Inorganica Chimica Acta 364 (2010) 89-95

Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Synthesis and structures of aryloxo- and binaphthoxogermanium(IV) alkyl iodide complexes

Anthony E. Wetherby Jr.^a, Christian R. Samanamu^a, Aaron C. Schrick^a, Antonio DiPasquale^b, James A. Golen^c, Arnold L. Rheingold^b, Charles S. Weinert^{a,*}

^a Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA

^b Department of Chemistry and Biochemistry, University of California–San Diego, La Jolla, CA 92093-0303, USA

^c Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747-2300, USA

ARTICLE INFO

Article history: Available online 6 July 2010

Dedicated to Arnold L. Rheingold.

Keywords: Germanium iodide complexes Germylenes Aryloxides X-ray crystal structures Binaphthoxides

ABSTRACT

The germanium(II) aryloxide complexes (*S*)-[Ge{O₂C₂₀H₁₀-(SiMe₂Ph)₂-3,3'}{NH₃}] (**1**) and [Ge(OC₆H₃Ph₂-2,6)₂] (**2**) react with either Bu^tI or MeI to yield the corresponding germanium(IV) compounds (*S*)-[Ge{O₂C₂₀H₁₀-(SiMe₂Ph)₂-3,3'}{Bu^t}{I}] (**3**), (*S*)-[Ge{O₂C₂₀H₁₀-(SiMe₂Ph)₂-3,3'}{Me}{I}] (**4**), [Ge(OC₆H₃-Ph₂-2,6)₂(Bu^t)(I)] (**5**), and [Ge(OC₆H₃Ph₂-2,6)₂(Me)(I)] (**6**). Compound **6** reacts with 2,6-diphenylphenol to yield [Ge(OC₆H₃Ph₂-2,6)₃(Me)] (**7**), while **3–5** do not. The X-ray crystal structures of **3–5** and **7** were determined, and **3–5** represent the first structurally characterized germanium(IV) species having germanium bound to both oxygen and iodine.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Germanium aryloxides are an interesting class of compounds that exhibit a diverse array of possible structures [1–36], and have also recently been shown to serve as well-defined precursors for the preparation of germanium(0) nanomaterials. In particular, the morphology of the nanomaterials obtained has been shown to depend on the substituent pattern of the ligands in the precursors that contain germanium in either the divalent or tetravalent oxidation state [2,8]. Germanium aryloxides contain germanium attached to one or more phenolic oxygen atom and the aromatic rings can have varying substitution patterns at the *ortho-*, *meta-*, and/or *para*-positions. Both monomeric and dimeric complexes containing simple aryloxide ligands are known [2,8,33], and some germanium aryloxides containing calix[*n*]arene [10–12,19,34,35] or binaphthoxide ligands [31,36], as well as cluster-type materials [9], have also been reported.

The monomeric germanium(II) aryloxide $[Ge(OC_6HPh_4-2,3,5,6)_2]$ has been shown to yield the germanium(IV) aryloxide complex $[Ge(OC_6HPh_4-2,3,5,6)_2(Me)(I)]$ via the oxidative addition of the germanium(II) center into the C–I bond of methyl iodide [33]. However, the X-ray crystal structure of this compound was not obtained, and crystallographically characterized compounds

* Corresponding author. E-mail address: weinert@chem.okstate.edu (C.S. Weinert). containing a germanium-iodine bond are rare. A search of the CCDC database in April 2010 provided data for only 48 such species [37–71]. Furthermore, the only compound containing germanium bound to both oxygen and iodine was the acetylacetonate complex (Acac)GeI [48], and no examples of germanium(IV)-containing species have been reported.

We have prepared and structurally characterized the germanium(IV) binaphthoxide compounds (*S*)-[Ge{O₂C₂₀H₁₀-(SiMe₂Ph)₂-3,3'}{R}I] (R = Bu^t or Me) and the aryloxide [Ge(OC₆H₃Ph₂-2,6)₂-(Bu^t)(I)], each of which has a Ge–I bond. We have also prepared [Ge(OC₆H₃Ph₂-2,6)₂(Me)(I)], that was converted to the tri(aryloxide) complex [Ge(OC₆H₃Ph₂-2,6)₃(Me)] upon reaction of the iodo compound with 2,6-diphenylphenol. The ligands in the two binaphthoxide complexes are chelating and each contain a GeO₂C₄ seven-membered ring. The size of the organic substituent R has a measurable effect on the size of the chiral pocket in these ligands, and the aryloxide species [Ge(OC₆H₃Ph₂-2,6)₂(R)(I)] (R = Bu^t or Me) exhibit different reactivity toward 2,6-diphenylphenol due to the steric attributes of the organic substituent at germanium.

2. Results and discussion

The germanium(II) aryloxides (S)-[Ge{O₂C₂₀H₁₀-(SiMe₂Ph)₂-3,3'}{NH₃}] (1) [36] and [Ge(OC₆H₃Ph₂-2,6)₂] (2) [33] were synthesized from Ge[N(SiMe₃)₂]₂ and (HO)₂C₂₀H₁₀-(SiMe₂Ph)₂-3,3' or HOC₆H₃Ph₂-2,6 (respectively). Compound 1 was converted to the

^{0020-1693/\$ -} see front matter @ 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.ica.2010.06.060

germanium(IV) binaphthoxide derivatives (*S*)-[Ge{O₂C₂₀H₁₀-(SiMe₂Ph)₂-3,3'}{Bu^t}1] (**3**) and (*S*)-[Ge{O₂C₂₀H₁₀-(SiMe₂Ph)₂-3,3'}{Me}{1} (**4**) in yields of 85% and 86% via insertion of the germylene **1** into the C–I bond of the corresponding alkyl iodide (Scheme 1), which also involves liberation of the coordinated ammonia molecule from **1**.

The conversion of **1** to **3** and **4** is evident in the ¹H NMR spectrum of the products. The spectrum of **1** exhibits a singlet for the 4,4'-protons at δ 8.18 ppm, indicating that they are magnetically equivalent, and two closely spaced resonances for the methyl protons of the 3,3'-SiMe₂Ph groups at δ 0.75 and 0.68 ppm were also observed [36]. In the ¹H NMR spectra of both **3** and **4** two resonances at δ 8.16 and 8.10 ppm for **3** and δ 8.20 and 8.13 for **4** were observed for the 4,4'-protons. This indicates that the two 4,4'-protons are no longer magnetically equivalent in **3** and **4** due to the absence of a C_2 -axis in these compounds as a result of the attachment of an organic substituent and an iodine atom to the germanium center. Similarly, a singlet was observed for each of the four methyl groups of the -SiMe₂Ph substituents in the ¹H NMR spectra of **3** and **4**. For compound **3** these peaks appear at δ 0.88, 0.84, 0.80, and 0.66 ppm, while for 4 the resonances were observed at δ 0.82, 0.79, 0.71, and 0.63 ppm. A singlet corresponding to the protons of the *tert*-butyl group of **3** was observed at δ 0.70 ppm, and the methyl group in **4** results in the appearance of an upfield singlet at δ 0.12 ppm.

Compounds 3 and 4 are sparingly soluble in hydrocarbon solvents. However, X-ray quality crystals of 3 and 4 were obtained by dissolving the compound in an aliquot of hot benzene that was slowly cooled to room temperature, and ORTEP diagrams of 3 and 4 are shown in Figs. 1 and 2 while and selected bond distances and angles are collected in Tables 1 and 2 (respectively). The germanium centers in the starting material **1** and the products **3** and **4** are incorporated into a seven-membered GeO_2C_4 ring that includes the interannular C–C bond of the binaphthoxide ligand. The GeO₂C₄ ring in the *tert*-butyl substituted species **3** has Ge–O bond distances that differ from one another in length by 0.017(3) Å and have an average value of 1.789(3) Å. The Ge–O bond lengths in the methyl-substituted derivative **4** are shorter than those in **3** and have an average value of 1.734(4) Å, and they also differ significantly from one another by 0.12(4) Å. The Ge–O bond distances in the germylene **1** have an average value of 1.875(3) Å, and the shorter Ge–O bond lengths in both **3** and **4** are a result of the higher oxidation state of germanium in these two complexes. The Ge–O bond distances in 3 and 4 are similar to other germanium(IV) aryloxides, including that in the chelate complexe $[\{2,2-CH(CH_3)_2(CH_2Bu^t)\}_2C_6H_2O_2]Ge(CH_3)_2$ (1.770(2)Å), [20] which contains a seven-membered GeO₂C₄ ring.

The Ge–C bond distance in **3** is 1.972(5) Å and is typical for a germanium–carbon single bond, and the Ge–I bond length that measures 2.5141(7) Å is similar to the average Ge–I bond lengths in the organogermanium iodides (C_5Me_5)GeI₃, (C_6CI_5)₂GeI₂, [(2-MeO–5-Bu^tC₆H₃)₃C]GeI₃, and MeGeI₃ which are 2.5335(9) Å [37], 2.509(2) Å [61], 2.5180(8) Å [68], and 2.498(2) Å [38] (respec-

Fig. 1. ORTEP diagram of (S)-[Ge{ $O_2C_{20}H_{10}$ -(SiMe₂Ph)₂-3,3'}{Bu^t}] (3). Thermal ellipsoids are drawn at 50% probability.

Fig. 2. ORTEP diagram of (S)-[Ge{ $O_2C_{20}H_{10}$ -(SiMe₂Ph)₂-3,3'}{Me}{I} (4). Thermal ellipsoids are drawn at 50% probability.

tively). The only crystallographically characterized complex containing germanium bound to both oxygen and iodine is (acac)-GeI (acac = acetylacetonato), which has a Ge–I bond length of 2.7360(3) Å [48]. However, this species contains a divalent germanium atom and therefore would be expected to have a longer Ge–I bond than **3**.

Table 1 Selected bond distances (Å) and angles (°) for $(S)-[Ge\{O_2C_{20}H_{10}-(SiMe_2Ph)_2-3,3']{But}[1]]$ (**3**).

Ge(1)-O(1)	1.780(3)
Ge(1)-O(2)	1.797(3)
Ge(1)-I(1)	2.5141(7)
Ge(1)-C(37)	1.972(5)
O(1)-C(2)	1.377(5)
O(2)-C(12)	1.383(4)
C(1)-C(11)	1.484(6)
C(3)-Si(1)	1.886(4)
C(13)-Si(2)	1.879(4)
O(1)-Ge(1)-O(2)	103.7(1)
O(1)-Ge(1)-I(1)	111.1(1)
O(1)-Ge(1)-C(37)	103.8(2)
O(2)-Ge(1)-I(1)	99.38(9)
O(2)-Ge(1)-C(37)	121.1(2)
I(1)-Ge(1)-C(37)	117.2(1)

Table 2

Selected bond distances (Å) and angles (°) for (S)-[Ge{ $O_2C_{20}H_{10}$ -(SiMe₂Ph)₂-3,3'}{Me}{I} (4).

Ge(1)-O(1)	1.674(3)
Ge(1)-O(2)	1.794(4)
Ge(1)-I(1)	2.508(1)
Ge(1)-C(1)	2.351(1)
O(1)-C(2)	1.280(5)
O(2)-C(21)	1.458(7)
C(11)-C(12)	1.486(7)
C(3)-Si(1)	1.889(5)
C(20)-Si(2)	1.799(5)
O(1)-Ge(1)-O(2)	109.0(2)
O(1)-Ge(1)-I(1)	113.9(1)
O(1)-Ge(1)-C(1)	96.1(1)
O(2)-Ge(1)-I(1)	101.5(1)
O(2)-Ge(1)-C(1)	121.4(1)
I(1)-Ge(1)-C(1)	115.32(4)

The germanium atom in **3** is present in a *pseudo*-tetrahedral environment which is distorted due to the presence of the sterically encumbering *tert*-butyl group. The O(1)-Ge(1)–O(2) and O(1)-Ge(1)–C(37) bond angles are $103.7(1)^{\circ}$ and $103.8(1)^{\circ}$ (respectively) and approach the idealized tetrahedral value of 104.5° . However, the O(2)-Ge(1)–C(37) bond angle measures $121.1(2)^{\circ}$ and is significantly distorted due to the steric interaction of the –SiMe₂Ph group attached to C(13) with the *tert*-butyl group relative to the oxygen atoms in **3** due to its steric interactions with the 3,3'-substituents also results in a distortion of the O-Ge–I bond angles from the ideal value, as the O(1)-Ge(1)–I(1) bond angle measures $111.1(1)^{\circ}$ while the O(2)-Ge(1)–I(1) bond angle is 99.38(9)^{\circ}.

The carbon atom of the methyl group and the iodine atom in **4** are disordered with one another, with relative occupancies for the carbon atoms of 0.623(2) and 0.377(2) over the two sites. The OR-TEP diagram shown in Fig. 2 is drawn with the iodine atom located on the more distant site from the germanium atom. The Ge–I distance in **4** measures 2.508(1) Å, and is consistent with the germanium–iodine distances in 28 other crystallographically characterized compounds containing a Ge–I bond [37–71]. However, the germanium–carbon bond distance in **4** is 2.351(1) Å, which is elongated relative to the usual Ge–C bond distance of ca. 1.94 Å [72] as a result of the dominance of the heavy iodine atom versus the smaller carbon. The actual Ge–C bond distance in **4** is likely in the range of 1.94–1.97 Å. As found for the *tert*-butyl substituted species **3**, the germanium atom in **4** is also in a distorted tetrahedral environment. The O(1)–Ge(1)–O(2) bond angle measures

109.0(2)° while the O(1)–Ge(1)–I(1) and O(2)–Ge(1)–I(1) bond angles are 113.9(1) and 101.5(1)°. The O(1)–Ge(1)–C(1), O(2)–Ge(1)–C(1) and I(1)–Ge(1)–C(1) bond angles each deviate from the idealized tetrahedral value, and measure 96.1(1)°, 121.4(1)°, and 115.32(4)° (respectively).

The dihedral angle between the two naphthalene rings is 64.78° in **4** while that in the *tert*-butyl substituted compound **3** measures 65.97° . These values can be compared with that in the germanium(II) complex **1** which is 70.14° [36]. The trend in the acuteness of the dihedral angles in **1**, **3**, and **4** correlates with the Ge–O bond lengths in these three compounds, which average 1.875(3) [36], 1.789(3), and 1.734(4) Å (respectively). Thus, the steric attributes of the substituents at germanium affects the Ge–O bond distances, which in turn affects the dihedral angle between the naphthyl rings. The lengths of the interannular C–C bonds in these compounds also correlate with the dihedral angles. Compound **4** which has the most acute dihedral angle has an C–C bond distance of 1.486(7) Å, while **1** has the most obtuse dihedral angle and has a C–C bond length of 1.380(5) Å. The C–C bond distance in **3** is 1.383(5) Å, which is intermediate between those of **1** and **4**.

Fig. 3. ORTEP diagram of $[Ge(OC_6H_3Ph_2-2,6)_2(Bu^t)$ (1)] (5). Thermal ellipsoids are drawn at 50% probability.

Table 3

Selected bond distances (Å) and angles (°) for $[Ge(OC_6H_3Ph_2-2,6)_2(Bu^t)(I)]$ (5) and $[Ge(OC_6H_3Ph_2-2,6)_3(Me)]\cdot C_6H_6$ (7-C₆H₆).

5		7 ·C ₆ H ₆	
Ge(1)-O(1) Ge(1)-I(1) Ge(1)-C(19) O(1)-C(1)	1.763(4) 2.641(1) 1.92(1) 1.392(7)	Ge(1)-O(1) Ge(1)-C(19) O(1)-C(1) O(1)-Ge(1)-O(1')	1.771(2) 1.914(6) 1.374(4) 100.8(1)
O(1)-Ge(1)-O(1') O(1)-Ge(1)-I(1) O(1)-Ge(1)-C(19) I(1)-Ge(1)-C(19)	96.2(3) 107.8(1) 128.5(3) 103.0(3)	O(1)-Ge(1)-C(19)	117.15(8)

The reaction of the 2,6-diphenylphenoxy-substituted germylene $[Ge(OC_6H_3Ph_2-2,6)_2]$ (2) with Bu^tI generates the germanium(IV) species $[Ge(OC_6H_3Ph_2-2,6)_2(Bu^t)(I)]$ (5) (Scheme 2). The ¹H NMR spectrum of **5** contains a resonance at δ 0.32 ppm corresponding to the nine methyl protons of the tert-butyl group. Crystals of 5 suitable for X-ray diffraction were obtained by the slow evaporation of a benzene solution of this material, and an ORTEP diagram of 5 is shown in Fig. 3 and selected bond distances and angles are collected in Table 3. The iodine atom and the carbon atoms of the *tert*-butyl group are disordered with one another and were refined with occupancies of 0.5. As a result, there is a crystallographic C_2 -axis in **5** that renders both oxygen atoms equivalent. The Ge–O bond distance is 1.763(4) Å and is similar to those in 3 and **4**, while the Ge–I bond length is 2.641(1) Å and is consistent with other compounds containing a germanium-iodine bond [37–71]. Despite the disorder in **5**, the Ge–C bond length is normal for a germanium(IV)-oxygen bond distance and measures 1.918(1) Å. The O(1)–Ge(1)–O(1') bond angle is extremely acute and measures 96.2(3)°, the O(1)-Ge(1)-I(1) bond angle is 107.8(1)° and approaches the idealized tetrahedral angle, and the C(19)–Ge(1)–I(1) bond angle measures 103.0(3)°.

The reaction of **2** with iodomethane yields the complex $[Ge(OC_6H_3Ph_2-2,6)_2(Me)(I)]$ (**6**) in 86% yield (Scheme 2). In order to successfully prepare **6**, the iodomethane was meticulously dried over magnesium sulfate and activated molecular sieves immediately before use to prevent hydrolysis and subsequent reaction of **6** with the liberated 2,6-diphenylphenol (*vide infra*). The ¹H NMR spectrum of **6** contains a resonance at δ –0.49 ppm corresponding to the protons of the methyl group. Despite several attempts, we were not able to obtain X-ray quality crystals of this material, but the composition of **6** was further confirmed by elemental analysis and mass spectrometry. The mass spectrum of **6** exhibits a peak at m/z = 706 amu with the expected isotope pattern, as well as peaks corresponding to fragmentation of the molecule at m/z = 579 amu (M^{*}–1) and m/z = 461 amu (M^{*}–OC₆H₃Ph₂).

Compound **6** can be converted to the tri(aryloxo)-species $[Ge(OC_6H_3Ph_2-2,6)_3(Me)]$ (**7**) upon reaction with additional 2,6-diphenylphenol (Scheme 3). The formation of **7** was initially dis-

Fig. 4. ORTEP diagram of $[Ge(OC_6H_3Ph_2-2,6)_3(Me)]\cdot C_6H_6$ (7. C_6H_6). Thermal ellipsoids are drawn at 50% probability.

covered serendipitously upon reaction of **6** with adventitious 2,6diphenylphenol formed via hydrolysis of **6** by water present in the iodomethane reagent. The conversion of **6** to **7** indicates that the iodide ligand in **6** is sufficiently labile to react with the acidic phenolic proton of 2,6-diphenylphenol, and **7** was subsequently prepared directly by the reaction of **6** with one equiv. of 2,6-diphenylphenol in 77% yield. Compound **7** is virtually insoluble in hydrocarbon solvents, but a ¹H NMR spectrum of **7** was obtained and exhibits a resonance for the methyl group at δ – 0.12 ppm that is shifted downfield from that for the methyl protons in **6** due to the presence of the additional Ge–O bond.

X-ray quality crystals of **7** were obtained from the slow cooling of a hot dilute benzene solution of **7**, and an ORTEP diagram of **7** is shown in Fig. 4. There is a C_3 -axis present in **7** located along the Ge(1)–C(19) bond that renders all three aryloxo ligands equivalent. The three Ge–O bonds in **7** measure 1.771(2) Å, which is similar to the Ge–O bond distances in **3–5**, while the Ge(1)–C(19) bond length is 1.914(6) Å. The three O–Ge–O bond angles are 100.8(1)° while the O(1)–Ge(1)–C(19) bond angles each measure 117.15(8)°. The *ortho*-phenyl rings in **7** are each rotated about the C–C bonds to C(2) and C(6) relative to the plane of the phenolic phenyl ring due to steric effects arising from the presence of three bulky 2,6diphenylphenolate ligands at the germanium center. The angle about the C(2)–C(13) bond is 48.5(1)° and the angle about the C(6)–C(7) bond is 42.0(1)°, and the 2,6-diphenylphenolate ligands interlock in a gear-like fashion in **7**.

Curiously, treatment of **5** with an additional equivalent of 2,6diphenylphenol did not provide the tri(aryloxo)-compound [Ge(OC₆H₃Ph₂-2,6)₃(Bu^t)]. Although the iodide ligand in **5** would also be expected to be reactive toward protonolysis, no evidence for the formation of [Ge(OC₆H₃Ph₂-2,6)₃(Bu^t)] was found even if the reaction mixture was heated for 7 days at 85 °C. Therefore, the formation of **7** from **6** appears to be possible due to the presence of the less sterically encumbering methyl group in **6** versus the large *tert*-butyl group in **5**. Similarly, compounds **3** and **4** were not found to react with 2,6-diphenylphenol which is likely a result of the sterically congested environment at the germanium atoms in these species arising from the bulky 3,3'-SiMe₂Ph substituents.

3. Conclusions

The germylenes (S)-[Ge{ $O_2C_{20}H_{10}$ -(SiMe₂Ph)₂-3,3'}{NH₃}] (1) and $[Ge(OC_6H_3Ph_2-2.6)_2]$ (2) have been shown to react with iodomethane and 2-iodo-2-methylpropane (Bu^tI) to yield the germanium(IV) complexes (S)-[Ge{O₂C₂₀H₁₀-(SiMe₂Ph)₂-3,3'}{Bu^t}I] (3), $(S)-[Ge\{O_2C_{20}H_{10}-(SiMe_2Ph)_2-3,3'\}\{Me\}\{I\}]$ (4), $[Ge(OC_6H_3Ph_2-4)]$ $(2,6)_2(Bu^t)(I)$ (5), and $[Ge(OC_6H_3Ph_2-2,6)_2(Me)(I)]$ (6). The X-ray crystal structures of 3-5 were determined and compounds 3 and **4** were shown to be chelates that each contain a seven-membered GeO_2C_4 ring, and the size of the organic group attached to the germanium atom in 3 and 4 affects the size of the chiral pocket in the attached binaphthoxide ligand. The 2,6-diphenylphenolate species 5 was crystallographically characterized, and compound 6 was found to react with one equiv. of 2,6-diphenylphenol to yield the tri(aryloxo)-species [Ge(OC₆H₃Ph₂-2,6)₃(Me)] (7). However, similar reactivity was not observed for compounds 3-5. The structure of 7 contains a C₃-axis of rotation about the central Ge-CH₃ bond and the three aryloxide ligands in 7 are arranged in an interlocking gear-like fashion about the central germanium atom.

4. Experimental

4.1. General considerations

All manipulations were carried out using standard Schlenk, syringe, and glovebox techniques [73]. Solvents were purified using a Glass Contour solvent purification system. The starting materials (S)-[Ge{O₂C₂₀H₁₀-(SiMe₂Ph)₂-3,3'}{NH₃}] (1) [36] and [Ge(OC₆H₃Ph₂-2,6)₂] (2) [33] were prepared according to published

Table 4

Crystallographic data for compounds 3-5 and $\textbf{7}{\cdot}C_6H_6.$

procedures. The reagents 2,6-diphenylphenol, iodomethane and 2iodo-2-methylpropane (Bu^tI) were purchased from Aldrich and the iodo compounds were dried over anhydrous MgSO₄ followed by activated molecular sieves immediately prior to use. Proton NMR spectra were run at 25 °C in benzene- d_6 on a Varian Gemini 2000 spectrometer at 300 MHz and were referenced to residual protio solvent. Carbon-13 NMR spectra were not acquired due to the low solubility of these compounds in benzene- d_6 and their instability in more polar solvents including chloroform-d and acetonitrile- d_3 . Mass spectra were acquired via direct injection using a Shimadzu LCMS-2010 equipped with an ACPI ionization source. Elemental analyses were conducted by Desert Analytics (Tucson, AZ).

4.2. Synthesis of 3

To a solution of **1** (0.200 g, 0.312 mmol) in benzene (20 mL) was added a solution of Bu^{*t*}I (0.070 g, 0.380 mmol) in benzene (5 mL). The reaction mixture was stirred at reflux for 12 h and the volatiles were removed *in vacuo* to yield **3** (0.215 g, 85%) as white crystals. ¹H NMR: δ 8.16 (s, 1H, 4,4'-H), 8.10 (s, 1H, 4,4'-H), 7.70–7.52 (m, 8H, aromatics), 7.29–7.25 (m, 4H, aromatics), 7.12–7.04 (m, 8H, aromatics), 6.99–6.84 (m, 2H, aromatics), 0.88 (s, 3H, Si(CH₃)₂Ph), 0.84 (s, 3H, Si(CH₃)₂Ph), 0.80 (s, 3H, Si(CH₃)₂Ph), 0.70 (s, 9H, GeC(CH₃)₃), 0.67 (s, 3H, Si(CH₃)₂Ph), ppm. *Anal.* Calcd. for C₄₀H₄₁GeIO₂Si₂: C, 59.35; H, 5.11. Found: C, 58.98; H, 5.21%.

4.3. Synthesis of 4

To a solution of **1** (0.145 g, 0.226 mmol) in benzene (20 mL) was added neat iodomethane (0.160 g, 1.13 mmol). The reaction

	3	4	5	7 ·C ₆ H ₆
Empirical formula	C40H41GelO2Si2	C37H35GeIO2Si2	C40H35GeIO2	C ₆₁ H ₄₆ GeO ₃
Formula weight (g/mol)	809.40	767.32	747.17	899.57
Т (К)	209(2)	100(2)	100(2)	100(2)
Wavelength (Å)	0.71073 (Mo Ka)	0.71073 (Mo Ka)	0.71073 (Mo Ka)	0.71073 (Mo Ka)
Crystal system	orthorhombic	monoclinic	monoclinic	rhombohedral
Space group	$P2_{1}2_{1}2_{1}$	P2 ₁	C2/c	R3
a (Å)	7.470(3)	9.052(1)	14.466(4)	15.8640(5)
b (Å)	12.560(4)	10.631(2)	13.592(4)	15.8640(5)
c (Å)	38.94(1)	17.652(3)	17.452(6)	15.736(1)
α (°)	90	90	90	90
β (°)	90	95.623(2)	100.712(7)	90
γ (°)	90	90	90	120
$V(Å^3)$	3653(2)	1690.6(5)	3372(2)	3429.6(3)
Ζ	4	2	4	3
Density (g/cm ³)	1.472	1.507	1.472	1.307
Absorption coefficient (mm ⁻¹)	1.783	1.921	1.857	0.718
F (0 0 0)	1640	772.1	1504	1404
Crystal size (mm)	$0.33 \times 0.08 \times 0.05$	$0.20\times0.15\times0.15$	$0.36 \times 0.31 \times 0.31$	$0.44 \times 0.36 \times 0.30$
θ Range for data collection (°)	1.70-28.21	2.24-28.28	2.07-28.18	1.97-25.32
Index ranges	$-5 \leqslant h \leqslant 9$	$-11 \leqslant h \leqslant 11$	$-18 \leqslant h \leqslant 19$	$-18 \leqslant h \leqslant 18$
	$-16 \leqslant k \leqslant 16$	$-13 \leqslant k \leqslant 13$	$-13 \leqslant k \leqslant 17$	$-19 \leqslant k \leqslant 19$
	$-41 \leqslant l \leqslant 49$	$-23 \leqslant l \leqslant 22$	$-22 \leqslant l \leqslant 22$	$-18 \leqslant l \leqslant 16$
Reflections collected	18 942	14 200	14 144	8305
Independent reflections	$8464 \ (R_{int} = 0.0414)$	7263 ($R_{int} = 0.0803$)	$3800 (R_{int} = 0.0479)$	2492 ($R_{int} = 0.0293$)
Completeness to θ = 25.00°	99.9%	99.8%	97.3%	100.0%
Absorption correction	multi-scan (sadabs)	semi-empirical from equivalents	multi-scan (sadabs)	multi-scan (sadabs)
Maximum and minimum	0.9162 and 0.5908	0.7615 and 0.6999	0.5967 and 0.5544	0.8134-0.7429
transmission				
Refinement method	full-matrix least-squares on F^2	full-matrix least-squares on F ²	full-matrix least-squares on F^2	full-matrix least-squares on F ²
Data/restraints/parameters	8464/0/415	7263/1/395	3800/0/213	2492/1/199
Goodness-of-fit (GOF) on F^2	1.006	1.121	1.187	1.052
Final <i>R</i> indices $(I > 2\sigma(I))$	$R_1 = 0.0453$	$R_1 = 0.0545$	$R_1 = 0.0697$	$R_1 = 0.0407$
	$wR_2 = 0.0746$	$wR_2 = 0.1290$	$wR_2 = 0.1557$	$wR_2 = 0.1090$
R indices (all data)	$R_1 = 0.0604$	$R_1 = 0.0594$	$R_1 = 0.0892$	$R_1 = 0.0415$
	$wR_2 = 0.0799$	$wR_2 = 0.1314$	$wR_2 = 0.1630$	$wR_2 = 0.1099$
Largest difference peak and hole ($e Å^{-3}$)	0.991 and -0.417	1.338 and -0.906	0.677 and -1.363	1.189 and -0.299

mixture was stirred at reflux for 18 h and the volatiles were removed *in vacuo* to yield **4** (0.148 g, 86%) as white crystals. ¹H NMR: δ 8.20 (s, 1H, 4,4'-H), 8.13 (s, 1H, 4,4'-H), 7.73–7.55 (m, 8H, aromatics), 7.24–7.00 (m, 12H, aromatics), 6.86–6.78 (m, 2H, aromatics), 0.82 (s, 3H, Si(CH₃)₂Ph), 0.79 (s, 3H, Si(CH₃)₂Ph), 0.71 (s, 3H, Si(CH₃)₂Ph), 0.63 (s, 3H, Si(CH₃)₂Ph), 0.12 (s, 3H, GeCH₃) ppm. *Anal.* Calcd. for C₃₇H₃₅GeIO₂Si₂: C, 57.91; H, 4.60. Found: C, 57.64; H, 4.45%.

4.4. Synthesis of 5

To a solution of **2** (0.100 g, 0.178 mmol) in benzene (10 mL) was added a solution of Bu^{*t*}I (0.040 g, 0.218 mmol) in benzene (5 mL). The reaction mixture was stirred at room temperature for 8 h and the volatiles were removed *in vacuo* to yield **5** (0.045 g, 34%) as colorless crystals. ¹H NMR: δ 7.43 (d, J = 8.1 Hz, 4H, *m*-C₆H₃Ph₂), 7.24–7.13 (m, 20H, o- and *p*-C₆H₃(C₆H₅)₂), 6.89 (t, J = 8.1 Hz, 2H, *p*-C₆H₃Ph₂), 0.32 (s, 9H, –C(CH₃)₃) ppm. Anal. Calcd. for C₄₀H₃₅GeIO₂: C, 64.27; H, 4.72. Found: C, 64.11; H, 4.59%.

4.5. Synthesis of 6

To a solution of **2** (0.383 g, 0.680 mmol) in benzene (25 mL) was added neat MeI (0.105 g, 0.740 mmol). The reaction mixture was stirred at room temperature for 8 h and the volatiles were removed *in vacuo* to yield **6** (0.412 g, 86%) as a colorless powder. ¹H NMR: δ 7.48 (d, *J* = 7.5 Hz, 4H, *m*-C₆H₃Ph₂), 7.28–7.10 (m, 20H, -C₆H₃(C₆H₅)₂), 6.92 (t, *J* = 7.5 Hz, 2H, *p*-C₆H₃Ph₂), -0.49 (s, 3H, -CH₃) ppm. MS: *m/z* = 706 amu (M⁺), 579 (M⁺–I), 461 (M⁺–OC₆H₃Ph₂) amu. *Anal.* Calcd. for C₃₇H₂₉GeIO₂: C, 63.00; H, 4.15. Found: C, 62.87; H, 4.27%.

4.6. Synthesis of 7

To a solution of **6** (0.292 g, 0.414 mmol) in benzene (25 mL) was added a solution of 2,6-diphenylphenol (0.102 g, 0.414 mmol) in benzene (10 mL). The reaction mixture was stirred at room temperature for 12 h after which time a white precipitate had formed. The reaction mixture was filtered, washed with benzene (3 × 5 ml) and hexane (3 × 5 mL) and the solid was dried *in vacuo* to yield **7** (0.262 g, 77%) as a colorless powder. ¹H NMR: δ 7.64 (d, *J* = 7.7 Hz, 6H, *m*-C₆H₃Ph₂), 7.40–7.28 (m, 24H, *o*- and *m*-C₆H₃(C₆H₅)₂), 7.07 (t, *J* = 7.7 Hz, 3H, *p*-C₆H₃Ph₂), 7.00 (t, *J* = 7.5 Hz, 6H, *p*-C₆H₃(C₆H₅)), -0.12 (s, 3H, -CH₃) ppm. *Anal.* Calcd. for C₆1H₄₈GeO₃ (**7**·C₆H₆): C, 81.24; H, 5.37. Found: C, 81.52; H, 5.31%.

4.7. Single crystal X-ray crystallography

Samples were mounted on a Cryoloop with Paratone-*N* oil under a stream of nitrogen gas at -173 °C. Data was collected on an APEX2 CCD system and then processed using the APEX2 software for preliminary determination of the unit cell. Diffraction intensity data were collected with a Siemens P4/CCD diffractometer. Crystallographic data and details are shown in Table 4. Absorption corrections were applied for all data using sADABS. The structures were solved using direct methods, completed by difference Fourier syntheses, and refined on full-matrix least-squares procedures on F^2 . All ordered non-hydrogen atoms were refined with anisotroptic displacement coefficients and hydrogen atoms were treated as idealized contributions. All software and sources of scattering factors are contained in the SHEXTL (5.10) program package (G. Sheldrick, Bruker XRD, Madison, WI). ORTEP diagrams were drawn using the ORTEP3 program (L.J. Farrugia, Glasgow).

Appendix A. Supplementary material

CCDC 774956, 774957, 774958, and 774959 contain the supplementary crystallographic data for **3**, **4**, **5**, and **7**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ica.2010.06.060.

References

- [1] J. Barrau, G. Rima, T. El Amraoui, Organometallics 17 (1998) 607.
- T.J. Boyle, L.J. Tribby, L.A.M. Ottley, S.M. Han, Eur. J. Inorg. Chem. (2009) 5550.
 B. Cetinkaya, I. Gumrukcu, M.F. Lappert, J.L. Atwood, R.D. Rogers, M.J.
- [5] B. Ceunkaya, I. Gunirukcu, M.F. Lappert, J.L. Atwood, K.D. Rogers, M.J. Zaworotko, J. Am. Chem. Soc. 102 (1980) 2088.
- [4] A.J. Chmura, C.J. Chuck, M.G. Davidson, M.D. Jones, M.D. Lunn, S.D. Bull, M.F. Mahon, Angew. Chem., Int. Ed. 46 (2007) 2280.
- [5] R.O. Day, J.M. Holmes, A.C. Sau, R.R. Holmes, Inorg. Chem. 21 (1982) 281.
- [6] D.A. Dickie, I.S. MacIntosh, D.D. Ino, Q. He, O.A. Labeodan, M.C. Jennings, G. Schatte, C.J. Walsby, J.A.C. Clyburne, Can. J. Chem. 86 (2008) 20.
- [7] S.E.-C. El Kettani, M. Lazraq, H. Ranaivonjatovo, J. Escudie, H. Gornitzka, F. Ouhsaine, Organometallics 26 (2007) 3729.
- [8] H. Gerung, T.J. Boyle, L.J. Tribby, S.D. Bunge, C.J. Brinker, S.M. Han, J. Am. Chem. Soc. 128 (2006) 5244.
- [9] R.A. Green, C. Moore, A.L. Rheingold, C.S. Weinert, Inorg. Chem. 48 (2009) 7510.
- [10] R.A. Green, A.L. Rheingold, C.S. Weinert, Inorg. Chim. Acta 362 (2009) 3159.
- [11] T. Hascall, A.L. Rheingold, I. Guzei, G. Parkin, Chem.Commun. (1998) 101.
- [12] T. Hascall, K. Pang, G. Parkin, Tetrahedron 63 (2007) 10826.
- [13] P.B. Hitchcock, M.F. Lappert, S.A. Thomas, A.J. Thorne, A.J. Carty, N.J. Taylor, J. Organomet. Chem. 315 (1986) 27.
- [14] R.R. Holmes, R.O. Day, A.C. Sau, C.A. Poutasse, J.M. Holmes, Inorg. Chem. 24 (1985) 193.
- [15] R.R. Holmes, R.O. Day, A.C. Sau, C.A. Poutasse, J.M. Holmes, Inorg. Chem. 25 (1986) 607.
- [16] R.R. Holmes, R.O. Day, A.C. Sau, J.M. Holmes, Inorg. Chem. 25 (1986) 600.
- [17] M. Jindal, A. Singh, Indian J. Chem., Sect. A 47A (2008) 228.
- [18] N. Khoury, S.D. Pastor, D. Rahni, C.F. Richardson, N.A. Syed, S.P. Shum, A. Chandrasekaran, Phosphorus, Sulfur, Silicon, Relat. Elem. 179 (2004) 483.
- [19] B.G. McBurnett, A.H. Cowley, Chem. Commun. (1999) 17.
- [20] S.D. Pastor, D.N. Rahni, N. Khoury, S.A. Koch, Phosphorus, Sulfur, Silicon, Relat. Elem. 181 (2006) 1951.
- [21] A.V. Piskunov, I.A. IAivaz'yan, A.I. Poddel'sky, G.K. Fukin, E.V. Baranov, V.K. Cherkasov, G.A. Abakumov, Eur. J. Inorg. Chem. (2008) 1435.
- [22] A.C. Sau, R.O. Day, R.R. Holmes, J. Am. Chem. Soc. 102 (1980) 7972.
- [23] H. Schafer, W. Saak, M. Weidenbruch, Organometallics 18 (1999) 3159.
- [24] O. Seiler, C. Burschka, M. Penka, R. Tacke, Silicon Chem. 1 (2002) 355.
- [25] G.D. Smith, P.E. Fanwick, I.P. Rothwell, Inorg. Chem. 29 (1990) 3221.
- [26] C. Stanciu, A.F. Richards, M. Stender, M.M. Olmstead, P.P. Power, Polyhedron 25 (2006) 477.
- [27] R. Tacke, J. Sperlich, B. Becker, Chem. Ber. 127 (1994) 643.
- [28] R. Tacke, A. Stewart, J. Becht, C. Burschka, I. Richter, Can. J. Chem. 78 (2000) 1380.
- [29] T. Thompson, S.D. Pastor, G. Rihs, Inorg. Chem. 38 (1999) 4163.
- [30] C.S. Weinert, P.E. Fanwick, I.P. Rothwell, Acta Crystallogr. E58 (2002) m718.
- [31] C.S. Weinert, P.E. Fanwick, I.P. Rothwell, J. Chem. Soc., Dalton Trans. (2002)
- 2948. [32] C.S. Weinert, P.E. Fanwick, I.P. Rothwell, Dalton Trans. (2003) 1795.
- [33] C.S. Weinert, A.E. Fenwick, P.E. Fanwick, I.P. Rothwell, Dalton Trans. (2003)
- 532.[34] A.E. Wetherby Jr., L.R. Goeller, A.G. DiPasquale, A.L. Rheingold, C.S. Weinert, Inorg. Chem. 46 (2007) 7579.
- [35] A.E. Wetherby, A.L. Rheingold, C.L. Feasley, C.S. Weinert, Polyhedron 27 (2008) 1841.
- [36] A.E. Wetherby Jr., L.R. Goeller, A.G. DiPasquale, A.L. Rheingold, C.S. Weinert, Inorg. Chem. 47 (2008) 2162.
- [37] A.C. Filippou, P. Portius, A.I. Philippopoulos, Organometallics 21 (2002) 653.
- [38] R.K. Chadha, J.E. Drake, M.K.H. Neo, J. Crystallogr. Spectrosc. Res. 15 (1985) 39.
- [39] Y. Inoguchi, S. Okui, K. Mochida, A. Itai, Bull. Chem. Soc. Jpn. 58 (1985) 974.
- [40] F. Cheng, M.F. Davis, A.L. Hector, W. Levason, G. Reid, M. Webster, W. Zhang, Eur. J. Inorg. Chem. (2007) 4897.
- [41] A.G. Avent, F.G.N. Cloke, M.D. Francis, P.B. Hitchcock, J.F. Nixon, Chem. Commun. (2000) 879.
- [42] A. Sekiguchi, Y. Ishida, N. Fukaya, M. Ichinohe, N. Takagi, S. Nagase, J. Am. Chem. Soc. 124 (2002) 1158.
- [43] I. Saur, K. Miqueu, G. Rima, J. Barrau, V. Lemierre, A. Chrostowska, J.-M. Sotiropoulos, G. Pfister-Guillouzo, Organometallics 22 (2003) 3143.
- [44] H. Preut, H.-J. Haupt, Acta Crystallogr. B36 (1980) 678.
- [45] H.H. Karsch, J. Hofmann, G. Muller, J. Chem. Soc., Chem. Commun. (1988) 516.
- [46] J.A. Dopke, D.R. Powell, R.K. Hayashi, D.F. Gaines, Inorg. Chem. 37 (1998) 4160.
- [47] J. Janczak, M. Razik, R. Kubiak, Acta Crystallogr. C55 (1999) 359.
- [48] S.R. Stobart, M.R. Churchill, F.J. Hollander, W.J. Youngs, J. Chem. Soc., Chem. Commun. (1979) 911.
- [49] N.G. Bokii, Y.T. Struchkov, Zh. Strukt. Khim. 8 (1967) 122.

- [50] K.A. Miller, J.M. Bartolin, R.M. O'Neill, R.D. Sweeder, T.M. Owens, J.W. Kampf, M.M. Banaszak Holl, N.J. Wells, J. Am. Chem. Soc. 125 (2003) 8986.
- [51] I. Saur, G. Rima, K. Miqueu, H. Gornitzka, J. Barrau, J. Organomet. Chem. 672 (2003) 77.
- [52] M. Dräger, D. Simon, Z. Anorg. Allg. Chem. 472 (1981) 120.
- [53] U. Muller, V. Krug, Acta Crystallogr. C46 (1990) 523.
- [54] P.A. Rupar, V.N. Staroverov, P.J. Ragogna, K.M. Baines, J. Am. Chem. Soc. 129 (2007) 15138.
- [55] A.V. Polyakov, A.I. Yanovsky, Y.T. Struchkov, A.M. Gal'minas, M.P. Egorov, S.P. Kolesnikov, O.M. Nefedov, Metalloorg. Khim. 1 (1988) 1257.
- [56] R.K. Chadha, J.E. Drake, A.B. Sarkar, M.L.Y. Wong, Acta Crystallogr. C45 (1989) 37.
- [57] M.D. Francis, P.B. Hitchcock, Organometallics 22 (2003) 2891.
- [58] A.J. Arduengo III, H.V.R. Dias, J.C. Calabrese, F. Davidson, Inorg. Chem. 32 (1993) 1541.
- [59] G. Renner, P. Kircher, G. Huttner, P. Rutsch, K. Heinze, Eur. J. Inorg. Chem. (2000) 879.
- [60] G. Renner, G. Huttner, P. Rutsch, Z. Naturforsch. B56 (2001) 1328.

- [61] L. Fajari, J. Carilla, L. Julia, J. Riera, A. Parraga, M. Coll, X. Solans, J. Organomet. Chem. 474 (1994) 89.
- [62] K. Ejsmont, R. Kubiak, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 53 (1997) 1051.
- [63] W.-P. Leung, C.-W. So, K.-W. Kan, H.-S. Chan, T.C.W. Mak, Organometallics 24 (2005) 5033.
- [64] M. Veith, A. Detemple, V. Huch, Chem. Ber. 124 (1991) 1135.
- [65] D.B. Mitzi, Chem. Mater. 8 (1996) 791.
- [66] A. Sekiguchi, Y. Ishida, Y. Kabe, M. Ichinohe, J. Am. Chem. Soc. 124 (2002) 8776.
- [67] M. Veith, E. Werle, Z. Anorg. Allg. Chem. 609 (1992) 19.
- [68] K. Iwanaga, J. Kobayashi, T. Kawashima, N. Takagi, S. Nagase, Organometallics 25 (2006) 3388.
- [69] P.D. Prince, G.S. McGrady, J.W. Steed, New J. Chem. 26 (2002) 457.
- [70] B. Schiemenz, G. Huttner, Chem. Ber. 127 (1994) 2129.
- [71] M. Weidenbruch, A. Hagedorn, K. Peters, H.G. von Schnering, Angew. Chem., Int. Ed. 34 (1995) 1085.
- [72] J. Emsley, The Elements, Clarendon Press, Oxford, 1991.
- [73] D.F. Shriver, M.A. Drezdzon, The Manipulation of Air Sensitive Compounds, John Wiley and Sons, New York, 1986.