

Subscriber access provided by UNIVERSITY OF CONNECTICUT

Article

Hypervalent Iodine(III)-Promoted Phenyl Transfer Reaction from Phenyl Hydrazides to Nitriles

Yan Yan, Zhiguo Zhang, Yameng Wan, Guisheng Zhang, Nana Ma, and Qingfeng Liu J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.7b01215 • Publication Date (Web): 07 Jul 2017 Downloaded from http://pubs.acs.org on July 7, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Hypervalent Iodine(III)-Promoted Phenyl Transfer Reaction from Phenyl Hydrazides to Nitriles

Yan Yan,^a Zhiguo Zhang,^{*a,b} Yameng Wan,^a Guisheng Zhang,^{*a} Nana Ma,^a Qingfeng Liu^a

^a Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.

* Fax: (+86)-373-332-5250; E-mail: zhangzg@htu.edu.cn or zgs6668@yahoo.com

^b Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Jilin, Changchun, 130024, P. R. China

Abstract: A useful transformation of nitriles to *N*-phenyl amides has been achieved through a novel intermolecular phenyl transfer reaction from phenyl hydrazides and *N*-addition to nitriles in the presence of PIFA under mild and solvent-free conditions. This cross-coupling reaction includes the oxidative cleavage of sp^2 C-N bonds of phenylhydrazides to form a phenyl radical and the subsequent *N*-addition to cyanos to form new sp^2 C-N bonds, and provides efficient access to various *N*-phenyl amides in moderate to good yields under mild reaction conditions.

Keywords: Phenyl hydrazides; Nitrile *N*-addition; Phenyl transfer reaction; Cross-coupling; Hypervalent iodine; PIFA; Primary amides

INTRODUCTION

Nitriles are commercially available and commonly used for functional group conversions in organic reactions, including the formation of amides, aldehydes, carboxyl derivatives, amines, and

heterocycles.¹⁻⁷ When nitriles react with any donors, such as sodium ary sulfinates,⁸ ary sulfinic acids.^{9,10} potassium aryltrifluoroborates.¹¹ arylboronic acids.¹²⁻¹⁶ aryl iodides.¹⁷ and arenes.¹⁸ the arylketone or ketimine products are afforded via an aryl transfer reaction, frequently in the presence of transition-metal catalysts (Scheme 1, a). These C-addition reactions directly add the aryl group to the carbon atom of the cyano group. However, a review of the literature showed that a direct N-addition reaction by tethering the aryl and nitrile portion to afford amides or their analogs is relatively rare. To the best of our knowledge, only two examples of this type reaction have been reported, and both involve copper catalysis. In 2013, Chen and co-workers¹⁹ established a regioselective [2+2+2] cyclization for the synthesis of substituted quinolines, involving a diaryliodonium salt, a nitrile, and an alkyne. The aryl group of the diaryliodoniums served as the aryl source in this three-component reaction. The reaction proceeded through a key Nphenylnitrilium intermediate, which upon hydrolysis gave the anilides (only one case was listed in their work) or formal [4+2] annulation to the quinolines via direct N-addition assisted by Cu(OTf)₂ (Scheme 1, b). Soon after, they found that this aryl transfer reaction could be extended to the preparation of tricyclic quinolines starting from an alkyne and nitriles.²⁰ In light of the above results, we were interested in developing a new route using both the aryl and nitrile portions as the reaction partners to construct a new carbon-nitrogen bond in the presence of non-metallic reagents under mild and green conditions. We now present the first example of furnishing N-phenyl amides via [bis-(trifluoroacetoxy)iodo]benzene (PIFA)-promoted intermolecular direct N-addition of a phenyl radical (generated in situ from phenyl hydrazides) to nitriles under solvent-free conditions at 40 °C (Scheme 1, c).

C-Addition reactions:

 $\begin{array}{c} \text{Ar}-\text{LG} + \text{N} \equiv \text{C}-\text{R} & \xrightarrow{\text{Transition-metal catalyst}} & \text{O(NH)} \\ \text{LG} = \text{leaving group} = -\text{SO}_2\text{Na; -SO}_2\text{H; -CO}_2\text{H; -BF}_3\text{K; -B(OH)}_2; \\ -\text{I; -H. R} = \text{alkyl, aryl.} \end{array}$ (a)

The Journal of Organic Chemistry

Scheme 1. C/N-Addition reaction of aryl and nitrile portion.

Hydrazines and their analogs are versatile synthetic building blocks in the construction of various nitrogen-containing compounds in organic chemistry.²¹⁻²⁸ It is well-known that dehydrogenation of aryl hydrazines by a variety of oxidants will produce arenes and nitrogen via a transient aryl diazene (Scheme 2).²⁹⁻³¹ Hydrazine derivatives can serve as an aryl donorin the presence of a palladium catalyst,³²⁻³⁵ as well as donor of sulfonyl,³⁶⁻³⁸ amino³⁹ and other groups^{40,41} in transfer reactions to construct new C-C, C-P, C-S, and C-N bonds by cleavage of the hydrazide linker. However, new methods which proceed efficiently under relatively mild and catalytic reaction conditions are in high demand.

Scheme 2. Oxidative cleavage of an aryl hydrazide.

RESULTS AND DISCUSSION

Very recently, we developed⁴² a PIFA-promoted ring-closing reaction for the synthesis of spirocyclopropane quinolinediones in good to excellent yields from readily available 2,2-disubstituted-2-benzoylacetamides under mild conditions. The spirocyclopropane quinolinedione products can readily convert to pyrrolo[3,2-*c*]quinolinones via an intermolecular amine ring-opening cyclization reaction. Based on our recent research⁴²⁻⁴⁶ and that of others^{19,20} related to the synthesis of nitrogen-containing functional small molecules, it was envisioned that *N*'-

 phenylacetohydrazide (1) would react with nitriles (2) leading to *N*-phenylamides (3) via intermolecular direct *N*-addition (Scheme 1, c).

Initially, several solvents were screened for the reaction, including CH₂Cl₂, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), methamol (CH₃OH), 2,2,2-trifluoroethanol (TFE), hexafluoroisopropanol (HFIP), and ethyl acetate (EtOAc). It was found that the rate of the reaction gradually accelerated as the CH₂Cl₂ (1 mL) evaporated. The desired product **3a** was isolated in 69% yield as a white solid when we treated the mixture of 1a (0.3 mmol) and 2a (0.6 mmol) with 1.5 equivalent of PIFA at 40 °C (Table 1, entry 1). However, none of compound 3a was obtained in other higher boiling-point solvents under the same conditions, and mostly starting material 1a was recovered. These observations indicate that increasing the concentration of the reactants is favourable for this phenyl transfer reaction. Therefore, we decided to carry out the reaction in the absence of solvent. To our delight, the desired product **3a** was isolated in 76% yield, along with 16% of N'-acetyl-N'-phenyl-acetohydrazide (4a) generated from 1a (Table 1, entry 3).⁴⁷ Further investigation revealed that increasing the amount of PIFA had almost no effect on the yield of 3a (Table 1, entry 4), but a significantly lower yield of **3a** was obtained if we decreased the amount of PIFA to 1.0 equivalent (Table 1, entry 2). In addition, we found that it was detrimental to the transformation if the amount of 2a was reduced (Table 1, entries 5 and 6). Similar results were observed during temperature optimization experiments (Table 1, entries 7 and 8). Further investigation was carried out into other oxidants including PIDA, PhIO, and IBX. All of these showed a lower oxidative activity than PIFA, and mostly starting material 2a was recovered (Table 1, entries 9–11).

-			reagent(equiv)			
-	1 ^{<i>b</i>}	2.0	PIFA (1.5)	40	69	19
	2	2.0	PIFA (1.0)	40	55	26
	3	2.0	PIFA (1.5)	40	76	16
	4	2.0	PIFA (2.0)	40	78	13
	5	1.0	PIFA (1.5)	40	23	35
	6	1.5	PIFA (1.5)	40	39	32
	7	2.0	PIFA (1.5)	25	39	34
	8	2.0	PIFA (1.5)	55	62	15
	9 ^c	2.0	PIDA (1.5)	40	trace	53
	10^d	2.0	PhIO (1.5)	40	trace	59
	11^e	2.0	IBX (1.5)	40	0	56

^{*a*} Unless otherwise indicated, all reactions were carried out with **1a** (0.3 mmol) for 3 h under solvent-free conditions; ^{*b*} Reaction was performed in CH₂Cl₂ (1 mL). ^{*c*} 88% of **2a** was recovered. ^{*d*} 90% of **2a** was recovered. ^{*e*} 87% of **2a** was recovered.

The optimal conditions were established as a ratio of **1**, **2** and PIFA of 1:2:1.5 at 40 °C for this phenyl transfer process (Table 1, entry 3). The scope of the reaction was then inbestigated, and the results are summarized in Table 2. The scope of nitriles **2** was investigated first (entries 1-21 in Table 2). A phenyl group (**2e**) and a variety of phenyl groups substituted with electron-donating groups (EDGs, e.g. Me and OMe) (**2a–d**) and electron-withdrawing groups (EWGs, e.g. Cl and CO₂Et) (**2f–j**) at the *ortho-*, *meta-*, or *para-*positions were well tolerated, and afforded the corresponding primary amides **3a–j** in 36–76% yields. The reaction also proceeded well with furan-2-carbonitrile (**2k**), thiophene-2-carbonitrile (**2l**), and 1-methyl-1*H*-pyrrole-2-carbonitrile (**2m**), and afforded the desired products (**3k–m**) in 36–71% yield. Aliphatic-substituted nitriles were more active, and a range of amides **3n–p** were isolated in 68–79% yields. It is noteworthy that this method has been proven to be efficient for the synthesis of some useful *α*-substituted

primary amides, including 2-cyano-*N*-phenylacetamide (**3q**), *N*-2-diphenylacetamide (**3r**), and methyl 3-oxo-3-(phenylamino)propanoate (**3s**), with a lower loading of **2** (1.5 equiv). The case of **3q** is expecially interesting, as this application demonstrated high chemoselectivity, and no double *N*-addition product was detected by LCMS. Moreover, the reaction also proceeded smoothly to afford the desired products **3t** and **3u** in moderate yields without affecting the alkenyl and carbonyl functional groups at the α -position.

	R^{1} N^{N} R^{2} +	R ³ −CN Solvent-free, 40 °C 2a	0 R ³ H R ² + 3	$\mathbf{R}^{1} \overset{\mathbf{O} \searrow \mathbf{R}^{1}}{\underset{\mathbf{H}}{\overset{\mathbf{N}}} \overset{\mathbf{N}}{\underset{\mathbf{R}^{2}}{\overset{\mathbf{N}}}} \mathbf{R}^{2}}$	
Entry	Substrates 1	Substrates 2	Time(h)	3: Yield	4: Yield
Entry	Subbluttes			(%)	(%)
1	1a	Meo CN 2a	3	3a : 76	4a : 16
2	1a	MeoCN 2b	3	3b : 63	4a : 25
3	1a	CN 2c	2	3c : 39	4a : 42
4	1a	2d	2	3d : 55	4a : 25
5	1a	2e	2	3e : 53	4a : 29
6	1a	ci CN 2f	2	3f : 41	4a : 35
7	1a		2	3g : 36	4a : 38
8	1a	EtO ₂ C ^{CN} 2h	2	3h : 36	4a : 43
9	1a	EtO ₂ C CN 2i	2	3i : 45	4a : 30

TABLE 2. Extension of the substrate scope^a

Page 7 of 21

10	1a	CO ₂ Et CN 2j	2	3j : 41	4a : 33
11	1a	⁰ ^{CN} 2k	2	3k : 71 ^b	4a : 19
12	1a	s) د د د د د د د د د د د د د د د د د د د	2	31 : 62 ^b	4a : 24
13	1a	х СN 2m	2	3m : 36	4a : 45
14	1a	_ ^{CN} 2n	2	3n : 79 ^{<i>b</i>}	4a : 12
15	1a	~~~ ^{CN} 20	2	30 : 68 ^b	4a : 24
16	1a	՝ → ^{cn} 2p	2	3p : 69 ^b	4a : 22
17	1a	NC CN 2q	2	3q : 74 ^{<i>b</i>}	4a : 16
18	1a	^{Ph} ~ ^{CN} 2r	2	3r : 72 ^{<i>b</i>}	4a : 19
19	1a	EtO ₂ C CN 2s	2	3s : 59 ^b	4a : 29
20	1a	Ph CN 2t	2	3t : 57 ^b	4a : 27
21	1a	PhyCN O 2u	2	3u : 54 ^b	4a : 31
22	$H_{2N}, N \in \mathbf{1b}$	2a	3	3a : 49	
23	Ph H N, N, Ph 1c	2a	3	3a : trace ^{c}	4c : 0
24	OMe 1d	2a	3	3ad : 0 ^d	4d : 59 ^e
25	N ^H CF ₃ 1e	2a	2	3ae : 54 ^d	4e : 23
26		2a	2	3af : 69	4f : 11
27	of H	2a	3	3a : 67	4g : 0

^{*a*} Unless otherwise indicated, all reactions were carried out with **1** (0.3 mmol), **2a** (0.6 mmol) and PIFA (0.45 mmol) under solvent-free conditions at 40 °C. ^{*b*} 1.5 mmol of **2** was used. ^{*c*} Complex mixture was observed. ^{*d*} The reaction was performed at 80 °C. ^{*e*} Mixture of *N*-acetyl-*N*'-(4-methoxyphenyl)acetohydrazide and *N*'-acetyl-*N*'-(4-methoxyphenyl)acetohydrazide in a ratio of 2:1.

Encouraged by the above-mentioned results (entries 22–21), the scope of the direct N-addition protocol was further expanded using various hydrazides 1 (entries 22–29, Table 2). We observed that phenylhydrazine 1b only gave the desired 3a in 49% yield (entry 22). Starting materials 1c and 1d converted to the oxidative dehydrogenation products 4c and 4d in the yields of 0% and 59%, respectively, instead of compounds 3a and 3ad (entries 23 and 24). The substrate with a CF₃ group on the benzene was transformed to the corresponding cross-coupled amide **3ae** in 54% yield (entry 25). To our delight, the *tert*-butyl group on 1f was also easily transferred to the nitrile, and gave **3af** in 69% yield (entry 26). Several other sulfamides 1g-i were also successfully reacted, and product 3a was obtained in 59-72% (entries 27-29). It should be noted that the relatively low yields of products 3 were due to the formation of the diacetylhydrazine 4, which was generated from starting material 1. Several control experiments were performed to clarify the mechanism for this by-product formation. It was found that an oxidative dehydrogenation intermediate 5a was afforded in 63% yield when we treated compound 1a (1.0 equiv) in MeCN (5.0 equiv) at 0 °C for 5 min in the presence of 1.5 equiv of PIFA (Eq. 1).⁴⁸ The isolated intermediate 5a was then smoothly transformed to the desired compound **3n** in 85% yield under the optimized conditions, without the formation of by-product 4a (Eq. 2). A blank experiment performed with 1a in the absence of carbonitriles 2 under the optimized conditions afforded by-product 4a in 82% yield (Eq. 3). These observation indicated that 4a was being formed directly form 1a, not from 5a. Furthermore, a

separate experiment performed under an atmosphere of N₂ still proceeded smoothly to give the target compound **3a** in 71% yield (Eq. 4). This observation indicates that the oxygen atom of **2** may come from the PIFA.^{29-31,49} To further clarify the source of the nitrogen atom in the product **3**, an experiment was conducted using **1a** (1.0 equiv) and ¹⁵N-labeled MeC¹⁵N (5.0 equiv) under the optimized conditions (Eq. 5). Mass spectrometry (MS) analysis suggested that ¹⁵N was incorporated in product **3**, which indicated that the CN group served as the nitrogen donor and attacked to the phenyl group of the phenyl hydrazides. Radical trapping experiments were also conducted to determine whether a radical process was involved in this reaction (Table 3). It was found that compound **3a** could be isolated in 19% and 22% yield in the presence of one equivalent of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and 1,1-diphenyltehylene, respectively, under the optimized conditions. However, none of **3a** was generated with *N-tert*-butyl-alpha-phenylnitrone (PBN) and galvinoxyl. These results indicate that radicals might be involved in the transformation.⁵⁰⁻⁵³

$$1a + MeCN \xrightarrow{\text{PIFA (1.5 equiv)}}_{\text{Solvent-free, 0 °C, 5 min}} 3n + \underbrace{\bigcirc}_{0\%} N_{\text{Ph}} (1)$$

$$5a + MeCN \xrightarrow{\text{PIFA (1.5 equiv)}}_{\text{Solvent-free, 40 °C, 2 h}} 3n (2)$$

$$1a \xrightarrow{\text{PIFA (1.5 equiv)}}_{\text{Solvent-free, 40 °C, 2 h}} 4a (3)$$

$$1a + 2a \xrightarrow{\text{PIFA (1.5 equiv)}}_{\text{Solvent-free, 40 °C, 2.5 h}} 3a (4)$$

$$1a + MeC^{15}N \xrightarrow{\text{PIFA (1.5 equiv)}}_{\text{Solvent-free, 40 °C, 2 h}} \underbrace{\bigwedge}_{H} 3a (4)$$

$$1a + MeC^{15}N \xrightarrow{\text{PIFA (1.5 equiv)}}_{\text{Solvent-free, 40 °C, 2 h}} 5a (4)$$

$$1a + MeC^{15}N \xrightarrow{\text{PIFA (1.5 equiv)}}_{\text{Solvent-free, 40 °C, 2 h}} (4)$$

TABLE 3. Radical trapping experiments

Based on the results of these control experiments and information from previous work, a plausible mechanism is proposed in Scheme 3. Initially, phenylhydrazide **1a** is oxidized by the oxidant PIFA to form dehydrogenation intermediate **5**, which is subsequently decomposed into phenyl radical \mathbf{A} .^{29-31,49} The radical \mathbf{A} reacts intermolecularly with **2a** to form a new radical intermediate \mathbf{B} .¹⁹ This intermediate is then oxidized to give the non-isolable positively charged imine ion \mathbf{C} ,^{54,55} which is trapped by a free ligand delivered by PIFA. This result in the formation of the non-isolable carbocation \mathbf{D} ,⁵⁴ and subsequently leads to the amide **3a** after workup. It should be noted that, byproduct **4a** might be formed from the acetyl radical (MeCO·) and **1** via a radical coupling reaction.

$$\begin{array}{c} \stackrel{O}{\underset{H}{\longrightarrow}} \stackrel{H}{\underset{Ia}{\longrightarrow}} \stackrel{PIFA}{\underset{[O]}{\longrightarrow}} \stackrel{O}{\underset{N^{\times}}{\longrightarrow}} \stackrel{N^{\times}Ph}{\underset{N^{\times}}{\longrightarrow}} \stackrel{Ph}{\underset{N^{\times}}{\longrightarrow}} \stackrel{Ph}{\underset{N^{\times}}{\longrightarrow}} \stackrel{Ph}{\underset{R^{3}}{\longrightarrow}} \stackrel{Ph}{\underset{N^{\times}}{\longrightarrow}} \stackrel{Ph}{\underset{R^{3}}{\longrightarrow}} \stackrel{O}{\underset{N^{\times}}{\longrightarrow}} \stackrel{Ph}{\underset{N^{\times}}{\longrightarrow}} \stackrel{O}{\underset{R^{3}}{\longrightarrow}} \stackrel{Ph}{\underset{N^{\times}}{\longrightarrow}} \stackrel{Ph}{\underset{N^{\times}}{\longrightarrow}} \stackrel{O}{\underset{R^{3}}{\longrightarrow}} \stackrel{Ph}{\underset{N^{\times}}{\longrightarrow}} \stackrel{Ph}{\underset{N^{\times}}{\longrightarrow} \stackrel{Ph}{\underset{N^{\times}}{\longrightarrow}} \stackrel{Ph}{\underset{N^{\times}}{\longrightarrow}} \stackrel{Ph}{\underset{N^{\times}}{\longrightarrow} \stackrel{Ph}{\underset{N^{\times}}{\longrightarrow}} \stackrel{Ph}{\underset{N^{\times}}{\longrightarrow} \stackrel{Ph}{\underset{N^{\times}}{\longrightarrow}} \stackrel{Ph}{\underset{N^{\times}}{\longrightarrow} \stackrel{Ph}{\underset{N^{\times}}{\longrightarrow}} \stackrel{Ph}{\underset{N^{\times}}{\longrightarrow} \stackrel{Ph}{\underset{N^{\times}}{\underset{N^{\times}}{\longrightarrow} \stackrel{Ph}{\underset{N^{\times}}{\longrightarrow} \stackrel{Ph}{\underset{N^{\times}}{\underset{N^{\times}}{\longrightarrow}$$

Scheme 3. Proposed mechanism.

CONCLUSION

A PIFA-promoted intermolecular tandem amidation and successive oxidation reaction of phenyl hydrazides and nitriles was developed for the synthesis of various secondary amide derivatives. Advantages of this aryl transfer reaction over existing methods include the use of metal-free reagents, readily available starting materials, good yields, and the drug-like nature of the products.

EXPERIMENTAL SECTION

General Remarks. All reactions were carried out under air atmosphere, unless otherwise indicated. Other all reagents were purchased from commercial sources and used without further

The Journal of Organic Chemistry

treatment, unless otherwise indicated. Petroleum ether (PE) used refers to the 60-90 °C boiling point fraction of petroleum. ¹H NMR and ¹³C NMR spectra were recorded on Bruker Avance/600 (¹H: 600 MHz, ¹³C: 150 MHz at 25 °C) or Bruker Avance/400 (¹H: 400 MHz, ¹³C: 100 MHz at 25 °C) and TMS as internal standard. Data are represented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, dd = double doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz). All high-resolution mass spectra (HRMS) were measured on a mass spectrometer by using electrospray ionization (ESI-oa-TOF), and the purity of all samples used for HRMS (>95%) were confirmed by ¹H NMR and ¹³C NMR spectroscopic analysis. Melting points were measured on a melting point apparatus equipped with a thermometer and were uncorrected. All reactions were monitored by TLC with GF254 silica gel coated plates. Flash chromatography was carried out on SiO₂ (silica gel 200–300 mesh).

Typical experimental procedure for 3 (3a as an example): To a tube was added N'phenylacetohydrazide 1a (45 mg, 0.3 mmol), 4-methoxybenzonitrile 2a (80 mg, 0.6 mmol), and PIFA (194 mg, 0.45 mmol). The mixture was well stirred for 3 h at 40 °C (the whole process was closely monitored by TLC). After cooling, the reaction mixture was purified by a flash silica gel column chromatography with ethyl acetate and PE eluent to give *N*-(4as methoxyphenyl)benzamide **3a** as white solid (52 mg, 76%).

4-methoxy-N-phenylbenzamide (*3a*).⁵⁶ The product was isolated by flash chromatography (eluent: PE/EA = 20/1) as a white solid (52 mg, 76%). mp 165-167 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.8 Hz, 2H), 7.71 (s, 1H), 7.63 (d, *J* = 7.6 Hz, 2H), 7.37 (t, *J* = 7.6 Hz, 2H), 7.14 (t, *J* = 7.6 Hz, 1H), 6.98 (d, *J* = 8.8 Hz, 2H), 3.88 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 162.6, 138.3, 129.2, 129.0, 127.3, 124.5, 120.6, 114.1, 55.6. HRMS (ESI), *m/z* calcd. for C₁₄H₁₃NO₂Na ([M+Na]⁺) 250.0838, found: 250.0838.

3-methoxy-N-phenylbenzamide (**3b**).⁵⁷ The product was isolated by flash chromatography (eluent: PE/EA = 20/1) as a white solid (43 mg, 63%). mp 111-114 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.64 (d, *J* = 7.6 Hz, 2H), 7.45 (s, 1H), 7.41-7.34 (m, 4H), 7.16 (t, *J* = 7.6 Hz, 1H),

7.11-7.08 (m, 1H), 3.88 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 160.2, 138.0, 136.7, 130.0, 129.3, 124.8, 120.3, 118.8, 118.2, 112.7, 55.7. (One carbon is not observed). HRMS (ESI), *m/z* calcd. for C₁₄H₁₃NO₂Na ([M+Na]⁺) 250.0838, found: 250.0843.

2-methoxy-N-phenylbenzamide (*3c*).⁵⁷ The product was isolated by flash chromatography (eluent: PE/EA = 50/1) as a white solid (26 mg, 39%). mp 75-76 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 8.30 (dd, *J* = 7.6, 2.0 Hz, 1H), 7.68 (d, *J* = 7.6 Hz, 2H), 7.51-7.48 (m, 1H), 7.37 (t, *J* = 8.0 Hz, 2H), 7.16-7.11 (m, 2H), 7.04 (d, *J* = 8.0 Hz, 1H), 4.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 157.4, 138.6, 133.4, 132.7, 129.1, 124.3, 121.9, 120.6, 111.7, 56.4. HRMS (ESI), *m/z* calcd. for C₁₄H₁₃NO₂Na ([M+Na]⁺) 250.0838, found: 250.0842.

4-methyl-N-phenylbenzamide (*3d*).⁵⁶ The product was isolated by flash chromatography (eluent: PE/EA = 20/1) as a white solid (35 mg, 55%). mp 140-143 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.77 (d, *J* = 7.8 Hz, 3H), 7.64 (d, *J* = 7.8 Hz, 2H), 7.37 (t, *J* = 7.2 Hz, 2H), 7.29 (d, *J* = 7.8 Hz, 2H), 7.15 (t, *J* = 7.8 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 142.6, 138.1, 132.3, 129.6, 129.2, 127.2, 124.6, 120.2, 21.6. (One carbon is not observed). HRMS (ESI), *m/z* calcd. for C₁₄H₁₃NONa ([M+Na]⁺) 234.0889, found: 234.0883.

N-phenylbenzamide (*3e*).⁵⁶ The product was isolated by flash chromatography (eluent: PE/EA = 20/1) as a white solid (31 mg, 53%). mp 164-167 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 6.8 Hz, 2H), 7.83 (s, 1H), 7.65 (d, *J* = 7.6 Hz, 2H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.49 (t, *J* = 7.2 Hz, 2H), 7.38 (t, *J* = 7.6 Hz, 2H), 7.16 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 165.9, 138.1, 135.2, 132.0, 129.3, 129.0, 127.2, 124.7, 120.3. HRMS (ESI), *m/z* calcd. for C₁₃H₁₁NONa ([M+Na]⁺) 220.0733, found: 220.0741.

4-chloro-N-phenylbenzamide (*3f*).⁵⁶ The product was isolated by flash chromatography (eluent: PE/EA = 20/1) as a white solid (28 mg, 41%). mp 192-193 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.4 Hz, 2H), 7.74 (s, 1H), 7.62 (d, *J* = 7.6 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.38 (t, *J* = 7.6 Hz, 2H), 7.17 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 138.3, 137.8, 133.5, 129.3, 129.2,

128.6, 125.0, 120.4. (One carbon is not observed). HRMS (ESI), *m/z* calcd. for C₁₃H₁₀ClNONa ([M+Na]⁺) 254.0343, found: 254.0337.

2,6-dichloro-N-phenylbenzamide (**3g**).⁵⁸ The product was isolated by flash chromatography (eluent: PE/EA = 30/1) as a white solid (29 mg, 36%). mp 140-143 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 7.6 Hz, 2H), 7.45-7.34 (m, 5H), 7.33-7.29 (m, 1H), 7.20 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 162.5, 137.3, 136.1, 132.6, 131.1, 129.4, 128.4, 125.4, 120.5. HRMS (ESI), *m/z* calcd. for C₁₃H₉Cl₂NONa ([M+Na]⁺) 287.9953, found: 287.9953.

methyl 4-(phenylcarbamoyl)benzoate (3h).⁵⁹ The product was isolated by flash chromatography (eluent: PE/EA = 20/1) as a white solid (24 mg, 32%). mp 184-187 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.4 Hz, 2H), 7.93 (d, *J* = 8.8 Hz, 2H), 7.81 (s, 1H), 7.65 (d, *J* = 7.6 Hz, 2H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.18 (t, *J* = 7.6 Hz, 1H), 3.96 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 166.3, 139.0, 137.7, 133.2, 130.2, 129.3, 127.2, 125.1, 120.4, 52.6. HRMS (ESI), *m/z* calcd. for C₁₅H₁₃NO₃Na ([M+Na]⁺) 278.0788, found: 278.0793.

methyl 3-(phenylcarbamoyl)benzoate (3i).⁶⁰ The product was isolated by flash chromatography (eluent: PE/EA = 20/1) as a white solid (34 mg, 45%). mp 131-133 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1H), 8.22 (d, *J* = 7.6 Hz, 1H), 8.14 (d, *J* = 7.6 Hz, 1H), 7.88 (s, 1H), 7.67 (d, *J* = 7.6 Hz, 2H), 7.60 (t, *J* = 7.6 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.18 (t, *J* = 7.6 Hz, 1H), 3.97 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 166.4, 137.8, 135.5, 132.9, 132.2, 130.8, 129.4, 127.6, 125.0, 120.5, 52.6. HRMS (ESI), *m/z* calcd. for C₁₅H₁₃NO₃Na ([M+Na]⁺) 278.0788, found: 278.0792.

methyl 2-(phenylcarbamoyl)benzoate (3j).⁶¹ The product was isolated by flash chromatography (eluent: PE/EA = 10/1) as a white solid (31 mg, 41%). mp 110-113 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.2 Hz, 1H), 7.70-7.56 (m, 5H), 7.53 (s, 1H), 7.37 (t, *J* = 6.2 Hz, 2H), 7.16 (t, *J* = 6.3 Hz, 1H), 3.87 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.4, 167.3, 138.4, 138.1, 132.4, 130.5, 130.1, 129.3, 129.1, 127.9, 124.8, 120.2, 52.9. HRMS (ESI), *m/z* calcd. for C₁₅H₁₃NO₃Na ([M+Na]⁺) 278.0788, found: 278.0789.

N-phenylfuran-2-carboxamide (**3k**).^{56,62} The product was isolated by flash chromatography (eluent: PE/EA = 20/1) as a white solid (40 mg, 71%). mp 123-125 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.65 (d, *J* = 7.6 Hz, 2H), 7.52 (m, 1H), 7.37 (t, *J* = 7.2 Hz, 2H), 7.24 (m, 1H), 7.15 (t, *J* = 7.6 Hz, 1H), 6.57 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 156.2, 147.9, 144.3, 137.5, 129.3, 124.7, 120.0, 115.4, 112.8. HRMS (ESI), *m/z* calcd. for C₁₁H₉NO₂Na ([M+Na]⁺) 210.0525, found: 210.0547.

N-phenylthiophene-2-carboxamide (31).^{56,62} The product was isolated by flash chromatography (eluent: PE/EA = 30/1) as a white solid (38 mg, 62%). mp 140-143 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.62 (m, 3H), 7.60 (s, 1H), 7.56-7.54 (m, 1H), 7.37 (t, *J* = 7.2 Hz, 2H), 7.17-7.13 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 160.0, 137.7, 130.9, 129.3, 128.6, 128.0, 124.8, 120.3. HRMS (ESI), *m/z* calcd. for C₁₁H₉NONaS ([M+Na]⁺) 226.0297, found: 226.0298.

1-methyl-N-phenyl-1H-pyrrole-2-carboxamide (*3m*).⁶² The product was isolated by flash chromatography (eluent: PE/EA = 10/1) as a white solid (22 mg, 36%). mp 114-116 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.6 Hz, 3H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.11 (t, *J* = 7.6 Hz, 1H), 6.81-6.77 (m, 1H), 6.70-6.69 (m, 1H), 6.16-6.14 (m, 1H), 3.98 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 138.2, 129.2, 129.0, 124.2, 120.8, 120.1, 112.2, 107.6. HRMS (ESI), *m/z* calcd. for C₁₂H₁₂N₂ONa ([M+Na]⁺) 223.0842, found: 223.0844.

N-phenylacetamide (*3n*).⁵⁶ The product was isolated by flash chromatography (eluent: PE/EA = 5/1) as a white solid (32 mg, 79%). mp 113-116 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 1H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.30 (t, *J* = 8.0 Hz, 2H), 7.10 (t, *J* = 7.6 Hz, 1H), 2.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 139.3, 128.6, 122.9, 119.0, 24.0. HRMS (ESI), *m/z* calcd. for C₈H₉NONa ([M+Na]⁺) 158.0576, found: 158.0574.

N-phenylpentanamide (*3o*).⁵⁶ The product was isolated by flash chromatography (eluent: PE/EA = 10/1) as a white solid (36 mg, 68%). mp 60-62 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 7.6 Hz, 2H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.20 (s, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 2.36 (t, *J* = 7.2 Hz, 2H), 1.77-1.67 (m, 2H), 1.46-1.35 (m, 2H), 0.95 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ

171.5, 138.1, 129.1, 124.3, 119.9, 37.7, 27.8, 22.5, 14.0. HRMS (ESI), *m/z* calcd. for C₁₁H₁₆NO ([M+H]⁺) 178.1226, found: 178.1232.

N-phenylpivalamide (*3p*).⁶³ The product was isolated by flash chromatography (eluent: PE/EA = 20/1) as a white solid (37 mg, 69%). mp 129-132 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 7.6 Hz, 2H), 7.32 (t, *J* = 7.6 Hz, 3H), 7.10 (t, *J* = 7.6 Hz, 1H), 1.32 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 176.7, 138.2, 129.1, 124.3, 120.1, 39.8, 27.8. HRMS (ESI), *m/z* calcd. for C₁₁H₁₅NONa ([M+Na]⁺) 200.1046, found: 200.1047.

2-cyano-N-phenylacetamide (3q).⁶⁴ The product was isolated by flash chromatography (eluent: PE/EA = 5/1) as a white solid (36 mg, 74%). mp 197-199 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.30 (s, 1H), 7.54 (d, J = 7.6 Hz, 2H), 7.33 (t, J = 8.0 Hz, 2H), 7.09 (t, J = 7.6 Hz, 1H), 3.90 (s, 2H). ¹³C NMR (150 MHz, DMSO- d_6) δ 161.0, 138.4, 128.9, 123.9, 119.2, 115.9, 26.7. HRMS (ESI), m/z calcd. for C₉H₈N₂ONa ([M+Na]⁺) 183.0529, found: 183.0534.

N,2-*diphenylacetamide* (*3r*).⁵⁶ The product was isolated by flash chromatography (eluent: PE/EA = 20/1) as a white solid (46 mg, 72%). mp 119-120 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.38 (m, 4H), 7.36-7.33 (m, 3H), 7.29 (d, *J* = 7.6 Hz, 2H), 7.08 (t, *J* = 7.6 Hz, 2H), 3.74 (s, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 169.2, 137.6, 134.5, 129.7, 129.4, 129.1, 127.9, 124.6, 119.8, 45.0. HRMS (ESI), *m/z* calcd. for C₁₄H₁₃NONa ([M+Na]⁺) 234.0889, found: 234.0888.

methyl 3-oxo-3-(phenylamino)propanoate (3s).⁶⁵ The product was isolated by flash chromatography (eluent: PE/EA = 10/1) as a white solid (34 mg, 59%). mp 43-46 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.14 (s, 1H), 7.55 (d, J = 7.6 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.13 (t, J = 7.6 Hz, 1H), 3.81 (s, 3H), 3.49 (s, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 170.6, 162.8, 137.6, 129.2, 124.8, 120.3, 52.8, 41.4. HRMS (ESI), *m/z* calcd. for C₁₀H₁₁NO₃Na ([M+Na]⁺) 216.0631, found: 216.0631.

N-phenylcinnamamide (*3t*).⁶² The product was isolated by flash chromatography (eluent: PE/EA = 10/1) as a white solid (38 mg, 57%). mp 151-154 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 15.6 Hz, 1H), 7.63 (d, *J* = 7.2 Hz, 2H), 7.55-7.52 (m, 2H), 7.42 (s, 1H), 7.40-7.34 (m, 5H), 7.14 (t, t), 7.40-7.34 (m, 5H), 7.40-7.34 (m, 5H

 J = 7.2 Hz, 1H), 6.56 (d, J = 15.6 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 164.0, 142.6, 138.1, 134.8, 130.2, 129.3, 129.0, 128.1, 124.6, 120.9, 120.0. HRMS (ESI), m/z calcd. for C₁₅H₁₃NONa ([M+Na]⁺) 246.0889, found: 246.0889.

2-oxo-N,2-diphenylacetamide (*3u*).⁶⁶ The product was isolated by flash chromatography (eluent: PE/EA = 40/1) as a white solid (36 mg, 54%). mp 62-65 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.93 (s, 1H), 8.43 (d, *J* = 7.2 Hz, 2H), 7.71 (d, *J* = 7.6 Hz, 2H), 7.67 (t, *J* = 7.2 Hz, 1H), 7.52 (t, *J* = 7.6 Hz, 2H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.21 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 187.5, 159.0, 136.8, 134.8, 133.2, 131.7, 129.4, 128.7, 125.5, 120.1. HRMS (ESI), *m/z* calcd. for C₁₄H₁₁NO₂Na ([M+Na]⁺) 248.0682, found: 248.0682.

4-methoxy-N-(4-(trifluoromethyl)phenyl)benzamide (3ae).⁶⁷ The product was isolated by flash chromatography (eluent: PE/EA = 20/1) as a white solid (48 mg, 54%). mp 212-214 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ 10.41 (s, 1H), 8.01-7.97 (m, 4H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.08 (d, *J* = 9.0 Hz, 2H), 3.85 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 165.4, 162.2, 143.0, 129.8, 126.4, 125.88, 125.85, 120.0, 113.7, 55.5. HRMS (ESI), *m/z* calcd. for C₁₅H₁₂F₃NO₂Na ([M+Na]⁺) 318.0712, found: 318.0718.

N-(tert-butyl)-4-methoxybenzamide (3af).⁶⁸ The product was isolated by flash chromatography (eluent: PE/EA = 40/1) as a white solid (48 mg, 54%). mp 112-113 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.8 Hz, 2H), 6.90 (d, *J* = 8.8 Hz, 2H), 5.85 (s, 1H), 3.84 (s, 3H), 1.46 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 166.6, 162.0, 128.6, 128.4, 113.8, 55.5, 51.6, 29.1. HRMS (ESI), *m/z* calcd. for C₁₂H₁₇NO₂Na ([M+Na]⁺) 230.1151, found: 230.1150.

*acetic acid, 2-acetyl-2-phenylhydrazide (4a) and N-acetyl-N'-phenylacetohydrazide.*⁶⁹ The product was isolated by flash chromatography (eluent: PE/EA = 1/2) as a colorless oil (9 mg, 16%). ¹H NMR (600 MHz, DMSO- d_6) δ 10.88 (s, 1H), 10.38 (s, 1H), 7.36 (s, 5H), 7.19 (s, 1H), 2.07 (s, 3H), 1.96 (s, 3H), 1.87 (d, J = 27.6 Hz, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ 171.2, 168.8, 141.5, 128.5, 125.7, 123.4, 21.7, 20.5. HRMS (ESI), *m/z* calcd. for C₁₀H₁₂N₂O₂Na ([M+Na]⁺) 215.0791, found: 215.0800.

 acetic acid, 2-acetyl-2-(4-methoxyphenyl)hydrazide (4d) and N-acetyl-N'-(4-methoxyphenyl) acetohydrazide. The product was isolated by flash chromatography (eluent: PE/EA = 1/3) as a yellow oil (39 mg, 59%). ¹H NMR (600 MHz, DMSO- d_6) δ 10.81 (s, 1H), 10.29 (s, 1H), 7.32 (d, J = 7.2 Hz, 1H), 7.24 (d, J = 7.8 Hz, 2H), 6.97 (d, J = 7.2 Hz, 1H), 6.90 (d, J = 7.8 Hz, 2H), 3.77 (s, 1H), 3.74 (s, 3H), 2.03 (s, 3H), 1.92 (s, 3H), 1.83 (d, J = 7.9 Hz, 3H). ¹³C NMR (150 MHz, DMSO- d_6) δ 171.1, 168.6, 157.3, 134.6, 128.6, 125.8, 114.4, 113.6, 55.3, 21.3, 20.5. HRMS (ESI), m/z calcd. for C₁₁H₁₄N₂O₃Na ([M+Na]⁺) 245.0897, found: 245.0907.

acetic acid, 2-acetyl-2-(4-(trifluoromethyl)phenyl)hydrazide (4e). The product was isolated by flash chromatography (eluent: PE/EA = 1/2) as a white solid (18 mg, 23%). mp 106-108 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ 10.99 (s, 1H), 7.73 (d, J = 7.8 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H), 2.11 (s, 3H), 2.01 (s, 3H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 171.6, 168.9, 144.7, 126.8, 125.7, 125.0, 123.2, 122.6, 121.4, 22.0, 20.4. HRMS (ESI), *m/z* calcd. for C₁₁H₁₂F₃N₂O₂ ([M+H]⁺) 261.0845, found: 261.0854.

acetic acid, 2-acetyl-2-(tert-butyl)hydrazide (4f). The product was isolated by flash chromatography (eluent: PE/EA = 1/2) as a colorless oil (6 mg, 11%). ¹H NMR (600 MHz, DMSO- d_6) δ 10.15 (s, 1H), 1.87 (s, 3H), 1.81 (s, 3H), 1.29 (s, 9H). ¹³C NMR (150 MHz, DMSO- d_6) δ 171.6, 169.0, 59.2, 27.5, 23.0, 20.2. HRMS (ESI), *m/z* calcd. for C₈H₁₆N₂O₂Na ([M+Na]⁺) 195.1104, found: 195.1114.

(*E*)-*1*-(*phenyldiazenyl*)*ethan*-*1*-*one* (*5a*).⁷⁰ The product was isolated by flash chromatography (eluent: PE/EA = 2/1) as a red oil (28 mg, 63%). ¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, *J* = 7.2 Hz, 2H), 7.58 (t, *J* = 7.8 Hz, 1H), 7.53 (t, *J* = 7.2 Hz, 2H), 2.44 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 188.7, 151.6, 133.7, 129.5, 123.8, 21.4. HRMS (ESI), *m*/*z* calcd. for C₈H₈N₂ONa ([M+Na]⁺) 171.0529, found: 171.0529.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at http://pubs.acs.org/. ¹H and ¹³C NMR spectra for all compounds, radical trapping and labeling experiments (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: zhangzg@htu.edu.cn or zgs6668@yahoo.com. Fax: (+86)-373-332-5250.

ORCID

Zhiguo Zhang: 0000-0001-6920-0471

ACKNOWLEDGMENTS

We thank the NSFC (21272057, 21372065 and U1604285), Young Backbone Teachers Fund of Henan (2014GGJS-049), Key Project of Henan Educational Committee (15A150015 and 18A150009), Science & Technology Innovation Talents in Universities of Henan Province (17HASTIT002), Outstanding Young Talent Cultivation Project Funding of Henan Normal University (14YR002), and Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis (130028742).

REFERENCES

- (1) Rach, S. F.; Kühn, F. E. Chem. Rev. 2009, 109, 2061.
- (2) Kukushkin, V. Y.; Pombeiro, A. J. L. Chem. Rev. 2002, 102, 1771.
- (3) Fleming, F. F.; Wang, Q. Chem. Rev. 2003, 103, 2035.
- (4) Zhang, Y.; Pan, L.; Zou, Y.; Xu, X.; Liu, Q. Chem. Commun. 2014, 50, 14334.
- (5) Xu, X.; Zhang, L.; Liu, X.; Pan, L.; Liu, Q. Angew. Chem., Int. Ed. 2013, 52, 9271.
- (6) Hu, Z.; Dong, J.; Men, Y.; Lin, Z.; Cai, J.; Xu, X. Angew. Chem., Int. Ed. 2017, 56, 1805.
- (7) Liu, X.; Zhang, L.; Xu, X.; Wang, S.; Pan, L.; Zhang, Q.; Liu, Q. Chem. Commun. 2014, 50, 8764.
- (8) Chen, J.; Li, J.; Su, W. Molecules 2014, 19, 6439.
- (9) Miao, T.; Wang, G.-W. Chem. Commun. 2011, 47, 9501.

- (10) Behrends, M.; Sävmarker, J.; Sjöberg, P. J. R.; Larhed, M. ACS Catal. 2011, 1, 1455.
- (11) Wang, X.; Liu, M.; Xu, L.; Wang, Q.; Chen, J.; Ding, J.; Wu, H. J. Org. Chem. 2013, 78, 5273.
- (12) Tsui, G. C.; Glenadel, Q.; Lau, C.; Lautens, M. Org. Lett. 2011, 13, 208.
- (13) Wong, Y.-C.; Parthasarathy, K.; Cheng, C.-H. Org. Lett. 2010, 12, 1736.
- (14) Zhou, C.; Larock, R. C. J. Org. Chem. 2006, 71, 3551.
- (15) Zhao, B.; Lu, X. Org. Lett. 2006, 8, 5987.
- (16) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. 2005, 7, 2229.
- (17) Hsieh, J.-C.; Chen, Y.-C.; Cheng, A.-Y.; Tseng, H.-C. Org. Lett. 2012, 14, 1282.
- (18) Zhou, C.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 2302.
- (19) Wang, Y.; Chen, C.; Peng, J.; Li, M. Angew. Chem., Int. Ed. 2013, 52, 5323.
- (20) Wang, Y.; Chen, C.; Zhang, S.; Lou, Z.; Su, X.; Wen, L.; Li, M. Org. Lett. 2013, 15, 4794.
- (21) Léavai, A. J. Heterocycl. Chem. 2002, 39, 1.
- (22) Ferwanah, A.-R.; Awadallah, A. Molecules 2005, 10, 492.
- (23) Sun, J.; Qiu, J.-K.; Zhu, Y.-L.; Guo, C.; Hao, W.-J.; Jiang, B.; Tu, S.-J. *J. Org. Chem.* **2015**, *80*, 8217.
- (24) Sun, J.; Qiu, J.-K.; Jiang, B.; Hao, W.-J.; Guo, C.; Tu, S.-J. J. Org. Chem. 2016, 81, 3321.
- (25) Sun, K.; Wang, X.; Fu, F.; Zhang, C.; Chen, Y.; Liu, L. Green Chem. 2017, 19, 1490.
- (26) Wan, X.; Sun, K.; Zhang, G. Sci. China Chem. 2017, 60, 353.
- (27) Sun, K.; Lv, Y.; Shi, Z.; Fu, F.; Zhang, C.; Zhang, Z. Sci. China Chem. 2017, 60, 730.
- (28) Yang, Y.; Bao, Y. J.; Guan, Q. Q.; Sun, Q.; Zha, Z. G.; Wang, Z. Y. *Green Chem.* **2017**, *19*, 112.
- (29) Rosenbaum, C.; Waldmann, H. Tetrahedron Lett. 2001, 42, 5677.
- (30) White, E. H.; Field, K. W.; Hendrickson, W. H.; Dzadzic, P.; Roswell, D. F.; Paik, S.; Mullen,
 P. W. J. Am. Chem. Soc. 1992, 114, 8023.
- (31) Millington, C. R.; Quarrell, R.; Lowe, G. Tetrahedron Lett. 1998, 39, 7201.

- (32) Zhao, Y. W.; Song, Q. L. Chem. Commun. 2015, 51, 13272.
- (33) Xu, W.; Hu, G.; Xu, P.; Gao, Y.; Yin, Y.; Zhao, Y. Adv. Synth. Catal. 2014, 356, 2948.
- (34) Zhou, H.-P.; Liu, J.-B.; Yuan, J.-J.; Peng, Y.-Y. RSC Adv. 2014, 4, 25576.
- (35) Peng, Z.; Hu, G.; Qiao, H.; Xu, P.; Gao, Y.; Zhao, Y. J. Org. Chem. 2014, 79, 2733.
- (36) Rong, G.; Mao, J.; Yan, H.; Zheng, Y.; Zhang, G. J. Org. Chem. 2015, 80, 4697.
- (37) Wu, X.-m.; Wang, Y. Synlett 2014, 25, 1163.
- (38) Singh, R.; Raghuvanshi, D. S.; Singh, K. N. Org. Lett. 2013, 15, 4202.
- (39) Taylor, J. E.; Daniels, D. S. B.; Smith, A. D. Org. Lett. 2013, 15, 6058.
- (40) Okimoto, M.; Chiba, T. J. Org. Chem. 1990, 55, 1070.
- (41) Lerchen, A.; Vásquez-Céspedes, S.; Glorius, F. Angew. Chem., Int. Ed. 2016, 55, 3208.
- (42) Zhang, Z.; Gao, X.; Li, Z.; Zhang, G.; Ma, N.; Liu, Q.; Liu, T. Org. Chem. Front. 2017, 4, 404.
- (43) Liu, Y.; Zhang, Z.; Wan, Y.; Zhang, G.; Li, Z.; Bi, J.; Ma, N.; Liu, T.; Liu, Q. J Org Chem
 2017, 82, 3901.
- (44) Sun, K.; Wang, X.; Liu, L.; Sun, J.; Liu, X.; Li, Z.; Zhang, Z.; Zhang, G. ACS Catal. 2015, 5, 7194.
- (45) Zhang, Z.; Zheng, D.; Ma, N.; Bi, J. Chin. J. Org. Chem. 2017, 37, DOI: 10.6023/cjoc201612032
- (46) Zhang, Z.; Huang, Y.; Huang, G.; Zhang, G.; Liu, Q. J. Heterocycl. Chem. 2017, DOI: 10.1002/jhet.2839.
- (47) Behrend, R.; Reinsberg, W. Liebigs Ann. Chem. 1910, 377, 189.
- (48) Because the benzonitrile (2a) and 4a are of the same polarity, the control experiment was carried out with MeCN.
- (49) Guo, J.-Y.; Wu, R.-X.; Jin, J.-K.; Tian, S.-K. Org. Lett. 2016, 18, 3850.
- (50) Liu, X.; Cong, T.; Liu, P.; Sun, P. Organic & Biomolecular Chemistry 2016, 14, 9416.
- (51)Xia, C.; Wang, K.; Xu, J.; Wei, Z.; Shen, C.; Duan, G.; Zhu, Q.; Zhang, P. *Rsc Adv.* **2016**, *6*, 37173.

2)Li, W.; Yin, G.; Huang, L.; Xiao, Y.; Fu, Z.; Xin, X.; Liu, F.; Li, Z.; He, W. Green Cher	n
016 , <i>18</i> , 4879.	

- (53) Aruri, H.; Singh, U.; Kumar, S.; Kushwaha, M.; Gupta, A. P.; Vishwakarma, R. A.; Singh, P. P. Org. Lett. 2016, 18, 3638.
- (54) Serna, S.; Tellitu, I.; Domínguez, E.; Moreno, I.; SanMartín, R. Org. Lett. 2005, 7, 3073.
- (55) Tellitu, I.; Serna, S.; Herrero, M. T.; Moreno, I.; Domínguez, E.; SanMartin, R. J. Org. Chem.
 2007, 72, 1526.
- (56) Huang H.; Jiang Z.; Wu Y.; Gan C.; Li J.; Xiang S.; Feng C.; Wang B., Yang W. Synlett 2016, 27, 951.
- (57) Hong G.; Mao D.; Zhu X.; Wu S.; Wang L. Org. Chem. Front., 2015, 2, 985.
- (58) K.; Kumar K. A. A.; Bharate S. B.; Vishwakarma R. A. Org. Biomol. Chem. 2014, 12, 6465.
- (59) Seo H.-A.; Cho Y.-H.; Lee Y.-S.; Cheon C.-H. J. Org. Chem. 2015, 80, 11993.
- (60) R.; Oniela C. D.; Mancheño B.; Barcock R. A. J. Chem. Soc., Perkin Trans. 1, 1994, 113.

(61) Stoermer, R.; Steinbeck H. J. Berichte der Deutschen Chemischen Gesellschaft 1932, 65, 413.

- (62) Kobs U.; Neumann W. P. Chem. Ber. 1990, 123, 2191.
- (63) Rasheed S.; Rao D. N.; Reddy A. S.; Shankarb R.; Das P. RSC Adv., 2015, 5, 10567.

(64) Hu H.; Jiang M.; Xie L.; Hu G.; Zhang C.; Zhang L.; Zhou S., Zhang M.; Gong P. *Chem. Res. Chin. Univ.*, **2015**, *31*, 746.

- (65) Graziano M. L.; Cimminiello G. Synthesis 1989, 1, 54.
- (66) Deshidi R.; Kumar M.; Devari S.; Shah B. A. Chem. Commun. 2014, 50, 9533.
- (67) Lavoie C. M.; MacQueen P. M.; Stradiotto M. Chem. Eur. J. 2016, 22, 18752.
- (68) Kotha S. S.; Badigenchala S.; Sekar G. Adv. Synth. Catal. 2015, 357, 1437.
- (69) Valyashko, N. A.; Zh. Obshch. Khim. 1950, 20, 1667.
- (70) Jürmanna G.; Tšubrika O.; Tammeveskib K.; Mäeorg U. J. Chem. Res. 2015, 10, 661.