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Abstract—Ag(I) salts significantly enhance palladium-catalyzed Suzuki–Miyaura cross-couplings of n-alkylboronic acids with a
wide variety of aryl and alkenyl halides/triflates. © 2001 Elsevier Science Ltd. All rights reserved.

The Suzuki–Miyaura cross-coupling reaction has
emerged as one of the premier methods for the creation
of carbon�carbon bonds under mild conditions.1 Exten-
sive exploration of reaction parameters and catalysts in
recent years has significantly extended its scope.2 While
many types of organoboron compounds3 are suitable
donors, boronic acids are especially popular. The latter
are readily prepared, thermally stable, tolerant of
adventitious oxygen and water, and generate an innocu-
ous by-product.4 Aryl- and alkenylboronic acids typi-
cally afford good yields of cross-coupled adduct with a
wide range of electrophiles, inter alia, chlorides, bro-
mides, triflates,5 sulfonium salts,6 heteroaryl,7 and steri-
cally demanding aryl moieties.8 In contrast,
n-alkylboronic acids are often refractory, resulting in
poor yields, even under forcing conditions.9 To improve
their reactivity, boronic acids are either (1) converted to
potassium trifluoroborates;10 (2) esterified and further
elaborated into ‘ate’ complexes11 or (3) complexed with
highly toxic thallium salts.12 However, we have
observed Ag(I) salts13 significantly enhance Suzuki–
Miyaura cross-couplings of n-alkylboronic acids and
we report herein the scope and limitations of this
modification (Eq. (1)).
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Some reaction parameters were briefly explored using
commercial n-butylboronic acid14 (1) and cis-alkenyl
iodide 2. The best yields of 3 were obtained with a
combination of Ag2O and Pd(dppf)Cl2 in THF at 80°C
(Table 1, entry 1).15 The presence of additional base
was also required for optimum performance; generally,
powdered K2CO3 was preferable to aqueous KOH. As
observed for 2, cross-coupling of cis-alkenyl bromide 4
proceeded with complete retention of configuration giv-
ing rise to 3 (entry 2), but in somewhat diminished
yield. Notably, even the sensitive homoallylic epoxide
516 afforded a useful yield of adduct 6 (entry 3).17 In
contrast, dimerization predominated with trans-alkenyl
iodide 7 and only a modest amount of silyl dec-5-enol
8 was produced (entry 4). Interestingly, aryl elec-
trophiles were well behaved regardless of the presence
of electron-rich or -deficient substituents. Aryl bromide
9 (entry 5), iodide 11 (entry 6), and triflate 12 (entry 7)
furnished good yields of 4-(n-butyl)anisole (10). Simi-
larly, ketone 14 and ester 16 were smoothly generated
from bromides 13 (entry 8) and 15 (entry 9), respec-
tively. Aryl and alkenyl chlorides, on the other hand,
were poor substrates and afforded comparatively little
adduct regardless of reaction conditions.2a

The transformation of terminal olefin 17 (entry 11),
ester 19 (entry 12), and silane 21 (entries 13 and 14)
into 18, 20, 22, and 23, respectively, demonstrated that
a variety of functional groups are well tolerated on the
boronic acid moiety. For the simplest case, i.e. methyl-
boronic acid (24), cross-coupling with cis-alkenyl iodide
2 under the standard reaction conditions was sluggish
and only a trace of 25 was isolated. However, efficiency
was restored by the addition of n-PrOH to improve the
solubility of 24 in the reaction medium (entry 15).
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Table 1. Ag(I)-promoted Suzuki–Miyaura cross-couplings of n-alkylboronic acids

In summary, we describe a practical, high yield modifi-
cation of the Suzuki–Miyaura cross-coupling reaction
utilizing unactivated, primary alkyl groups under mild
conditions.

General procedure: A suspension of boronic acid (0.27
mmol, 1.1 equiv.), organic electrophile (1.0 equiv.),
Pd(dppf)Cl2 (0.1 equiv.), powdered K2CO3 (3 equiv.),
and Ag2O (2.5 equiv.) in THF (5 mL) was stirred under
argon at 80°C in a sealed tube. After 6–10 h, the
mixture was cooled to room temperature, quenched

with 30% H2O2/10% aq. NaOH, and extracted thrice
with Et2O. The combined ethereal extracts were con-
centrated in vacuo and the residue was purified via SiO2

chromatography (see Table 1).
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