A Convenient One-Pot Synthesis of 1,5-Diaryl-1,2-epoxy-4-penten-3-ones

Manoutchehr Iman, Jacques Chenault*

Laboratoire d'Etudes des Composés Phénoliques, UFR Faculté des Sciences, Université d'Orléans, B.P. 6759, F-45067 Orléans Cedex 2. France

The reaction bectween diethyl (2-oxopropyl)phosphonate (1), dry potassium carbonate, iodine, and various aromatic aldehydes in a liquid/solid two-phases system, gives 1,5-diaryl-1,2-epoxy-4-penten-3-ones 5 in good yields.

Wittig-Horner reactions can be carried out at room temperature using a liquid/solid two-phase system in the absence of a catalyst. ¹⁻⁴ We have studied the scope of the conditions for these reactions, and now report a new synthetic route to 1,5-diaryl-1,2-epoxy-4-penten-3-ones by the condensation of aromatic aldehydes with an ambident nucleophile 3, generated *in situ* from diethyl (2-oxopropyl)phosphonate (1) and potassium carbonate in methanol, in the presence of iodine. ⁵ In a

Table. 1,5 Diaryl-1,2-epoxy-4-penten-3-ones 5a-g Prepared

Prod- uct	Yield (%)	mp (°C)ª	Molecular Formula ^d or Lit. mp (°C)	$\frac{1R (KBr)^b}{v_{C=0}}$ (cm ⁻¹)	¹ H-NMR (CDCl ₃ /TMS)° δ , J (Hz)	MS (70 eV) ^e m/z (%)
5a	65	85-86	83-8410	1680	3.75 -4.10 (2d, 2H, $J = 2$, CH); 7.00 -7.85 (2d, 2H, $J = 16$, =CH); 7.20 -7.60 (m, 10 H _{arom})	250 (M ⁺ , 21); 131 (100)
5b	60	87~88	$C_{19}H_{18}O_4$ (310.3)	1675	3.77–3.80 (2s, 6H, OCH ₃); 3.75–4.05 (2d, 2H, <i>J</i> = 1.7. CH): 7.05–7.85 (2d, 2H, <i>J</i> = 16, =CH); 6.55–7.45 (m, 8 H _{arem})	310 (M ⁺ , 10); 161 (100)
5c	69	89-90	$C_{19}H_{18}O_4$ (310.3)	1670	3.82 -3.90 (2s, 6H, OCH ₃); 3.70-4.40 (2d, 2H, <i>J</i> = 1.7, CH); 7.05-8.20 (2d, 2H, <i>J</i> = 16, =CH); 6.90-7.60 (m, 8 H _{arom})	310 (M ⁺ , 8); 161 (100)
5d	70	215216	215-21610	1665	3.75–4.22 (2d. 2H, $J = 1.7$, CH); 7.18–8.30 (2d, 2H, $J = 16$. =CH); 7.50–7.90 (m, 8 H _{179m})	340 (M ⁺ , 10); 176 (100)
5e	71	157158	$C_{17}H_{12}N_2O_6$ (340.2)	1690	3.75-4 25 (2d. 2H, $J = 1.8$, CH); 7.10-7.90 (2d, 2H, $J = 10$, =CH); 7.50-7.95 (m, 8 H _{270m})	340 (M ⁺ , 33); 176 (100)
5f	72	152–153	$C_{17}H_{10}Cl_4O_2$ (388.0)	1655	3.53 -4.37 (2d, 2H, $J = 1.7$, CH); 6.95-8.20 (2d, 2H, $J = 16$, =CH); 7.20-7.65 (m, 6H _{arom})	388 (M ⁺ , 8); 199 (100)
5g	79	145155	$C_{21}H_{22}O_6$ (370.3)	1660	3.77-3.85 (4s, 12H, OCH ₃); 3.65-4.40 (2d, 2H, $J = 1.7$. CH); 7.04-8.15 (2d, 2H, $J = 16$, =CH); 6.80-7.10 (m, 6H _{arom})	370 (M ⁺ , 16); 191 (100)

- ^a Uncorrected and recorded with a Kofler apparatus.
- ^b IR spectra were obtained on a Perkin Elmer spectrophotometer 297.
- ^c ¹H-NMR spectra were recorded on a Bruker AM 300 WB spectrometer.
- ^d Satisfactory microanalyses obtained: C \pm 0.22, H \pm 0.24, N \pm 0.
- ^e Obtained on a Nermag R10-10C instrument.

preceding work, we have found that the Wittig-Horner reaction of (ethoxycarbonyliodomethyl)triphenylphosphonium iodide⁶ and ethyl iodo(diethoxyphosphoryl)acetate⁷ with aromatic aldehydes under the same conditions gave acetylenic esters in good yields.

With the diethyl (2-oxopropyl)phosphonate (1), the deprotonation, which occurs on the surface of solid potassium carbonate, generates a intermediate dianion 2. The α -CH group of 2 is less nucleophilic than the γ -CH₂ group, so that the latter attacks the substrate, here iodine, to give novel ambident nucleophile 3, where the two CH groups have approximately equivalent reactivity. The aldehyde 4 reacts with the intermediate 3 in a simultaneous Wittig-Horner and Darzens condensation to yield the epoxy ketones 5 (Table).

$$(Et0)_{2}P \xrightarrow{\begin{array}{c} 0 \\ |||||||||} \\ 1 \end{array} \qquad \begin{array}{c} K_{2}CO_{3}/I_{2} \\ CH_{3}OH_{3}O-5 \circ C \\ \hline \\ 1 \end{array} \qquad \begin{array}{c} 0 \\ (Et0)_{2}P \xrightarrow{\downarrow} \\ \hline \\ 2 \end{array} \qquad \begin{array}{c} I_{2} \\ K_{2}^{+} \\ \hline \\ \end{array}$$

4, 5	Ar	4, 5	Ar
a	C ₆ H ₅	e	3-NO ₂ C ₆ H ₄
b	$4\text{-CH}_3\text{OC}_6\text{H}_4$	f	2.4-Cl ₂ C ₆ H ₃
c	$2\text{-CH}_3\text{OC}_6\text{H}_4$	g	2,5-(CH ₃ O),C ₆ H ₃
d	$4-NO_2C_6H_4$	Ü	7 (3 7 2 6 3

It is interesting to note the stereochemical outcome of the reaction, as determined by ¹H-NMR spectroscopy. The coupling constants for the hydrogens of the epoxy ring ($J = \sim 2$ Hz) and the double bond ($J = \sim 17$ Hz) revealed the *trans*- and *E*-configurations of the epoxy ring and the double bond, respectively.

This result is in accord with the stereospecificity of the Wittig-Horner reaction in the heterogenous media, and with the

transition state for the epoxy cyclization of the iodohydrin anion that requires the C—O and C—I groups in *ami* position to each other with the cinnamoyl and aryl groups having a minimum of interaction.⁸

The principal advantages of the procedure described here are the good yields, the short reaction time, the facile one-step procedure, the convenient work-up, and the easy availability of the starting material.⁹

1,5-Diaryl-1,2-epoxy-4-penten-3-ones 5; General Procedure:

In a 500 mL round-bottomed flask, equipped with a thermometer and a stirrer are placed dry $\rm K_2CO_3$ (8.28 g, 0.06 mol), $\rm CH_3OH$ (20 mL), and diethyl (2-oxopropyl)phosphonate (1; 3.88 g, 0.02 mol) under a nitrogen atmosphere. A solution of $\rm I_2$ (5.08 g, 0.02 mol) in $\rm CH_3OH$ (40 mL) is added dropwise at 0–5°C during 1 h. After discoloration of the mixture, a solution of the aromatic aldehyde 4 (0.04 mol) in $\rm CH_3OH$ (10 mL) is added, and the mixture heated to 60°C for 2 h. The mixture sallowed to cool to room temperature, and $\rm CH_3OH$ is evaporated to dryness. The residue is partitioned between water (100 mL) and $\rm CH_2CI_2$ (100 mL). The layers are separated, and the organic layer is washed twice with aq. 10% HCl (2 × 20 mL), H₂O (2 × 20 mL), dried (MgSO₄) and evaporated under reduced pressure. The products 5b–g are purified by recrystallization from CH₃OH and compound 5a by chromatography on silica gel column using toluene as cluent (Table).

We thank P. Bouyssou, G. Keravis for ¹H-NMR and mass spectra.

Received: 20 May 1988; revised. 7 September 1988

- Piechuki, C. Synthesis 1974, 869.
 Piechuki, C. Synthesis 1976, 187.
- Mikolajezyk, M., Grejozezak, S., Midura, W. Zatorski, A. Synthesis 1976, 196.
- (3) Villieras, J., Rambaud, M. Synthesis 1983, 300.
- (4) Rambaud, M., Del Vecchio, A., Villieras, J. Synth. Commun. 1984, 14, 833.
- (5) Wadsworth, W.S., Jr., Emmons, W.D. J. Am. Chem. Soc. 1961, 83, 1733.
- (6) Chenault, J., Dupin, J.F.E. Synthesis 1987, 498
- (7) Chenault, J. Synth. Commun., submitted for publication.
- (8) Jonezyk, A., Kwast, A., Makosza, M. J. Chem. Soc. Chem. Commun. 1977, 902.
- (9) Pudovik, A.N. Dokl. Akad. Nauk SSSR 1955, 105, 735.
- (10) Terada, A., Kishida, Y. Chem. Pharm. Bull. 1970, 18, 497.