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Concise Access to Pyrimidine-Annulated Azepine and Azocine Derivatives by
Ruthenium-Catalyzed Ring-Closing Metathesis
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Abstract: Synthetic approaches to five- and six-membered-ring
systems are commonly undertaken through cyclization and cycload-
dition reactions, but the formation of seven- and eight-membered-
ring systems are not as abundant. An efficient and high-yielding
method for the synthesis of seven- and eight-membered-ring nitro-
gen-containing heterocycles by ring-closing metathesis is reported.
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Due to the rich chemistry and biology of nitrogen-contain-
ing compounds, the synthesis of N-heterocycles has been
a central and important theme in organic chemistry.! Me-
dium-sized N-containing fused-ring systems, in particular
seven-membered rings (azepines) and eight-membered
rings (azocines), are key structures occurring in many nat-
ural products (Figure 1).27 Despite their bioactivity,?
azepine- and azocine-fused ring systems have not been
much investigated. One barrier to their study is the unsat-
isfactory synthetic procedures available.’
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Figure 1 Azepine- and azocine-containing alkaloids

Recently, however, palladium-catalyzed intramolecular
Heck coupling has been explored for the synthesis of
azepine and azocine derivatives. There are two main
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drawbacks. The first is that palladium-catalyzed cycliza-
tion by the application of intramolecular Heck reactions
require harsh reaction conditions where a nitrogen-con-
taining compound is used as the starting material.'° The
second problem is that the two available modes of cycliza-
tion, endo-trig and exo-trig, often compete with each oth-
er. Consequently, there is always a tendency for a mixture
of products to be obtained. For example, Hii et al.
reported!! the competitive formation of 7-exo-trig cy-
clized product benzazepine and 8-endo-trig cyclized prod-
uct benzazocine, as an inseparable mixture of products in
the pallladium-catalyzed intramolecular Heck reaction;
however, they did demonstrate the importance of temper-
ature and ligand effects on the regioselectivity of the reac-
tion. These findings prompted us to undertake a study on
the synthesis of biologically interesting azepine and azo-
cine derivatives in which the major drawbacks can be
overcome. In a continuation of our work on ring-closing
metathesis'?> and the synthesis of bio-active heterocy-
cles,!® we have utilized the ring-closing metathesis proto-
col for the synthesis of pyrimidine-annulated azepine and
azocine derivatives. Here we report our results.

For the synthesis of pyrimido-azepine and azocine deriv-
atives, compounds 4a—c, which are common starting ma-
terials, were prepared according to our recently published
procedure.'*15 5-Bromouracil derivatives la-¢ were sub-
jected to allylamine in ethanol to give the 5-allylaminou-
racil derivatives 2a—c followed by BF;-Et,O catalyzed
Claisen rearrangement to give the 5-amino-6-allyluracil
derivatives 3a—c in excellent yields. Treatment of com-
pounds 3a—c with p-TsCl in pyridine gave the correspond-
ing tosyl derivatives 4a—c, which were used as the starting
materials for the present study. The route for the prepara-
tion of these starting materials 4a—c are shown in
Scheme 1.

The required precursors 5a—c for the synthesis of pyrimi-
do-azepine derivatives, and 5d—f for the synthesis of py-
rimido-azocine derivatives, were prepared in 90-94%
yields by the reaction of 4a—c with either allyl bromide or
homoallyl bromide, in the presence of anhydrous potassi-
um carbonate in refluxing acetone for 4-5 hours
(Scheme 2).

Finally, for the synthesis of the target pyrimidine-fused
azepine and azocine derivatives from the substrates Sa—f,
the ring-closing metathesis strategy was adopted. Among
the available metathesis catalysts (Figure 2), we used cat-
alyst A (Grubbs 1% generation) for the present work.

Downloaded by: Deakin University. Copyrighted material.



PAPER Pyrimidine-Annulated Azepine and Azocine Derivatives 1177
o] o] o Ts o Ts
R2 Br R2 N Me N Me N
l | 0 N R N T 0 N
v, L
— 90% /
07 N o)\"u o)\hll = oél\rr
R! R! Me Me
1la—c 2a—c 5a 6a
a,R'=R2=Me a, R' = R? = Me; 84% ) i i ivati [
b, R' = R2= Et b R = R? = Et. 82% ) Scheme 3 Synthesis of azepine derivative 6a. Reagents and condi-

¢, R'=Et, R?=Me ¢, R' = Et, R2 = Me; 85%

'Il's
RZ_ NH RZ_ NH,
N | (i) | -
P —
o] N AN ] l?l X
FI(1 R1
4a—c 3a-c

a, R'=R? = Me; 95%
b, R' = R2 = Et; 90%
¢, R' = Et, R? = Me; 93%

a, R' = R? = Me; 90%
b, R' = R2= Et; 97%
¢, R' = Et, R? = Me; 95%

Scheme 1 Synthesis of starting materials 4a—c. Reagents and con-
ditions: (i) allyl amine, EtOH, reflux, 5-6 h; (ii) BF;-OEt,, xylene,
120 °C, 4-5 h; (iii) TsCl, Py, 80 °C, 1-2 h.
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Scheme 2 Synthesis of precursors Sa—f. Reagents and conditions:
(i) allyl bromide, K,COj, acetone, reflux, 4-5 h; (ii) homoallyl bro-
mide, K,CO;, acetone, reflux, 4-5 h.

When a dichloromethane solution of the substrate Sa and
ruthenium carbene complex A (5 mol%) was stirred at
room temperature for ten hours under a nitrogen atmo-
sphere, ring-closing metathesis proceeded smoothly to af-
ford the azepine derivative 6a in 90% yield (Scheme 3).
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Figure 2

tions: (i) anhydrous CH,Cl,, Grubbs catalyst A, r.t., 10 h.

Encouraged by this result, further substrates Sb—f were
similarly treated with the catalyst A in dichloromethane to
afford the corresponding azepine derivatives 6b and 6c,
and azocine derivatives 6d—f in 85-89% yields. The re-
sults are summarized in Table 1.

Table 1 Synthesis of Pyrimidine-Containing Azepine and Azocine
Derivatives 6a—f

Entry Starting material 5 Product 6 Yield
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In conclusion, based on combined aza-Claisen rearrange-
ment and ring-closing metathesis, we have developed a
general and straightforward methodology for the synthe-
sis of pyrimido-azepine and azocine derivatives in excel-
lent yields. It is important to note that pyrimidine
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derivatives and its fused heterocycles such as purines,
pyrrolopyrimidines, pyrazolopyrimidine, etc., constitute
the backbone of several biologically active compounds.
For example, 4H-pyrido[1,2-a]pyrimidin-4-ones have
been used as anticancer agents'® and HIV-integrase inhib-
itors,'” and pteridines are potent antitumor agents.'® For
this reason, novel methodologies for the synthesis of pyri-
midine scaffolds are of particular interest in medicinal
chemistry. This sequence affords a very short synthesis of
those derivatives and provides easy access to libraries for
medicinal and pharmaceutical applications.

Melting points were determined in open capillaries and are uncor-
rected. IR spectra were recorded with KBr discs with a Perkin—
Elmer 120-000A apparatus. '"H NMR spectra were determined as
solutions in CDCl; with TMS as internal standard on a Bruker DPX-
400 instrument. '*C NMR spectra were determined as solutions in
CDClI; on a Bruker DPX-400 instrument. MS were recorded with a
Qtof Micro YA263 instrument. CHN analyses were recorded on a
2400 series II CHN analyzer (Perkin—Elmer) in the Chemistry De-
partment of Kalyani University. Silica gel (60—120 mesh) was used
for chromatographic separation. Silica gel-G [E-Mark (India)] was
used for TLC. Petroleum ether (PE) refers to the fraction boiling be-
tween 60 and 80 °C.

N-Allyl-N-(6-allyl-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydro-
pyrimidin-5-yl)-4-methylbenzenesulfonamide (5a); Typical
Procedure

A mixture of compound 4a (0.50 g, 1.43 mmol), allyl bromide (0.35
g, 2.86 mmol) and anhydrous K,CO; (1.0 g) was stirred for 4 h in
refluxing acetone (50 mL). The reaction mixture was cooled, fil-
tered and the solvent was removed. The residual mass was extracted
with chloroform (3 x 20 mL), washed with H,O (2 x 10 mL) and
brine (5 mL) and dried (Na,SO,). Removal of the chloroform gave
the crude product, which was purified by chromatography over sil-
ica gel (60-120 mesh; PE-EtOAc, 9:1) to give compound Sa.

Yield: 93%; white solid; mp 94-96 °C.
IR (KBr): 1701, 1654, 1343 cm™..

'H NMR (400 MHz, CDCL,): & = 2.42 (s, 3 H), 3.22 (s, 3 H), 3.45
(s, 3H), 3.50 (dd, J = 16.6, 5.3 Hz, 1 H), 3.85 (q, J = 9.0 Hz, 1 H),
3.92 (dd, J=16.6, 5.2 Hz, 1 H), 4.24 (dd, J=13.9, 5.1 Hz, 1 H),
5.04 (d, J=10.6 Hz, 2H), 5.17 (d, J=17.4 Hz, 1 H), 530 (d,
J=10.3 Hz, 1 H), 5.70-5.84 (m, 1 H), 5.85-5.90 (m, 1 H), 7.28 (d,
J=8.0Hz 2 H),7.71 (d,J = 8.0 Hz, 2 H).

3C NMR (100 MHz, CDCly): §=21.3, 28.4, 32.5, 34.2, 454,
111.8,119.2,119.9,128.2,129.2, 132.6, 133.1, 135.9, 143.8, 151.5,
156.8, 159.7.

MS: m/z =389 [M*].

Anal. Caled for C;4H,;N;0,S: C, 58.59; H, 5.95; N, 10.79. Found:
C, 58.71; H, 5.92; N, 10.87.

N-Allyl-N-(6-allyl-1,3-diethyl-2,4-dioxo-1,2,3,4-tetrahydropyri-
midin-5-yl)-4-methylbenzenesulfonamide (5b)
Yield: 91%; white solid; mp 116-118 °C.

IR (KBr): 1705, 1651, 1340 cm™.

'H NMR (400 MHz, CDCl,): § = 1.07 (t, J = 7.0 Hz, 3 H), 1.27 (t,
J=7.0Hz,3 H), 2.40 (s, 3 H), 3.49 (dd, J = 16.6, 5.3 Hz, 1 H), 3.85
(q, J=6.9 Hz, 4H), 3.90 (dd, J=16.6, 5.2 Hz, 1 H), 4.25 (dd,
J=13.9,5.1 Hz, 2 H), 5.04 (d, J = 10.6 Hz, 2 H), 5.17 (d, J = 17.4
Hz, 1 H), 5.27 (d,J = 10.3 Hz, 1 H), 5.73-5.87 (m, 1 H), 5.88-5.93
(m, 1 H), 7.26 (d, J = 8.0 Hz, 2 H), 7.67 (d, J = 8.0 Hz, 2 H).
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13C NMR (100 MHz, CDCl,): § = 12.6, 14.3,21.6, 33.2,36.8, 41.2,
51.9,111.9,118.8,119.8, 128.2, 129.3, 132.6, 133.1, 136.0, 143.7,
150.6, 156.5, 159.3.

MS: m/z =417 [M*].

Anal. Calcd for C,;H,;N;0,S: C, 60.41; H, 6.52; N, 10.06. Found:
C, 60.34; H, 6.59; N, 10.16.

N-Allyl-N-(6-allyl-1-ethyl-3-methyl-2,4-dioxo-1,2,3,4-tetrahy-
dropyrimidin-5-yl)-4-methylbenzenesulfonamide (5c)
Yield: 90%; white solid; mp 110-112 °C.

IR (KBr): 1707, 1660, 1344 cm™.

'H NMR (400 MHz, CDCL,): § = 1.28 (t, J = 7.2 Hz, 3 H), 2.42 (s,
3H),3.22 (s, 3 H),3.50 (dd, J = 16.6, 5.3 Hz, 1 H), 3.85 (q, /= 7.6
Hz,2 H),4.07 (dd, J = 16.6,5.2 Hz, 2 H),4.22 (dd, J = 13.9,5.1 Hz,
1 H), 5.04 (d, J = 10.0 Hz, 2 H), 5.17 (d, J = 17.3 Hz, 1 H), 5.27 (d,
J=10.3 Hz, 1 H), 5.73-5.75 (m, 1 H), 5.90-5.92 (m, 1 H), 7.28 (d,
J=8.0Hz 2H),7.72 (d, J = 7.6 Hz, 2 H).

MS: m/z =403 [M*].

Anal. Caled for C,jH,5N;0,S: C, 59.53; H, 6.25; N, 10.41. Found:
C, 59.69; H, 6.29; N, 10.32.

N-(6-Allyl-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimi-
din-5-yl)-N-(but-3-enyl)-4-methylbenzenesulfonamide (5d)
Reaction performed according to the typical procedure described
above using homoallyl bromide in place of allyl bromide.

Yield: 91%; white solid; mp 102-104 °C.
IR (KBr): 1700, 1654, 1345 cm™.

'HNMR (400 MHz, CDCL,): § = 2.01 (m, 1 H), 2.13-2.22 (m, 1 H),
2.42 (s, 3 H), 3.22 (s, 3 H), 3.42 (s, 3 H), 3.44-3.46 (m, 1 H), 3.60
(m, 1 H), 4.04 (m, 1 H), 4.92 (m, 1 H), 5.04 (d, J = 10.6 Hz, 2 H),
5.19(d,J = 17.5Hz, 1 H), 5.32 (d,J = 10.4 Hz, 1 H), 5.57-5.64 (m,
1 H), 5.85-5.90 (m, 1 H), 7.27 (d, J= 8.2 Hz, 2 H), 7.71 (d, J = 8.2
Hz, 2 H).

MS: m/z =403 [M*].

Anal. Calcd for C,)H,sN;0,S: C, 59.53; H, 6.25; N, 10.41. Found:
C, 59.61; H, 6.30; N, 10.32.

N-(6-Allyl-1,3-diethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-
5-yl)-N-(but-3-enyl)-4-methylbenzenesulfonamide (5e)
Yield: 94%; white solid; mp 106—-108 °C.

IR (KBr): 1703, 1651, 1340 cm™.

'H NMR (400 MHz, CDCl,): § = 1.13 (t, J = 6.9 Hz, 3 H), 1.30 (1,
J=7.0 Hz, 3 H), 2.34-2.38 (m, 2 H), 2.42 (s, 3 H), 3.68-3.72 (m,
1 H), 3.83-3.92 (m, 1 H), 3.93-4.07 (m, 4 H), 4.08-4.15 (m, 2 H),
4.97-5.06 (m, 2 H), 5.19 (d, J = 17.6 Hz, 1 H), 5.31 (d, J = 10.4 Hz,
1 H), 5.66-5.70 (m, 1 H), 5.79-5.86 (m, 1 H), 7.28 (d, J = 8.4 Hz,
2H),7.72 (d, J = 8.4 Hz, 2 H).

MS: m/z =431 [M*].

Anal. Calcd for C,,H,0N;0,S: C, 61.23; H, 6.77; N, 9.74. Found: C,
61.33; H, 6.86; N, 9.82.

N-(6-Allyl-1-ethyl-3-methyl-2,4-dioxo-1,2,3,4-tetrahydropyri-
midin-5-yl)-N-(but-3-enyl)-4-methylbenzenesulfonamide (5f)
Yield: 92%; white solid; mp 126-128 °C.

IR (KBr): 1699, 1652, 1346 cm™.

'H NMR (400 MHz, CDCLy): & = 1.30 (t, J = 7.2 Hz, 3 H), 2.08—
2.17 (m, 1 H), 2.23-2.31 (m, 1 H), 2.42 (s, 3 H), 3.24 (s, 3 H), 3.28—
3.31 (m, 1 H), 3.58-3.66 (m, 2 H), 3.89-3.99 (m, 2 H), 4.07-4.14
(m, 1 H), 4.99-5.03 (m, 2 H), 5.19 (d, /= 17.6 Hz, 1 H), 5.31 (d,
J=10.4 Hz, 1 H), 5.60-5.71 (m, 1 H), 5.93-6.01 (m, 1 H), 7.28 (d,
J=84Hz,2H),7.72 (d, J = 8.4 Hz, 2 H).
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3CNMR (100 MHz, CDCly): & = 14.3,21.6,28.3, 33.1,33.2,41.4,
48.5,112.2,116.9, 118.7, 128.3, 129.2, 132.6, 134.6, 135.9, 143.7,
150.9, 156.2, 159.9.

MS: m/z =417 [M*].

Anal. Calcd for C,;H,;N;0,S: C, 60.41; H, 6.52; N, 10.06. Found:
C, 60.48; H, 6.56; N, 10.01.

(2)-1,3-Dimethyl-5-tosyl-5,6-dihydro-1H-pyrimidol[5,4-
blazepine-2,4(3H,9H)-dione (6a); Typical Procedure

5a (100 mg, 0.26 mmol) was taken in anhydrous CH,Cl, (7 mL) in
a small flask and degassed for 10 min with anhydrous N, gas.
Grubbs’ catalyst A (11 mg, 5 mol%) was dissolved in anhydrous
CH,CI, and also degassed for 10 min. The catalyst solution was in-
jected into the solution of compound Sa and the solution was stirred
at 25 °C for 10 h. The solvent was removed under reduced pressure
to give a dark mass, which was purified by column chromatography
over silica gel (PE-EtOAc, 8:2) to give the product 6a.

Yield: 90%; white solid; mp 182-184 °C.
IR (KBr): 1710, 1654, 1328 cm™.

'H NMR (400 MHz, CDCl,): § = 2.42 (s, 3 H), 3.13 (g, J = 8.7 Hz,
1 H), 3.35 (s, 3 H), 3.52 (s, 3 H), 3.62 (d, J = 18.4 Hz, 1 H), 4.25 (t,
J=18.3 Hz, 2 H), 5.55-5.58 (m, 1 H), 5.73-5.77 (m, 1 H), 7.32 (d,
J=8.0 Hz, 2 H), 8.06 (d, J = 8.1 Hz, 2 H).

BC NMR (100 MHz, CDCly): 8 =21.6, 26.6, 29.0, 33.2, 46.6,
112.7,119.7,128.4, 129.1, 129.3, 136.8, 143.8, 151.5, 157.9, 160.4.

MS: m/z = 361 [M*].

Anal. Caled for C;;H;,N;0,S: C, 56.50; H, 5.30; N, 11.63. Found:
C, 56.64; H, 5.37; N, 11.68.

(2)-1,3-Diethyl-5-tosyl-5,6-dihydro-1H-pyrimido[5,4-
blazepine-2,4(3H,9H)-dione (6b)
Yield: 88%; white solid; mp 136-138 °C.

IR (KBr): 1705, 1656, 1332 cm™.

'H NMR (400 MHz, CDCL,): § = 1.21 (t, J = 6.9 Hz, 3 H), 1.28 (t,
J=7.0 Hz, 3 H), 2.42 (s, 3 H), 3.03 (q, /= 8.9 Hz, 1 H), 3.61 (d,
J=18.6 Hz, 1 H), 3.944.10 (m, 4 H), 4.26 (t, J = 16.0 Hz, 2 H),
5.56-5.59 (m, 1 H), 5.75-5.79 (m, 1 H), 7.32 (d, J = 7.9 Hz, 2 H),
8.05 (d, J=8.0 Hz, 2 H).

BC NMR (100 MHz, CDCLy): § = 12.7, 14.6, 21.5, 26.2, 37.2, 40.9,
46.5,112.8, 120.1, 128.3, 129.2, 129.3, 136.8, 143.7, 150.7, 157.6,
159.9.

MS: m/z =389 [M*].

Anal. Calcd for C;(H,;N;0,S: C, 58.59; H, 5.95; N, 10.79. Found:
C, 58.70; H, 6.02; N, 10.86.

(Z)-1-Ethyl-3-methyl-5-tosyl-5,6-dihydro-1H-pyrimido[5,4-
blazepine-2,4(3H,9H)-dione (6¢)

Yield: 87%; white solid; mp 160-162 °C.

IR (KBr): 1703, 1654, 1330 cm™..

'H NMR (400 MHz, CDCls): 6 = 1.21 (t, J = 6.9 Hz, 3 H), 2.42 (s,
3 H), 3.06 (q, J = 8.8 Hz, 1 H), 3.34 (s, 3 H), 3.60 (d, J = 18.5 Hz,
1 H), 3.984.11 (m, 2 H), 4.26 (t, J = 18.0 Hz, 2 H), 5.56-5.59 (m,
1 H), 5.75-5.79 (m, 1 H), 7.32 (d,J=7.6 Hz, 2 H), 8.06 (d, /= 7.6
Hz, 2 H).

13C NMR (100 MHz, CDCly): § = 14.7,21.6, 26.3, 28.6, 41.1, 46.6,
112.8,120.1, 128.4,129.3, 129.5, 136.8, 143.8, 151.2, 157.7, 160.5.

MS: m/z =375 [M*].

Anal. Calcd for C3gH,;N;0,S: C, 57.58; H, 5.64; N, 11.19. Found:
C,57.69; H,5.71; N, 11.11.

(2)-1,3-Dimethyl-5-tosyl-5,6,7,10-tetrahydropyrimido[5,4-
blazocine-2,4(1H,3H)-dione (6d)
Yield: 89%; white solid; mp 178-180 °C.

IR (KBr): 1712, 1651, 1340 cm™.

'H NMR (400 MHz, CDCL,): § = 2.26 (q, J = 7.6 Hz, 1 H), 2.42 (s,
3H), 2.64 (t, J= 11.4 Hz, 1 H), 2.96-3.08 (m, 2 H), 3.29 (s, 3 H),
3.56 (s, 3 H), 3.81 (dd, J = 14.8, 3.0 Hz, 1 H), 4.10 (q, J = 8.2 Hz,
1 H), 5.87-5.93 (m, 2 H), 7.31 (d, J = 7.8 Hz, 2 H), 8.06 (d, J = 7.9
Hz, 2 H).

13C NMR (100 MHz, CDCl,): § = 21.6, 28.6, 29.1, 29.5, 33.1, 48.7,
112.8, 127.6, 128.8, 129.3, 133.6, 136.2, 143.8, 151.4, 160.2.

MS: m/z =375 [M*].

Anal. Caled for C;3H,;N;0,S: C, 57.58; H, 5.64; N, 11.19. Found:
C, 57.68; H, 5.59; N, 11.23.

(2)-1,3-Diethyl-5-tosyl-5,6,7,10-tetrahydropyrimido[5,4-b]azo-
cine-2,4(1H,3H)-dione (6e)
Yield: 87%; white solid; mp 132-134 °C.

IR (KBr): 1703, 1655, 1331 cm™.

'H NMR (400 MHz, CDCly): § = 1.14 (t, J = 6.9 Hz, 3 H), 1.35 (1,
J=7.0 Hz, 3H), 2.26 (q, J=7.4 Hz, 1 H), 2.41 (s, 3 H), 2.66 (t,
J=11.1 Hz, 1 H), 2.96-3.00 (m, 2 H), 3.69 (g, /= 6.9 Hz, 2 H),
3.90 (q, J = 6.9 Hz, 2 H), 4.08-4.12 (m, 1 H), 4.26-4.29 (m, 1 H),
5.87-5.93 (m, 2 H), 7.29 (d, J = 6.8 Hz, 2 H), 7.91 (d, J = 7.4 Hz,
2 H).

BC NMR (100 MHz, CDCly): § = 12.8, 14.5, 21.6, 28.9, 29.1, 37.1,
42.0, 48.8, 112.8, 128.2, 128.7, 129.2, 133.1, 136.3, 143.7, 150.5,
159.9, 160.2.

MS: m/z =403 [M*].

Anal. Calcd for C,)H,sN;0,S: C, 59.53; H, 6.25; N, 10.41. Found:
C,59.41; H, 6.19; N, 10.48.

(Z)-1-Ethyl-3-methyl-5-tosyl-5,6,7,10-tetrahydropyrimido[5,4-
blazocine-2,4(1H,3H)-dione (6f)

Yield: 85%; white solid; mp 188-190 °C.

IR (KBr): 1709, 1651, 1325 cm™.

'H NMR (400 MHz, CDCl,): § = 1.14 (t, J=7.2 Hz, 3 H), 2.26—
2.32 (m, 1 H), 2.46 (s, 3 H), 2.67-2.72 (m, 1 H), 2.96-3.07 (m,
2 H), 3.32 (s, 3 H), 3.71-3.80 (m, 1 H), 3.82-3.88 (m, 1 H), 4.12—
4.17 (m, 1 H), 4.32-4.37 (m, 1 H), 5.87-5.97 (m, 2 H), 7.34 (d,
J=8.4Hz,2H),7.99 (d,J=38.4Hz 2 H).

3C NMR (100 MHz, CDCl,): § = 14.6,21.6, 28.5, 28.9, 29.0, 42.1,

48.8,112.9, 128.2, 128.8, 129.3, 133.2, 136.2, 143.8, 150.9, 159.8,
160.7.

MS: m/z =389 [M*].

Anal. Calcd for C4H,3N;0,S: C, 58.59; H, 5.95; N, 10.79. Found:
C, 58.68; H, 5.99; N, 10.73.
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