and subjected to X-ray diffrac-
tion analysis, which showed that the anomalous product was 
indeed triiodinated compound 4 (Fig. 2). Compound 4 has 
no aromatic protons and the 1H NMR spectrum correlates 
with the crystal structure obtained from pure 4.

Compound 4 crystallizes in a herringbone type struc-
ture and exhibits crystallographic disorder between the 
2-methyl and 5-iodo positions. This leads to a model of two 

Table 1   Summary of X-ray crystallographic data for 3,4,5,-triiodo-
2-methylthiophene (4)

CCDC no.

Empirical formula C5H3I3S
Formula weight (g mol−1) 475.83
Temperature (K) 90
Wavelength (A) 0.71073
Crystal system Monoclinic
Space group P21/c
Unit cell dimensions
 a, Å 16.4183(10)
 b, Å 4.1971(3)
 c, Å 14.3888(9)

β, ° 111.4442(14)
Volume (Å3) 922.88(10)
Z 4
Dcalc (g cm−3) 3.425
µ(MoKα) mm−1 10.307
F(000) 832.0
2θ range (°) 5.332–62.018
Index ranges − 23 ≤ h ≤ 23

− 5 ≤ k ≤ 5
− 20 ≤ l ≤ 19

Reflections collected/unique (Rint) 18,676
Data/parameters 2760/0/103
Goodness-of-fit on F2 1.092
Refinement method Least-squares minimization
Final R indices [I > 2σ(l)] R1 = 0.0188, wR2 = 0.0438
R indices (all data) R1 = 0.0203, wR2 = 0.0448
Largest diff. peak and hole (e/Å3) 1.23/− 1.20
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distinct molecules of 4 where the atoms of the 5-iodo and the 
2-methyl groups are exchanged. When measuring the bond 
lengths of C(3)–I(1) and C(4)–I(2), distances of 2.085(12) 
Å and 2.081(2) Å, respectively, are observed. These lengths 
are identical to those reported by Allen and coworkers for 
Car–I bonds when standard deviations are taken into account 
[24]. The bonds C(2)–I(3A) and C(5)–I(3) are shorter at 
2.012(2) Å and 2.026(2) Å, respectively, likely due to the 
effects of non-covalent interaction between sulfur atoms and 
neighboring iodine atoms.

When examining short contacts and the resultant bond 
angles, evidence supporting halogen bonding [25] and chal-
cogen bonding [26] is observed. The first set of halogen and 
chalcogen bonds forms a tetramer of 4 (Fig. 3). At 3.673 
and 3.826 Å, the non-covalent I2–I3 and I3–I3 interactions, 
respectively, are shorter than the sum of the van der Waals 
radii [27] at 3.96 Å for an iodine–iodine interaction. With a 
C5–I3–I2 bond angle of 168.01°, the interaction is consistent 
with the σ-hole [28] of I3 interacting with the lone pairs on 
I2. The remaining close contact of the tetramer is formed 
between S1 and I2 with a distance of 3.615 Å—shorter than 

the van der Waals distance of 3.78 Å for S–I. The C4–I2–S 
bond angle of 171.37° suggests that the sulfur lone pair are 
interacting with the σ-hole of I2.

The tetramers also exhibit lateral short I1–I1 contacts of 
3.771 Å (Fig. 4). These interactions form a zig-zag chain 
that propagates parallel to (010). Similar to above, the σ-hole 
of I1 appears to be interacting with the lone pairs on the 
neighboring I1 atoms.

Conclusions

Using X-ray crystallography and standard spectroscopic 
techniques, we were able to correct an oversight in the lit-
erature. As shown in Scheme 1, the literature supposes that 
the products obtained from iodination of 2-methylthioh-
phene are 2 and 3 as opposed to 2 and 4. The presence of 
4 is confirmed by single crystal diffraction methods while 
the absence of 3 is determined by the 1H NMR spectrum 
of the crude product mixture. As iodinated compounds are 
useful intermediates and starting material, we imagine that 

Fig. 1   Crude 1H NMR of the iodination reaction of 2-methylthiophene with proton peaks, integration, and chemical shifts labeled. The residual 
solvent peak is used as an internal standard
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compound 4, obtained by relatively mild methods, could 
find use in the field of organic materials. The observed 
halogen and chalcogen bonds will add to our understand-
ing of these non-covalent interactions and potentially find 
applications in materials engineering [29–31], biological 
applications [32–34], and recently in separation methods 
[35].

Supplementary Information

NMR spectra, 1H and 13C, for 3,4,5-triiodo-2-methyl thio-
phene. CCDC 1860825 contains the supplementary crys-
tallographic data for this paper; this data can be obtained 
free of charge via http://www.ccd.cam.ac.uk/conts​/retri​
eving​.html or from CCDC, 12 Union Road, Cambridge 
CB21EZ, UK; Fax: +44-1223-336033; Email: deposit@
ccdc.cam.ac.uk.

Fig. 2   The crystal structure of 3,4,5-triiodo-2-methylthiophene (2) 
with both the major and minor species shown superimposed (top) . 
The structure of the major disorder species where C2–I3A and C5–
C1A bonds are not shown (bottom left); the structure of the minor 
disorder species where C2–I3A and C5–C1A bonds are shown (bot-
tom right). Thermal ellipsoids are shown at 50% and hydrogen atoms 
are omitted for clarity

Fig. 3   The tetramer of 4 with 
halogen and chalcogen bonds 
and bond lengths denoted

http://www.ccd.cam.ac.uk/conts/retrieving.html
http://www.ccd.cam.ac.uk/conts/retrieving.html
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