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ABSTRACT 

Rhomboids are intramembrane serine proteases with diverse physiological functions in 

organisms ranging from archaea to humans. Crystal structures analysis has provided a 

detailed understanding of the catalytic mechanism, and rhomboids have been implicated in 

various disease contexts. Unfortunately, the design of specific rhomboid inhibitors has 

lagged behind, and previously described small molecule inhibitors displayed insufficient 

potency and/or selectivity. Using a computer-aided approach, we focused on the discovery of 

novel scaffolds with reduced liabilities and the possibility for broad structural variations. 

Docking studies with the E.coli rhomboid GlpG indicated that 2-styryl substituted 

benzoxazinones might comprise novel rhomboid inhibitors. Protease in vitro assays 

confirmed activity of 2-styryl substituted benzoxazinones against GlpG but not against the 

soluble serine protease -chymotrypsin. Furthermore, mass spectrometry analysis 

demonstrated covalent modification of the catalytic residue Ser201, corroborating the 

predicted mechanism of inhibition and the formation of an acyl enzyme intermediate. In 

conclusion, 2-styryl substituted benzoxazinones are a novel rhomboid inhibitor scaffold with 

ample opportunity for optimization. 
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RESULTS AND DISCUSSION 

Rhomboids are intramembrane serine proteases present in prokaryotic, archaeal and 

eukaryotic organisms 1. In 2001, the first rhomboid was discovered in Drosophila and shown 

to perform a critical proteolysis step in EGF-receptor signaling 2, 3. Since then, rhomboids 

have been implicated in a wide range of biological processes including bacterial quorum 

sensing 4, mitochondrial dynamics and integrity 5, 6, and protein quality control 7. In addition, 

rhomboids have been identified as putative drug targets in the context of multiple diseases 8 

such as cancer 9, diabetes 10, 11, parasitic diseases 12, 13, and Parkinson’s disease 5. The 

crystal structures of rhomboids from E. coli and H. influenzae have been solved and revealed 

that rhomboids are serine-histidine dyad proteases composed of 6 core transmembrane 

helices, which form a V-shaped cavity and expose the active site to a partially hydrophilic 

environment 14, 15. These structures together with numerous biochemical studies have 

provided a detailed understanding of the catalytic mechanism of rhomboid proteases 16, but 

this has not yet translated into the development of potent, selective and drug-like inhibitors 17. 

Through different strategies, from the testing of candidate molecules to rational synthesis to 

the screening of small molecule libraries, isocoumarins 3, 18, 19, fluorophosphonates 20, -

lactams 21, and -lactones 22  were found to be effective against rhomboids, but these 

inhibitors generally displayed low potency and/or insufficient selectivity 18, 20, 21. Effectively, 

inherent liabilities as exemplified by the high reactivity of isocoumarins likely preclude or limit 

further development of these compound classes 23, 24.  

Accordingly, using a computer-aided candidate approach, we focused on the discovery of 

novel scaffolds with reduced liabilities and the possibility for broad structural variations. One 

scaffold we selected was 2-substituted derivatives of 4H-3,1-benzoxazin-4-ones, which were 

previously used as heterocyclic acylating agents against serine proteases such as HLE, α-

chymotrypsin, and cathepsin G 23, 25-28. The mechanism of inhibition involves the formation of 

an O-acyl enzyme intermediate. The nucleophilic serine reacts with the C-4 carbonyl of the 

benzoxazinone, which results in opening of the heterocyclic ring and formation of the O-acyl 

enzyme intermediate (Fig. 1A) 23. The enzyme selectivity and potency of acylating agents is 

promoted by fast acylation and slow deacylation, which is dependent on the substitution of 

the aromatic ring and the C-2 position in case of benzoxazinones 25, 29, 30. A major advantage 

of benzoxazin-4-ones is that the core structure consists of two fused aromatic rings, which 

allows extensive structural modifications and optimization with respect to the target enzyme. 

For initial docking studies into the rhomboid active site, we assembled a molecular database 

of thirteen 2-alkyl or 2-aryl substituted benzoxazinones (Fig. 1B).  
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FIGURE 1 

 

 

 

In the docking studies, we focused on the initial interactions between the benzoxazinones 

and the active site of the rhomboid protease rather than the final reaction product. For 

preparation of the docking receptor, we used the co-crystal structure of the E.coli rhomboid 

GlpG and the fluorophosphonate inhibitor CAPF (PDB ID: 3UUB), in which the active site 

Ser201 is covalently bound to CAPF 31. The molecular modelling experiments were 

performed in the molecular operating environment software (MOE) with the DOCK module 

and the MMFF94x force field, and scored by London dG and Affinity dG followed by energy 

minimization within the enzyme active site cleft 32, 33. The output data was ranked based on 

the calculated ligand efficiencies (cLE = docking score / number of heavy atoms) 34, which 

revealed that the 2-styryl substituted compound 3 was the most favorable of all 2-substituted 

benzoxazinones (cLE=-0.3164). A comparative analysis of the protein/ligand docking results 
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of compound 3 and CAPF indicated that 3 was adequately fitting into the binding pocket of 

the enzyme and was not exposed to the external environment (Fig. 2A and B). The core 

heterocyclic ring of 3 was oriented towards the S1 subsite while the 2-styryl extension 

pointed towards the S2’ subsite of the rhomboid, which had been defined in previous 

structures of GlpG in complex with different inhibitors 31, 35. Moreover, close interactions of 3 

with the neighbouring residues His254 and Phe245 as shown in the ligand interaction map 

were observed and suggested to further explore the scaffold (Fig. 2C).  

 

FIGURE 2 

 

 

 



  

 6 

To validate the docking results, all derivatives listed in Table 1 were synthesized by 

methods shown in schemes 1 and 2 (Fig 3A) 36. The benzoxazinone derivatives were then 

evaluated for their inhibitory potency in an established in vitro enzyme activity assay with the 

E.coli rhomboid GlpG and the transmembrane domain 2 of the Drosophila protein Gurken as 

a substrate 21, 37, 38, 39. Each of the benzoxazinones were pre-incubated with GlpG at a single 

concentration of 250 M for 30 min at 37°C. Subsequently, the Gurken substrate was added, 

the reaction was continued for another 90 min at 37°C, and the N-terminal Gurken substrate 

cleavage fragment was visualized by SDS-PAGE and quantified using ImageJ. Only the 2-

styryl substituted benzoxazinones 3, 5 and 11 showed activity at this concentration. For IC50 

determinations, fluorogenic rhomboid substrates were applied as described previously 40, 41, 

42. Correlating well with the docking results, compound 3 was a potent rhomboid inhibitor with 

an IC50 value of 4.4 ± 1.6 M (Figure 3B). Compound 5 was equally potent (IC50 3.7 ± 1.3 

M) while 11 displayed around 10-fold lower activity (IC50 48 ± 14.1 M). Among these three 

compounds with a single substitution at the aromatic ring of the styryl substituent, an electron 

withdrawing group appeared to increase the potency, which could be further explored in 

subsequent studies.  

 

FIGURE 3 

 

 

 

Next, we evaluated the active benzoxazinones in a well-established in vitro activity assay 
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for the soluble serine protease -chymotrypsin 43,44. The compounds were pre-incubated with 

bovine -chymotrypsin for 30 min at 25°C. Subsequently the substrate N-succinyl-Ala-Ala-

Pro-Phe-p-nitroanilide was added, which under alkaline conditions is turned over by -

chymotrypsin to p-nitroanilline, a yellow compound that can be detected spectroscopically at 

410 nm.  DCI was used as a positive control and inhibited -chymotrypsin with an IC50 value 

of 3.5 µM, comparable to previously reported values 21. In contrast, the benzoxazinones 3 

and 5 did not display any inhibitory activity in the -chymotrypsin in vitro activity assay at the 

highest concentration of 250 M (data not shown). In addition, we examined the active 

benzoxazinones in analogous in vitro protease activity assays for bovine trypsin, human 

neutrophil elastase, and human cathepsin G 45. At a concentration of 10 M, none of the 

benzoxazinones inhibited trypsin or neutrophil elastase, while DCI almost completely 

abolished the activity of both enzymes. At a concentration of 50 M, trypsin activity was 

reduced around 50% by compound 3, and neutrophil elastase activity was reduced around 

50% by compound 11 (Supplemental Figures 1 and 2). In contrast, the compounds were 

more effective against cathepsin G. Both 3 and 5 but not 11 caused significant enzyme 

inhibition at 10 M (Supplemental Figure 3). Overall, these results indicated that 2-styryl 

substituted benzoxazinones might possess some selectivity for the rhomboid GlpG over 

other soluble serine proteases. Notably, in an accompanying paper, Yang, Verhelst and 

colleagues presented benzoxazinones with a 2-alkoxy substituent as rhomboid inhibitors 46. 

These derivatives displayed slightly higher potency for GlpG but no apparent selectivity over 

bovine chymotrypsin and trypsin, suggesting potential advantages of the docking approach 

to optimize the scaffold for this particular target. 

The inhibitory activity of 2-styryl substituted benzoxazinones in the GlpG in vitro activity 

assay indicated that this scaffold contained active rhomboid inhibitors. However, to ensure 

that the reduced GlpG activity was not caused by non-specific effects and that the 

mechanism of inhibition conformed to the known reaction mechanism of benzoxazinones 

with soluble serine proteases 23, we used mass spectrometry to study the residues in the 

rhomboid’s active site that were reacting with the benzoxazinones. GlpG mutants were 

generated, expressed and purified, in which Ser201 was exchanged to threonine (S201T) or 

in which His150 or His254 were exchanged to alanine. The recombinant proteins were then 

reacted in vitro with the 2-styryl substituted benzoxazinones 3 or 5, and binding of the 

compounds to the rhomboid was examined by electrospray mass spectrometry. When the 2-

styryl substituted benzoxazinones were reacted with wild type GlpG, two major peaks were 

observed in the spectra: the first smaller peak corresponding to the free unbound GlpG and 

the second major peak corresponding to the inhibitor-bound enzyme (Fig. 4A). Importantly, 

the shifts in the rhomboid’s mass for compounds 3 (283.4 Da) and 5 (248.9 Da) were close 

to the theoretical mass differences of 285.73 and 251.29 Da that would occur when the 
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benzoxazinones reacted with the enzyme according to the mechanism shown in Figure 1. In 

contrast, no binding and mass shift was seen when the compounds were omitted (vehicle 

control) or when the rhomboid was reacted with the inactive benzoxazinone compound 4, 

supporting the specificity of the mass spectrometry analysis (Fig. 4A). Further analysis 

showed that compound 3 was not able to bind to either the S201T or the H254A mutant (Fig. 

4A). This indicated that the benzoxazinone indeed reacted with the catalytic Ser201 to form 

an O-acyl enzyme intermediate (Fig. 4B). In the catalytic Ser201-His254 dyad, the histidine is 

required to properly activate the serine 16. Hence, in the H254A mutant the serine is likely not 

nucleophilic enough to react with the C-4 carbonyl of the benzoxazinone, which could explain 

that 3 failed to bind this mutant. However, mutating His150, which contributes to the 

oxyanion hole of the active site and is covalently modified by some isocoumarins 19, 47, did 

not prevent binding of 3 to the rhomboid as expected (Fig. 4B).  

 

FIGURE 4 
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Formation of the O-acyl enzyme intermediate should be reversible over time (Fig. 1). To 

test this, we used the rapid dilution method 48,49 and a previously described fluorogenic 

peptidic rhomboid substrate 40. Compound 3 (50 M) was pre-incubated with GlpG for 1 h. 

Subsequently, the reaction mixture was rapidly diluted 100-fold and the substrate KSp76 was 

added. Cleavage of this substrate by the rhomboid leads to the release of a quencher 

peptide and activation of a red fluorophore, which indicates recovery of enzyme activity. This 

showed that GlpG activity largely recovered over a time period of 100 min demonstrating 

reversibility of the inhibition mechanism (Fig. 4C). Similar results were obtained with the -

lactam L29, a known reversible inhibitor of rhomboids 21. Conversely, pre-incubation with the 

isocoumarin JLK-6, an irreversible inhibitor that forms a double-bonded end product with the 

rhomboid 19, did not allow recovery of enzyme activity (Fig. 4C). 

In summary, by combining molecular docking studies with enzyme activity assays, we 

found that 2-styryl substituted benzoxazin-4-ones are a novel template to generate inhibitors 

for rhomboid proteases. Mechanistic studies indicated that benzoxazinone inhibitors 

covalently modified the catalytic serine residue in the rhomboid active site, analogous to the 

reaction mechanism of benzoxazinones with soluble serine proteases. While the identified 

active 2-styryl substituted benzoxazinones at present have moderate potency, this new 

scaffold allows extensive structural variations with considerable potential to increase potency 

and specificity, towards the goal of improved small molecule inhibitors for rhomboid 

proteases. 
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FIGURE LEGENDS 

 

Figure 1. (A) Mechanism of inhibition of soluble serine proteases by 2-substituted 

benzoxazin-4-one derivatives 30. (B) Molecular database of 2-alkyl or aryl substituted 

benzoxazin-4-ones assembled for docking studies into the rhomboid active site. 

 

Figure 2. Molecular docking model of the rhomboid protease GlpG in complex with a 

benzoxazinone-based inhibitor. (A) Front view of GlpG docked with the 2-styryl substituted 

compound 3 (yellow) and the known rhomboid inhibitor CAPF (blue). The model indicated 

that both compounds occupied a similar space in the rhomboid pocket and were not exposed 

to the external surface. (B) Top view of compound 3 and CAPF in the GlpG pocket. (C) 

Ligand interaction map of compound 3 in the GlpG pocket. Significant interactions were 

observed with neighbouring residues His254 and Phe245. Green: hydrophobic, pink: polar, 

red: exposed.  

 

Figure 3. (A) Synthesis of 2-substituted benzoxazin-4-ones. Scheme 1 shows the synthesis 

of 2-alkyl/aryl substituted benzoxazinones (compounds 1 and 3-13) obtained by the reaction 

of corresponding acyl/benzoyl chlorides with anthranilic acid. Scheme 2 shows the synthesis 

of 2-methyl benzoxazin-4-one (compound 2) obtained by a microwave reaction of anthranilic 

acid with acetic anhydride. (B) Biological evaluation of 2-alkyl and 2-aryl substituted 

benzoxazinones inhibitors in rhomboid in vitro activity assays. All compounds were first 

screened in a gel-based activity assay for the E.coli rhomboid GlpG at a single concentration 

of 250 M as described 39. Only the 2-aryl substituted benzoxazinones were found to be 

active at this concentration and were selected for IC50 determinations. In these assays, the 

rhomboid GlpG was pre-incubated with increasing concentrations of the compounds 3, 5 and 

11 for 1 h at 37°C. Subsequently, the reaction was started by the addition of fluorogenic 

substrates 40. These quenched fluorescent peptides are cleaved by the rhomboid, leading to 

the activation of a fluorophore. Fluorescence intensities were normalized to the DMSO 

control condition and plotted against log (inhibitor concentration) in GraphPad Prism 

software. The figure shows a representative dose-response curve for compound 3. A 

nonlinear regression curve fit was used to determine apparent IC50 values as described 40. 

Compounds 3 (4.4 ± 1.6 M) and 5 (3.7 ± 1.3 M) were equally potent while 11 (48 ± 14.1 

M) displayed around 10-fold lower activity. Two independent IC50 determinations were 

performed for each compound, and IC50 values represent averages ± SD. 

 

Figure 4. Reaction mechanism of 2-styryl substituted benzoxazinone inhibitors. (A) Wild type 

GlpG was recombinantly expressed and purified as described previously 40, reacted in vitro 
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with compounds 3 or 5, and binding to the rhomboid was examined by electrospray mass 

spectrometry. A second major peak was observed in the spectra corresponding to the 

inhibitor-bound enzyme with the expected mass shift compared to the free enzyme. In 

contrast, no binding was seen when the compounds were omitted (vehicle control) or when 

the rhomboid was reacted with the inactive benzoxazinone 4. The results of one of two 

independent experiments are shown.  (B) The 2-styryl substituted benzoxazinone 3 was 

incubated with different rhomboid mutants and binding was analyzed as in A. Compound 3 

was able to bind to wild type GlpG and the H150A mutant with identical mass shifts between 

the inhibitor-bound and the free enzyme. However, no binding was observed to either the 

S201T or the H254A mutant. This indicated that Ser201 and proper activation of this catalytic 

serine by His254 was required for binding of the benzoxazinone to the rhomboid and 

formation of the O-acyl enzyme intermediate. The results of one of two independent 

experiments are shown. (C) Reversibility of the reaction was tested by the rapid dilution 

method. Compound 3 (50 M) was pre-incubated with the rhomboid GlpG for 1 h. 

Subsequently, the reaction mixture was rapidly diluted 100-fold with reaction buffer 

containing a fluorogenic rhomboid substrate (10 M). GlpG activity largely recovered over a 

time period of 120 min demonstrating reversibility of the inhibition mechanism. No recovery 

was observed when the reaction mixture was diluted into buffer containing substrate and 50 

M compound 3. The known reversible and irreversible rhomboid inhibitors -lactam L29 and 

isocoumarin JLK-6 were used as controls and displayed the expected behaviour. The results 

of one of two independent experiments are shown. 
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