Formation of Condensed 1*H*-Pyrrol-2-ylphosphonates and 1,2-Dihydropyridin-2-ylphosphonates via Kabachnik—Fields Reaction of Acetylenic Aldehydes and Subsequent 5-*exo-dig* or 6-*endo-dig* Cyclizations

Rita Bukšnaitienė, Aurelija Urbanaitė, and Inga Čikotienė*

Department of Organic Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

S Supporting Information

ABSTRACT: Kabachnik–Fields reactions of various carbocyclic or heterocyclic acetylenic aldehydes together with subsequent Lewis acid catalyzed cyclizations have been studied. It was found that 5-exo-dig versus 6-endo-dig cyclization mode strongly depends on the structure of starting materials. Thus, nonaromatic acetylenic α -anilinomethylphosphonates underwent gold(III)-catalyzed or iodine-mediated 5-exo-dig cyclization to 1*H*-pyrrol-2-ylphosphonates. In contrast, electron-withdrawing heteroaromatic substrates formed 1,2-dihydropyridin-2-ylphosphonate ring containing materials via an exclusive 6-endo-dig ring-closure process. The dual mode of cyclization is possible only for α -amino (2-alkynylphenyl)methylphosphonates containing a benzene ring.

INTRODUCTION

Both heterocyclic pyrrole¹ and 1,2-dihydropyridine² ring systems are important skeletons in natural and synthetic bioactive products. Also, it is well-known that α -amino-phosphonates attract attention as analogues of α -amino acids possessing a variety of important biological activities.³ Combination of pyrrole and dihydropyridine rings together with the phosphonate functionality would represent a class of cyclic α -aminophosphonates with promising biological applications.⁴

In 2007 several manuscripts about the formation of dialkyl 1*H*-pyrrol-2-ylphosphonates and 1,2-dihydropyridin-2-ylphosphonates (Figure 1) via Lewis acid catalyzed cyclizations

Figure 1. Structures of 1*H*-pyrrol-2-ylphosphonate and 1,2-dihydro-pyridin-2-ylphosphonate.

of α -amino (2-alkynylphenyl)methylphosphonates were published by Ding et al.⁵ The authors proved that, in principle, both cyclization modes are possible and showed that *5-exo-dig* versus *6-endo-dig* cyclization regioselectivity could be simply switched by changing the catalyst (Scheme 1).^{5a}

However, we envisioned that the cyclization regioselectivity of acetylenic α -anilinomethylphosphonates could also depend

on the structure of starting material, due to different electronic densities on triple bond carbons. For the evaluation of this idea we chose a variety of carbocyclic and heterocyclic acetylenic α -anilinomethylphosphonates and tested their cyclization reactions.

In this work we present the results of our investigations.

RESULTS AND DISCUSSION

The corresponding 2-alkynylcyclopent-1-enecarbaldehydes 1, 2-alkynylcyclohex-1-enecarbaldehydes 2, 2-alkynylbenzaldehydes 3, 2-alkynylindole-3-carbaldehydes 4, 2-alkynylpyridine-3-carbaldehydes 5, and 2-alkynylquinoline-3-carbaldehydes 6 (Figure 2) were reacted by the classical Sonogashira coupling⁶ between 2-bromocyclopent-1-enecarbaldehyde,⁷ 2-bromocyclohex-1-enecarbaldehyde,⁸ and commercially available 2-bromobenzaldehyde, 2-bromo-1*H*-indole-3-carbaldehyde, 2-bromo-

Received: May 9, 2014

Figure 2. Starting acetylenic aldehydes. 1a: R = Ph; 1b: $R = 4-MeC_6H_4$; 1c: $R = 4+EtC_6H_4$; 1d: R = Bu; 1e: $R = C_5H_{11}$; 1f: R = c-Pr; 1g: R = TMS. 2a: R = Ph; 2b: $R = 4-MeC_6H_4$; 2c: R = Pr; 2d: R = Bu; 2e: $R = C_5H_{11}$; 2f: R = c-Pr. 3a: R = Ph; 3b: R = TMS. 4a: R = Ph; 4b: R = Bu; 4c: R = c-Pr. 5a: R = Ph; 5b: R = Pr; 5c: R = c-Pr; 5d: R = H; 5e: $R = CH_2OTHP$. 6a: R = Ph; 6b: R = Bu; 6c: R = Pr; 6d: c-Pr.

pyridine-5-carbaldehyde, 2-chloroquinoline-3-carbaldehyde, and terminal acetylenes. The reactions proceeded smoothly in THF at room temperature under argon atmosphere in the presence of 4 mol % $PdCl_2(PPh_3)_2$ and 2 mol % CuI and 2 equiv of triethylamine. Then with the synthesized acetylenic aldehydes in hand, we utilized the Kabachnik–Fields reaction⁹ between starting materials, anilines, and dimethylphosphite and screened synthetic approaches for the preparation of various phopshonated pyrrole or dihydropyridine core contacting compounds.

Synthetic Utility of Carbocyclic Acetylenic Aldehydes for the Preparation of Materials Having Pyrrole-1phosphonate Functionalities. The Kabachnik-Fields reaction is a three-component process forming α -aminophosphonates from carbonyl compounds, amines, and dialkyl phosphonates. Despite a variety of method variations,¹⁰ the presence of a Lewis acid in solution or in solvent-free conditions is usually required. After a brief search of optimal reaction conditions, we found that 1 equiv of BF₃·OEt₂ in dichloromethane at room temperature gave the best results and did not cause polymerization of chemically unstable aldehydes 1 and 2. Thus, when carbocyclic aldehydes 1-3 were stirred with anilines and dimethylphosphite in dichloromethane in the presence of 1 equiv of $BF_3 \cdot OEt_2$ at room temperature, the corresponding acetylenic α -anilinomethylphosphonates 7–9 were formed in moderate or good yields (Scheme 2).

Scheme 2. Kabachnik–Fields Reaction of Carbocyclic Acetylenic Aldehydes $1-3^a$

"Reagents and conditions: (i) $ArNH_2$ (1 equiv), dimethylphosphite (1.1 equiv), BF_3 ·OEt₂ (1 equiv), DCM, rt, 12–24 h. Structures of 7–9 are depicted in Tables 4 and 5.

Next, the cyclization reaction of dimethyl (phenylamino)[2-(phenylethynyl)cyclopent-1-enyl]methylphosphonate 7a was chosen for optimization of conditions. The aromatic substrate dimethyl (phenylamino)[2-(phenylethynyl)phenyl]methylphosphonate 9a was used as a model substrate for comparison. The data obtained are depicted in Tables 1 and 2.

First of all, it should be noted that in all successful cases the starting material 7a underwent regioselective 5-*exo-dig* cyclization followed by aromatization and formation of the tetrahydrocyclopenta[*c*]pyrrole core. No 6-*endo-dig* cyclization product was observed by TLC and NMR monitoring of crude mixtures. Screening of Lewis acids revealed that copper(I)

iodide was totally ineffective for the cyclization and the starting material 7a was isolated after the workup of reaction mixture (Table 1, entry 1). When $PdCl_2$ was utilized as a catalyst in

Table 1. Screening of the Cyclization Reaction of Dimethyl (Phenylamino)[2-(phenylethynyl)cyclopent-1enyl]methylphosphonate 7a

entry	reaction conditions	time, h	yield 10a, %	recovered 7a, %
1	CuI (10 mol %), CHCl ₃ , rt	48		95
2	PdCl ₂ (10 mol %), CHCl ₃ , rt	48	10	79
3	PdCl ₂ (10 mol %), CH ₃ CN, rt	48	11	78
4	PdCl ₂ (PPh ₃) ₂ (10 mol %), CHCl ₃ , rt	48	30	42
5	AgNO ₃ (10 mol %), CHCl ₃ , rt	48	20	36
6	CF ₃ CO ₂ Ag (10 mol %), CHCl ₃ , rt	48	8	74
7	CF ₃ SO ₃ Ag (10 mol %), CHCl ₃ , rt	48	13	68
8	AuBr ₃ (5 mol %), CHCl ₃ , rt	48	45	45
9	AuBr ₃ (10 mol %), CHCl ₃ , rt	48	70	
10	AuBr ₃ (10 mol %), KOtBu (1 equiv), CHCl ₃ , rt	0.5	99	

chloroform or acetonitrile solutions, poor conversion of 7a was reached and compound 10a was isolated in 10% and 11% yields (Table 1, entries 2, 3). $PdCl_2(PPh_3)_2$ as well as various silver salts (AgNO₃, CF₃CO₂Ag, and CF₃SO₃Ag) also were not very effective, and after insufficient conversion of the starting material, pyrrole derivative 10a was isolated in 20%, 8%, and 13% yields, respectively (Table 1, entries 4-7). After treatment of the starting alkyne by 5 mol % gold(III) bromide in chloroform at room temperature, 50% conversion of 7a was reached in 48 h, affording 45% of final 10a (Table 1, entry 8). Increasing the amount of AuBr₃ to 10 mol % resulted in full conversion of the starting material in 48 h, and 10a was obtained in 70% yield (Table 1, entry 9). To our delight, addition of 1 equiv of potassium tert-butanoate speeded up the reaction, and high-yielding formation of 10a was achieved after 30 min of stirring at room temperature (Table 1, entry 10).¹¹

In contrast, aromatic dimethyl (phenylamino)(2phenylethynylphenyl)methylphosphonate **9a** is able to undergo either 5-*exo-dig* or 6-*endo-dig* cyclizations. This dual reactivity of dialkyl (arylamino)(2-alkynylphenyl)methylphosphonates was described by Ding et al. in 2007.^{5a} The authors showed that on one hand, palladium chloride in acetonitrile initiated regioselective 5-*exo-dig* cyclization followed by [1,5]-H shift Table 2. Data of 5-*exo-dig* or 6-*endo-dig* Cyclization Reactions of Dimethyl (phenylamino)(2-phenylethynylphenyl)methylphosphonate 9a

entry	reaction conditions	time, h	product	yield, %
1	AuBr ₃ (10 mol %), KO ^t Bu (1 equiv), CHCl ₃ , rt	24	11a	53
2	PdCl ₂ (5 mol %), CH ₃ CN, 60–70 °C	32	11a	72
3	CF_3SO_3Ag (5 mol %), $CH_3CN,$ 60–70 $^{\circ}C$	72	12a	86

Table 3. Screening of the Iodine-Mediated Cyclization Reaction of Dimethyl (Phenylamino)[2-(phenylethynyl)cyclopent-1-enyl]methylphosphonate 7a

O O-P=O N H H Ph	 O-P=O N-Pr O Ph
_	0

	7a	13a			
entry	reaction conditions	time, h	yield 13a , %	recovered 7a, %	
1	I ₂ (4 equiv), CHCl ₃ , rt	12	12		
2	I ₂ (1 equiv), KO ^t Bu (1 equiv), CHCl ₃ , 0 °C \rightarrow rt	12	11		
3	I ₂ (1 equiv), K ₂ CO ₃ (1 equiv), CHCl ₃ , 0 °C \rightarrow rt	12	48		
4	I_2 (1 equiv), K_2CO_3 (1 equiv), acetone, rt	12	24	24	
5	I ₂ (1 equiv), K ₂ CO ₃ (1 equiv), CH ₃ CN, rt	12	30	32	
6	I ₂ (1 equiv), K ₂ CO ₃ (1 equiv), CH ₃ NO ₂ , rt	12	28	43	
7	I ₂ (1 equiv), K ₂ CO ₃ (1 equiv), CH ₃ OH, rt	12		85	
8	I_2 (1 equiv), K_2CO_3 (1 equiv), $C_6H_5CH_3$, rt	12			
9	I ₂ (1 equiv), NaHCO ₃ (1 equiv), CHCl ₃ , 0 °C \rightarrow rt	12	65		
10	I ₂ (1 equiv), K ₃ PO ₄ (1 equiv), CHCl ₃ , 0 °C \rightarrow rt	12	67		
11	Py ₂ IBF ₄ (1 equiv), CHCl ₃ , rt	12		49	
12	I ₂ (1 equiv), PhI(OAc) ₂ (2 equiv), CHCl ₃ , 0 °C \rightarrow rt	1	89		

to the corresponding 2,3-disubstituted-2*H*-isoindol-1-ylphosphonates. On the other hand, silver triflate catalyzed 6-endo-dig cyclization reaction to 2,3-disubstituted-1,2-dihydroisoquinolin-1-ylphosphonates. Indeed benzene derivative **9a** was able to undergo both cyclization processes as it was reported by Ding et al. (Table 2, entries 2 and 3).^{5a} These methods required prolonged heating in acetonitrile. It should be noted that gold(III) bromide together with 1 equiv of potassium *tert*butanoate in chloroform also initiated 5-exo-dig cyclization process at room temperature and final **11a** was formed in 53% yield (Table 2, entry 1).

Thus, gold(III) bromide was able to initiate exclusive 5-*exo*dig cyclization reactions of carbocyclic acetylenic α -anilinomethylphosphonates. With these promising results in hands and having in mind literature facts that various intramolecular transformations of functionally substituted alkynes can be carried out with either gold catalysts or iodine electrophiles to access the same core unit,¹² we decided to evaluate the usefulness of iodine electrophiles in this cyclization. Indeed, we found, that molecular iodine was able to mediate the cyclization process of (phenylamino)[2-(phenylethynyl)cyclopent-1-enyl]methylphosphonate 7a. In all cases dimethyl 3-benzoyl-2phenyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate

13a bearing a carbonyl functionality instead of a methylene group was formed. Full conversion of the starting material 7a was reached in 12 h. However, use of an excess of molecular iodine (Table 3, entry 1), as well as 1 equiv of molecular iodine together with 1 equiv of potassium tert-butanoate at 0 °C temperature (Table 3, entry 2) facilitated the formation of tars, and only minor quantities of 13a were isolated. While use of potassium carbonate (Table 3, entry 3), sodium bicarbonate (Table 3, entry 9), and potassium phosphate (Table 3, entry 10) in chloroform at 0 °C temperature improved yield of the cyclization product, potassium carbonate in acetone (Table 3, entry 4), acetonitrile (Table 3, entry 5), and nitromethane (Table 3, entry 6) led to insufficient conversion of the starting alkyne. It also should be noted that combination of equivalent amounts of the starting material, molecular iodine, and potassium carbonate in methanol (Table 3, entry 7) or toluene (Table 3, entry 8) did not give the desired product, and 85% of starting alkyne was recovered or full decomposition of it was observed, respectively. The Barluenga reagent¹³ was not able to mediate the cyclization process, and 49% of the starting material was recovered (Table 3, entry 11). Then, the electrophilicity of iodine was improved by adding hypervalent iodine oxidant.¹⁴ To our delight, the combination of 1 equiv of

Table 4. Data on the Synthesis of Polysubstituted Pyrrol-1-ylphosphonates via Gold(III) Bromide Mediated Cyclization

		7-8 10, 14		10, 14			
Entry	Starting material	Product	Yield, %	Entry	Starting material	Product	Yield, %
	0,			17	7r : $R = cycloPr$, $Ar = 4-EtOC_6H_4$	10r	90
1	O-P-O H H	10a	98	18	7s: $R = H$, $Ar = Ph$	10s	66
	7 7 7 a : R = Ph, Ar = Ph				O-P=O N-Ar		
2	7b : $R = Ph$, $Ar = 4-MeOC_6H_4$	10b	73	19	R	14a	82
3	7 c : $\mathbf{R} = \mathbf{Ph}$, $\mathbf{Ar} = 4\text{-}\mathrm{EtOC}_6\mathrm{H}_4$	10c	74		8 8a : $R = Ph$, $Ar = Ph$		
4	7d : $R = Ph$, $Ar = 4-FC_6H_4$	10d	86	20	8b : $R = Ph$, $Ar = 4-MeOC_6H_4$	14b	95
5	7e : $R = Ph$, $Ar = 4-ClC_6H_4$	10e	73	21	8c : $R = Ph$, $Ar = 4-FC_6H_4$	14c	56
6	7f : $R = 4$ -MeC ₆ H ₄ , Ar = Ph	10f	58	22	8d : $R = Ph$, $Ar = 4-ClC_6H_4$	14d	68
7	7g : $R = 4$ -MeC ₆ H ₄ , Ar = 4-MeOC ₆ H ₄	10g	76	23	$\mathbf{8e:} \mathbf{R} = 4\text{-}\mathbf{MeC}_{6}\mathbf{H}_{4}, \mathbf{Ar} = \mathbf{Ph}$	14e	92
8	7h : $R = 4$ -EtC ₆ H ₄ , Ar = 4-MeOC ₆ H ₄	10h	96	24	8f : $R = 4$ -MeC ₆ H ₄ , Ar = 4-MeOC ₆ H ₄	14f	79
9	$7i: R = C_4H_9, Ar = Ph$	10i	96	25	8g : $R = C_3H_7$, $Ar = Ph$	14g	89
10	7j : $R = C_4H_9$, $Ar = 4$ -MeOC ₆ H ₄	10j	78	26	8h : $R = C_3H_7$, $Ar = 4$ -MeOC ₆ H ₄	14h	99
11	7k : $R = C_4H_9$, $Ar = 4-FC_6H_4$	10k	80	27	8i: $R = C_3H_7$, $Ar = 4-FC_6H_4$	14i	81
12	71: $R = C_4H_9$, $Ar = 4-ClC_6H_4$	101	76	28	$\mathbf{8j:} \mathbf{R} = \mathbf{C}_4\mathbf{H}_9, \mathbf{Ar} = \mathbf{Ph}$	14j	88
13	7m : $R = C_5 H_{11}$, $Ar = Ph$	10m	90	29	8k : $R = C_4H_9$, $Ar = 4$ -MeOC ₆ H ₄	14k	82
14	7n : $R = C_5 H_{11}$, $Ar = 4$ -MeOC ₆ H_4	10n	63	30	81: $\mathbf{R} = cyclo\mathbf{Pr}$, $\mathbf{Ar} = \mathbf{Ph}$	141	83
15	70 : $\mathbf{R} = cyclo\mathbf{Pr}$, $\mathbf{Ar} = \mathbf{Ph}$	100	77	31	8m : $R = cycloPr$, $Ar = 4$ -MeOC ₆ H ₄	14m	92
16	7p : $\mathbf{R} = cyclo\mathbf{Pr}$, $\mathbf{Ar} = 4$ -MeOC ₆ H ₄	10p	73	32	8n : $R = cycloPr$, $Ar = 4-ClC_6H_4$	14n	92

molecular iodine together with 2 equiv of phenyliodine diacetate in chloroform at 0 $^{\circ}$ C temperature resulted in full conversion of the starting alkyne and smooth formation of 13a in 89% yield (Table 3, entry 12).

Optimized reaction conditions (Table 1, entry 10 and Table 3, entry 12) were applied for the synthesis of polysubstituted pyrrol-1-ylphosphonates 10 and 13–18. The results are summarized in Tables 4 and 5. As is seen from Table 4, both starting substrates 7 and 8 having cyclopentene and cyclohexene rings underwent smooth and high-yielding formation of pyrrol-1-ylphosphonates 10 and 14 via gold(III) bromide catalyzed process (entries 1–32).

Molecular iodine mediated cyclizations proceeded smoothly for substrates 7a-h,j,s (Table 5, entries 1–10), 8a,b,o,p (Table 5, entries 13–15), and 9b,c (Table 5, entries 18, 19) having arylethynyl or ethynyl functionality. The corresponding ketones 13a-g,h,j, 16a,b,o, 18b and aldehydes 13s and 18c were isolated in moderate or good yields. However, derivatives 7i, 7o (Table 5, entries 11, 12) and 8k, 8l (Table 5, entries 16, 17) bearing an alkylethynyl substituent cyclized into pyrrol-1-ylphosphonates bearing 1-iodoalkenyl substituents. The latter four compounds were isolated as mixtures of E and Z isomers.

The plausible mechanism of the iodine-mediated cyclization is depicted in Scheme 3. We believe that at the first step, molecular iodine is converted to 2 equiv of acetyl hypoiodite during oxidation by phenyliodine diacetate.¹⁴ Thus, an electrophilic I⁺ is generated in an efficient and atom-economic way. The formation of byproduct iodobenzene was proved by NMR and MS methods. Next, after direct iodonium activation (intermediate I) of the triple bond of the starting substrate, the intramolecular 5-*exo-dig* nucleophilic attack of the neighboring arylamino group takes place, leading to intermediate II, and loss of a proton gives neutral intermediate III. Next, the second electrophilic iodine attack of the exocyclic double bond occurs,

thus affording intermediate IV. Abstraction of a proton leads to aromatization of the pyrrole ring and formation of di-iodo intermediates VI and VII. However, when starting compound has a cyclopropyl functionality next to the triple bond, during the iodination-aromatization processes cleavage of the cyclopropane ring occurs, giving di-iodo derivatives 15 and 17. Intermediate VI can undergo nucleophilic displacement reaction with water, forming carbonyl group bearing products 13, 16, 18. In contrast, intermediate VII, bearing a CH_2R^1 group, undergoes base-mediated elimination reaction to compounds 15 and 17.

The role of water in formation of products **13**, **16**, and **18** was proved by addition of ¹⁸O-labeled water to the reaction mixture. Stirring of 7a with 1 equiv of molecular iodine and 2 equiv of phenyliodine diacetate in chloroform in the presence of 3 equiv of ¹⁸O-labeled water resulted in smooth formation of **13a**-¹⁸O in 86% yield. The HRMS spectrum of **13a**-¹⁸O confirmed absolute incorporation of ¹⁸O in final ketone. Moreover, an observed δ 0.04 ppm (4 Hz) upfield chemical

shift was found for ketone carbonyl carbon in $^{13}\mathrm{C}$ NMR spectrum of $13a\text{-}^{18}\mathrm{O},$ thus confirming position of $^{18}\mathrm{O.}^{15}$

Article

Kabachnik–Fields Reactions of Heterocyclic Aldehydes and Cyclization Reaction of Obtained Adducts. After exploring the reactivity of carbocyclic acetylenic aldehydes and their Kabachnik–Fields adducts, we turned our attention to heterocyclic substrates. Electron-rich 2-(alkynyl)-1-benzyl-1*H*-indole-3-carbaldehydes (4) reacted under the Kabachnik– Fields reaction condition and formed the corresponding adducts **19** in moderate yields (Scheme 4).

Unfortunately, the presence of an electron-rich indole ring deactivated isolated compounds **19** toward the cyclization reaction. No changes of the starting materials **19** were observed by TLC or NMR monitoring during prolonged stirring or refluxing of compounds **19** in dichloroethane, in the presence of gold(III) bromide, palladium(II) chloride, silver(I) triflate, or I_2 /DIB.

However, when we tried to perform the Kabachnik–Fields reaction of electron-defficient pyridine or quinoline substrates **5** and **6**, we surprisingly found that these reactions were not so

Ε

Scheme 4. Kabachnik—Fields Reaction of 2-Alkynylindole-3-carbaldehydes 4^a

"Reagents and conditions: (i) aniline (1 equiv), dimethylphosphite (1.1 equiv), $BF_3 \cdot OEt_2$ (1 equiv), DCM, rt, 24 h. **19a**: R = Ph, Ar = Ph; **19b**: R = Bu, Ar = 4-CH₃OC₆H₄-; **19c**: R = cPr, Ar = Ph.

straightforward and BF₃·OEt₂ did not mediate an exclusive formation of the Kabachnik–Fields adducts. Reactions proceeded slowly, and after NMR analysis of crude mixtures we found that after 12–24 h there were products of 6-endo-dig cyclization process **20** or **21** together with the corresponding imines **VIII**. After a brief searching of the most suitable reaction conditions for the full conversion to cyclized **20** and **21**, we came to conclusion that 10 mol % copper iodide (in comparison to gold(III) bromide, palladium(II) chloride, or silver(I) triflate) in DCE at room temperature gave the best results. Thus, the corresponding dimethyl 6-aryl-5,6-dihydro-1,6-naphthyridin-5-ylphosphonates **20** and dimethyl 2-aryl-1,2-dihydrobenzo[b][1,6]naphthyridin-1-ylphosphonates **21** were isolated in good yields after stirring of reaction mixtures at room temperature for 2–4 h. (Scheme 5, Table 6). We believe that after formation of intermediate imines **VIII**, tandem dimethylphosphite addition–6-*endo-dig* cyclization reactions took place. An immediate nucleophilic attack of imine group is facilitated by decreased electron density on the triple bond of intermediates **VIII**.

Article

The mechanism presented in Scheme 5 was supported by isolation of intermediate **22** (Figure 3) after the reaction between starting 2-phenylethynylquinolin-3-carbaldehyde **6a** and 4-methoxyaniline in chloroform in the presence of 3Å MS. Then, after stirring of compound **22** with dimethylphosphite in DCE in the presence of 10 mol % CuI, smooth 6-endo-dig cyclization process proceeded, and final product **21a** was isolated in 64% yield.

Moreover, we succeeded in synthesizing the Kabachnik– Fields reaction product 23 during reaction between starting aldehyde 6c with 4-methoxyaniline and dimethylphosphite in dichloromethane in the presence of 10 mol % gold(III)

^aReagents and conditions: (i) aniline (1 equiv), dimethylphosphite (1.1 equiv), CuI (10 mol %), DCM, rt, 2-4 h.

Table 6. Data on the Synthesis of Dimethyl 6-Aryl-5,6dihydro-1,6-naphthyridin-5-ylphosphonates 20 and Dimethyl 2-Aryl-1,2-dihydrobenzo[b][1,6]naphthyridin-1ylphosphonates 21^{*a*}

Entry	Starting material	ArNH ₂	Product	viela, %
1	N S	NH ₂	-0 0-P=0 N Ar 20	58
	5a : R = Ph		20a	
2	5a : R = Ph	NH ₂	20Ь	61
3	5b : $R = C_3H_7$	NH ₂	20e	52
4	5c : R = <i>cyclo</i> Pr	NH ₂	20d	63
5	5c : R = <i>cyclo</i> Pr	NH ₂	20e	59
6	5d : R = H	NH ₂	20f	50
7	5e : R = CH ₂ OTHP	NH ₂	20g	51
8	5e : R = CH ₂ OTHP	NH ₂	20h	48
9		NH ₂	O-P=O N Ar 21	48
	6a R = Ph		21a	
10	6b : C ₄ H ₉	NH ₂	21b	48
11	6b : C ₄ H ₉	NH ₂	21c	45
12	6b : C ₄ H ₉	F NH2	21d	52
13	6с: С ₃ Н ₇	NH ₂	21e	69
14	6d: R = <i>cyclo</i> Pr	NH ₂	21f	67
15	6d: R = <i>cyclo</i> Pr	F NH ₂	21g	67
16	6d : R = <i>cyclo</i> Pr	CI NH2	21h	48

"Reactions between starting materials, the corresponding aniline (1 equiv), and dimethylphosphite (1.1 equiv) were carried out in DCM at rt in the presence of CuI (10 mol %) for 2-4 h.

Figure 3. (*E*)-4-Methoxy-*N*-{[2-(phenylethynyl)quinolin-3-yl]-methylene}aniline 22.

bromide (Scheme 6). Together with compound 23, the corresponding cyclized 1,2-dihydrobenzo[b][1,6]naphthyridin-1-ylphosphonate 21e was formed. After isolation and purification of 23, we tested its reactivity toward various Lewis acids (AuBr₃, AgOTf, CuI, I₂ in neutral and basic media) and found that in all cases slow formation of 6-endo-dig cyclization product 21e with incomplete conversion of compound 23 took place. Thus, it was showed that reaction of electron-withdrawing heterocyclic acetylenic aldehydes with anilines and dimethylphosphite likely does not proceed via the Kabachnik–Fields reaction adducts, but mainly via imines VIII. The triple bond of intermediates VIII is activated by neighboring electron-withdrawing pyridine and quinoline rings, and therefore smooth tandem dimethylphosphite attack–6-endo-dig cyclization reactions take place.

CONSLUSION

Kabachnik—Fields reactions between 2-alkynylcyclopent-1enecarbaldehydes, 2-alkynylcyclohex-1-enecarbaldehydes, 2-alkynylbenzaldehydes, 2-alkynylindole-3-carbaldehydes, 2-alkynylpyridine-3-carbaldehydes, and 2-alkynylquinoline-3-carbaldehydes have been studied. It has been found that substrates having carbocyclic and electron-rich indole ring successfully undergo BF₃·OEt₂-mediated reactions with anilines and dimethylphoshphite, yielding the corresponding Kabachnik— Fields adducts. In contrast, electron-defficient 2-alkynylpyridine-3-carbaldehydes and 2-alkynylquinoline-3-carbaldehydes undergo smooth tandem imine formation—6-endo-dig cyclization processes forming the corresponding dimethyl 6-aryl-5,6dihydro-1,6-naphthyridin-5-ylphosphonates and dimethyl 2aryl-1,2-dihydrobenzo[b][1,6]naphthyridin-1-ylphosphonates.

A variety of Lewis acids have been investigated for the cyclization processes of all isolated acetylenic α -anilinomethylphosphonates (Scheme 7).

An important conclusion of this study is that 5-*exo-dig* and 6*endo-dig* cyclization processes can be switched by using a different catalyst only in the case of starting benzene derivatives. However, while on one hand substrates having nonaromatic cyclopentene or cyclohexene rings undergo exclusive 5-*exo-dig* cyclization processes to form polysubstituted pyrrole derivatives, on the other hand, substrates having electron-defficient pyridine or quinoline rings always undergo 6-*endo-dig* cyclization processes. Finally, substrates bearing an electron-donating indole ring are totally unreactive toward Lewis acid catalyzed cyclization processes.

Additionally, during this study, a new iodine-mediated synthetic method of aroyl- or formyl-substituted pyrrole-1-phosphonates has been developed.

EXPERIMENTAL SECTION

General Information. IR spectra were run in KBr discs. ¹H and ¹³C NMR spectra were recorded at either 300 or 400 MHz in chloroform-*d* or dimethylsulfoxide- d_{69} using the residual solvent signal

Article

"Reagents and conditions: (i) 4-methoxyaniline (1 equiv), dimethylphosphite (1.1 equiv), AuBr₃ (10 mol %), DCM, rt, 3 h. (ii) AuBr₃ (10 mol %), DCM, rt 24 h. (iii) AgOTf (10 mol %), DCM, rt 24 h. (iv) CuI (10 mol %), DCM, rt 24 h. (v) I₂ (1 equiv), K₃PO₄ (1 equiv), CHCl₃, 0 °C \rightarrow rt, 10 h.

Scheme 7. Dependence of the Cyclization Mode on the Structures of the Starting Acetylenic α -Anilinomethylphosphonates

as internal standard. Signal multiplicity is denoted as follows: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m (multiplet). Unambiguous assignment of signals was made using a combination of NMR experiments, including COSY, HSQC, and HMBC. High resolution mass spectra were recorded on a Dual-ESI Q-TOF 6520 mass spectrometer by electrospray ionization. All reactions and purity of the synthesized compounds were monitored by TLC using silica gel 60 F254 aluminum plates. Visualization was accomplished by UV light and by treating the plates with vanillin stain followed by heating.

Synthesis of 2-alkynylcyclopent-1-enecarbaldehydes 1,¹⁶ 2-alkynylcyclopex-1-enecarbaldehydes 2,¹⁵ 2-alkynylbenzaldehydes 3,¹⁷ 2-alkynylindole-3-carbaldehydes 4,¹⁸ 2-alkynylpyridine-3-carbaldehydes 5,¹⁹ 2-alkynylquinoline-3-carbaldehydes 6,²⁰ dimethyl 3-benzyl-2-phenyl-2*H*-isoindol-1-ylphosphonate (11a),^{5a} and dimethyl 2,3-diphenyl-1,2-dihydroisoquinolin-1-ylphosphonate (12a)^{5a} were performed by methods reported in the literature.

General Procedure for the Preparation of Compounds 7–9 and 19. To a solution of starting corresponding acetylenic aldehyde 1-4 (2 mmol) was added the corresponding aniline (2 mmol) and dimethylphosphite (0.242 g, 2.2 mmol) in dry dichloromethane (5 mL) boron trifuoride etherate (0.284 g, 2 mmol). The resulting solution was stirred at room temperature. When the completion of the reaction was observed by TLC (after 12-24 h), the solution was

quenched with aqueous sodium bicarbonate. The organic layer was separated, washed with water (2 \times 20 mL), and dried over anhydrous Na_2SO_4. After the evaporation of solvent under reduced pressure, the residue was purified by flash column chromatography eluting with hexane–ethyl acetate mixtures.

Dimethyl (Phenylamino)(2-(phenylethynyl)cyclopent-1enyl)methylphosphonate (7a). Yellow solid, mp114–115 °C. Yield 0.48 g, 63%. IR (KBr): v_{max} 3488 (NH), 2200 (C=C) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.77–1.99 (2H, m, CH₂CH₂CH₂), 2.37–2.50 (1H, m, <u>CH₂CH₂CH₂)</u>, 2.56–2.68 (3H, m, <u>CH₂CH₂CH₂)</u>, 3.80 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 3.85 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 5.02 (1H, d, ³J_{H,P} = 24.9 Hz, CH), 6.70–6.78 (3H, m, ArH), 7.15–7.20 (2H, m, ArH), 7.33–7.37 (3H, m, ArH), 7.48–7.51 (2H, m, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 22.2 (CH₂), 32.6 (CH₂), 36.7 (d, ⁵J_{C,P} = 2.1 Hz, CH₂), 51.3 (d, ¹J_{C,P} = 153.6 Hz, CH), 53.6 (d, ²J_{C,P} = 7.2 Hz, OCH₃), 53.8 (d, ²J_{C,P} = 6.6 Hz, OCH₃), 84.9 (d, ⁴J_{C,P} = 5.1 Hz, C-sp), 96.0 (d, ⁵J_{C,P} = 2.4 Hz, C-sp), 113.9 (ArC), 118.9 (ArC), 123.1 (ArC), 124.2 (d, ³J_{C,P} = 12.9 Hz, C-sp²), 128.3 (ArC), 128.4 (ArC), 129.2 (ArC), 131.3 (ArC), 144.9 (d, ²J_{C,P} = 4.7 Hz, C-sp²), 145.9 (d, ³J_{C,P} = 15.3 Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 404.1830. C₂₂H₂₄NNaO₃P requires 404.1836.

Dimethyl (4-Methoxyphenylamino)(2-(phenylethynyl)cyclopent-1-enyl)methylphosphonate (7b). Yellow solid, mp 121–122 °C. Yield 0.44 g, 54%. IR (KBr): v_{max} 3436 (NH), 2200 (C=C) cm^{-1.} ¹H NMR (300 MHz, CDCl₃): δ 1.76–1.98 (2H, m, CH₂CH₂CH₂), 2.38–2.49 (1H, m, <u>CH₂CH₂CH₂</u>), 2.56–2.68 (3H, m, <u>CH₂CH₂CH₂</u>), 3.80 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 3.85 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 4.94 (1H, d, ³J_{H,P} = 24.6 Hz, CH), 6.67–6.77 (4H, m, ArH), 7.32–7.36 (3H, m, ArH), 7.45–7.50 (2H, m, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 22.2 (CH₂), 32.6 (CH₂), 36.7 (d, ⁵J_{C,P} = 2.0 Hz, CH₂), 52.2 (d, ¹J_{C,P} = 153.8 Hz, CH), 53.5 (d, ²J_{C,P} = 7.0 Hz, OCH₃), 53.8 (d, ²J_{C,P} = 6.6 Hz, OCH₃), 55.5 (OCH₃), 85.0 (d, ⁴J_{C,P} = 6.9 Hz, C-sp), 95.9 (d, ⁵J_{C,P} = 2.7 Hz, C-sp), 114.7 (ArC), 115.3 (ArC), 123.1 (ArC), 124.1 (d, ³J_{C,P} = 11.9 Hz, C-sp²), 128.3 (ArC), 128.4 (ArC), 131.3 (ArC), 139.9 (d, ³J_{C,P} = 13.8 Hz, ArC), 145,1 (d, ²J_{C,P} = 6.7 Hz, C-sp²), 152.9 (ArC) ppm. HRMS (ESI): MNa⁺, found 434.1497. C₂₃H₂₆NNaO₄P requires 434.1492.

Dimethyl (4-Ethoxyphenylamino)(2-(phenylethynyl)cyclopent-1-enyl)methylphosphonate (7c). Yellow solid, mp 139–141 °C. Yield 0.49 g, 57%. IR (KBr): v_{max} 3443 (NH), 2198 (C=C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.35 (3H, t, ³J = 6.8 Hz, CH₃), 1.78–1.96 (2H, m, CH₂CH₂CH₂), 2.38–2.47 (1H, m, <u>CH₂CH₂CH₂)</u>, 2.56–2.65 (3H, m, <u>CH₂CH₂CH₂)</u>, 3.80 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 3.84 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 3.93 (2H, q, ³J = 6.8 Hz, <u>CH₂CH₃</u>) 4.93 (1H, d, ³J_{H,P} = 24.4 Hz, CH), 6.66–6.69 (2H, m, ArH), 6.73–6.77 (2H, m, ArH), 7.32–7.37 (3H, m, ArH), 7.47–7.49 (2H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 15.0 (CH₃), 22.3 (CH₂), 32.7 (d, ³J_{C,P} = 1.2 Hz, CH₂), 36.8 (d, ⁵J_{C,P} = 2.2 Hz, CH₂), 52.2 (d, ¹J_{C,P} = 153.8 Hz, CH), 53.6 (d, ²J_{C,P} = 7.1 Hz, OCH₃), 53.9 (d, ²J_{C,P} = 6.8 Hz, OCH₃), 63.9 (O<u>CH₂CH₃</u>), 85.1 (d, ⁴J_{C,P} = 5.3 Hz, C-sp), 96.0 (d, ⁵J_{C,P} = 2.6 Hz, C-sp), 115.3 (ArC), 115.5 (ArC), 123.2 (d, ${}^{6}J_{C,P}$ = 1.1 Hz, ArC), 124.1 (d, ${}^{3}J_{C,P}$ = 12.8 Hz, C-sp²), 128.3 (ArC), 128.4 (ArC), 131.4 (ArC), 140.0 (d, ${}^{3}J_{C,P}$ = 16.0 Hz, ArC), 145.3 (d, ${}^{2}J_{C,P}$ = 4.7 Hz, C-sp²), 152.3 (ArC) ppm. HRMS (ESI): MNa⁺, found 448.1669. C₂₄H₂₈NNaO₄P requires 448.1648.

Dimethyl (4-Fluorophenylamino)(2-(phenylethynyl)cyclopent-1-enyl)methylphosphonate (7d). Yellow solid, mp 102–104 °C. Yield 0.56 g, 70%. IR (KBr): v_{max} 3453 (NH), 2220(C≡C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.79–1.97 (2H, m, CH₂CH₂CH₂), 2.34–2.44 (1H, m, CH₂CH₂CH₂), 2.57–2.63 (3H, m, $\underline{CH_2CH_2CH_2}$), 3.80 (3H, d, ${}^{3}J_{H,P}$ = 10.8 Hz, OCH_3), 3.85 (3H, d, ${}^{3}J_{\text{HP}} = 10.8 \text{ Hz}, \text{ OCH}_{3}$, 4.93 (1H, d, ${}^{3}J_{\text{HP}} = 24.8 \text{ Hz}, \text{ CH}$), 6.62–6.65 (2H, m, ArH), 6.84-6.90 (2H, m, ArH), 7.33-7.36 (3H, m, ArH), 7.46-7.49 (2H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 22.3 (CH₂), 32.6 (d, ${}^{3}J_{C,P}$ = 1.2 Hz, CH₂), 36.8 (d, ${}^{5}J_{C,P}$ = 2.3 Hz, CH₂), 51.9 (d, ${}^{1}J_{C,P}$ = 154.0 Hz, CH), 53.7 (d, ${}^{2}J_{C,P}$ = 7.2 Hz, OCH₃), 53.9 (d, ${}^{2}J_{C,P}$ = 6.8 Hz, OCH₃), 84.9 (d, ${}^{4}J_{C,P}$ = 5.3 Hz, C-sp), 96.2 (d, ${}^{5}J_{C,P}$ = 2.6 Hz, C-sp), 114.8 (d, ${}^{3}J_{C,F}$ = 7.4 Hz, ArC), 115.7 (d, ${}^{2}J_{C,F}$ = 22.3 Hz, ArC), 123.0 (d, ${}^{6}J_{C,P}$ = 0.9 Hz, ArC), 124.4 (d, ${}^{3}J_{C,P}$ = 12.7 Hz, Csp²), 128.5 (ArC), 131.4 (ArC), 142.5 (dd, ${}^{3}J_{C,P} = 16.3$ Hz, ${}^{4}J_{C,F} = 2.0$ Hz, ArC), 144.9 (d, ${}^{2}J_{C,P}$ = 4.9 Hz, C-sp²), 156.5 (d, ${}^{1}J_{C,F}$ = 234.9 Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 422.1283. C₂₂H₂₃FNNaO₃P requires 422.1292

Dimethyl (4-Chlorophenylamino)(2-(phenylethynyl)cyclopent-1-enyl)methylphosphonate (7e). Yellow solid, mp 129–131 °C. Yield 0.49 g, 59%. IR (KBr): v_{max} 3418 (NH), 2215 (C≡C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.79–1.97 (2H, m, CH₂CH₂CH₂), 2.34–2.43 (1H, m, <u>CH₂CH₂CH₂</u>), 2.58–2.63 (3H, m, <u>CH₂CH₂CH₂</u>), 3.80 (3H, d, ³J_{H,P} = 10.4 Hz, OCH₃), 3.84 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 4.94 (1H, d, ³J_{H,P} = 24.8 Hz, CH), 6.13–6.65 (2H, m, ArH), 7.09–7.13 (2H, m, ArH), 7.33–7.37 (3H, m, ArH), 7.46– 7.49 (2H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 22.2 (CH₂), 32.6 (d, ³J_{C,P} = 1.1 Hz, CH₂), 36.7 (d, ⁵J_{C,P} = 2.4 Hz, CH₂), 51.3 (d, ¹J_{C,P} = 153.9 Hz, CH), 53.6 (d, ²J_{C,P} = 7.2 Hz, OCH₃), 53.8 (d, ²J_{C,P} = 6.8 Hz, OCH₃), 84.8 (d, ⁴J_{C,P} = 5.3 Hz, C-sp), 96.3 (d, ⁵J_{C,P} = 2.6 Hz, C-sp), 114.9 (ArC), 123.0 (d, ⁶J_{C,P} = 0.9 Hz, ArC), 124.4 (d, ³J_{C,P} = 12.7 Hz, C-sp²), 128.4 (ArC), 128.4 (ArC), 129.0 (ArC), 131.3 (ArC), 144.5 (d, ²J_{C,P} = 5.0 Hz, C-sp²), 144.8 (d, ³J_{C,P} = 15.8 Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 438.0999. C₂₂H₂₃ClNNaO₃P requires 438.0996.

Dimethyl (Phenylamino)(2-(p-tolylethynyl)cyclopent-1enyl)methylphosphonate (7f). Yellow solid, mp 143-145 °C. Yield 0.65 g, 82%. IR (KBr): v_{max} 3402 (NH), 2179 (C=C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.78–1.96 (2H, m, CH₂CH₂CH₂), 2.37 (3H, s, CH₃), 2.40-2.47 (1H, m, <u>CH₂CH₂CH₂</u>), 2.57-2.67 (3H, m, <u>CH₂CH₂CH₂)</u>, 3.80 (3H, d, ${}^{3}J_{H,P}$ = 10.8 Hz, OCH₃), 3.84 (3H, d, ${}^{3}J_{H,P}$ = 10.8 Hz, OCH₃), 5.01 (1H, d, ${}^{3}J_{H,P}$ = 24.8 Hz, CH), 6.70–6.77 (3H, m, ArH), 7.15-7.19 (4H, m, ArH), 7.37-7.39 (2H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 21.5 (CH₃), 22.2 (CH₂), 32.6 (d, ³J_{C,P} = 1.5 Hz, CH₂), 36.7 (d, ${}^{5}J_{C,P}$ = 2.3 Hz, CH₂), 51.1 (d, ${}^{1}J_{C,P}$ = 153.6 Hz, CH), 53.6 (d, ${}^{2}J_{C,P}$ = 7.1 Hz, OCH₃), 53.8 (d, ${}^{2}J_{C,P}$ = 6.7 Hz, OCH₃), 84.4 (d, ${}^{4}J_{C,P}$ = 5.3 Hz, C-sp), 96.2 (d, ${}^{5}J_{C,P}$ = 2.8 Hz, C-sp), 113.7 (ArC), 118.6, (ArC), 120.0 (d, ${}^{6}J_{C,P} = 1.1$ Hz, ArC), 124.1 (d, ${}^{3}J_{C,P} =$ 12.6 Hz, C-sp²), 129.1 (ArC), 129.2 (ArC), 131.2 (ArC), 131.3 (ArC), 138.5 (ArC), 144.6 (d, ${}^{2}J_{C,P}$ = 4.7 Hz, C-sp²), 146.2 (d, ${}^{3}J_{C,P}$ = 14.0 Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 418.1542. C₂₃H₂₆NNaO₃P requires 418.1543.

Dimethyl (4-Methoxyphenylamino)(2-(*p***-tolylethynyl)cyclopent-1-enyl)methylphosphonate (7g).** Yellow solid, mp 110–112 °C. Yield 0.63 g, 74%. IR (KBr): v_{max} 3488 (NH), 2197 (C≡C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.77–1.95 (2H, m, CH₂CH₂CH₂), 2.36 (3H, s, CH₃), 2.39–2.45 (1H, m, <u>CH₂CH₂CH₂)</u>, 2.55–2.66 (3H, m, <u>CH₂CH₂CH₂)</u>, 3.72 (3H, s, OCH₃), 3.79 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 3.84 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 4.80 (1H, d, ³J_{H,P} = 24.4 Hz, CH), 6.68 (2H, d, ³J = 8.8 Hz, ArH), 7.15 (2H, d, ³J = 8.8 Hz, ArH), 7.15 (2H, d, ³J = 7.6 Hz, ArH), 7.37 (2H, d, ³J = 8.0 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 21.5 (CH₃), 22.3 (CH₂), 32.6 (d, ³J_{C,P} = 1.1 Hz, CH₂), 36.8 (d, ⁵J_{C,P} = 2.2 Hz, CH₂), 52.1 (d, ¹J_{C,P} = 153.6 Hz, CH), 53.6 (d, ²J_{C,P} = 7.1 Hz, OCH₃), 53.9 (d, ²J_{C,P} = 6.7 Hz, OCH₃), 55.6 (OCH₃), 84.5 (d, ⁴J_{C,P} = 5.4 Hz, C-sp), 96.2 (d, ⁵J_{C,P} = 2.7 Hz, C-sp), 114.7 (ArC), 115.3, (ArC), 120.1 (d, ${}^{6}J_{C,P} = 0.1$ Hz, ArC), 124.3 (d, ${}^{3}J_{C,P} = 12.8$ Hz, C-sp²), 129.2 (ArC), 131.3 (ArC), 138.6 (ArC), 140.1 (${}^{3}d$, $J_{C,P} = 16.4$ Hz, ArC), 144.8 (d, ${}^{2}J_{C,P} = 4.8$ Hz, C-sp²) ppm. HRMS (ESI): MNa⁺, found 448.1642. C₂₄H₂₈NNaO₄P requires 448.1648.

Dimethyl (2-((4-Ethylphenyl)ethynyl)cyclopent-1-enyl)(4methoxyphenylamino)methylphosphonate (7h). Yellow solid, mp 93–95 °C. Yield 0.35 g, 40%. IR (KBr): v_{max} 3448 (NH), 2202 $(C \equiv C) \text{ cm}^{-1}$. ¹H NMR (400 MHz, CDCl₃): δ 1.24 (3H, t, ³J = 7.6 Hz, CH₂CH₃), 1.77–1.95 (2H, m, CH₂CH₂CH₂), 2.37–2.46 (1H, m, <u>CH₂CH₂CH₂)</u>, 2.55–2.62 (3H, m, <u>CH₂CH₂CH₂)</u>, 2.66 (2H, q, ${}^{3}J$ = 7.6 Hz, <u>CH</u>₂CH₃), 3.72 (3H, s, OCH₃), 3.79 (3H, d, ${}^{3}J_{H,P} = 10.4$ Hz, OCH₃), $\overline{3.84}$ (3H, d, ${}^{3}J_{H,P}$ = 10.4 Hz, OCH₃), 4.94 (1H, d, ${}^{3}J_{H,P}$ = 24.8 Hz, CH), 6.68 (2H, d, ${}^{3}J$ = 9.2 Hz, ArH), 6.75 (2H, d, ${}^{3}J$ = 8.8 Hz, ArH), 7.18 (2H, d, ${}^{3}J$ = 8.4 Hz, ArH), 7.40 (2H, d, ${}^{3}J$ = 8.4 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 15.3 (CH₃), 22.2 (CH₂), 28.8 (CH_2) , 32.6 (d, ${}^{3}J_{C,P} = 1.1$ Hz, CH₂), 36.7 (d, ${}^{5}J_{C,P} = 2.2$ Hz, CH₂), 52.1 (d, ${}^{1}J_{C,P}$ = 153.6 Hz, CH), 53.5 (d, ${}^{2}J_{C,P}$ = 7.1 Hz, OCH₃), 53.8 (d, ${}^{2}J_{C,P} = 6.7$ Hz, OCH₃), 84.4 (d, ${}^{4}J_{C,P} = 5.4$ Hz, C-sp), 96.2 (d, ${}^{5}J_{C,P}$ = 2.6 Hz, C-sp), 114.7 (ArC), 115.2, (ArC), 120.3 (d, ${}^{6}J_{C,P}$ = 1.1 Hz, ArC), 124.3 (d, ${}^{3}J_{C,P}$ = 12.9 Hz, C-sp²), 127.9 (ArC), 131.3 (ArC), 140.0 (d, ${}^{3}J_{C,P}$ = 16.8 Hz, ArC), 144.7 (d, ${}^{2}J_{C,P}$ = 4.6 Hz, C-sp²), 144.8 (ArC), 152.9 (ArC) ppm. HRMS (ESI): MNa⁺, found 462.1808. C₂₅H₃₀NNaO₄P requires 462.1805.

Dimethyl (2-(Hex-1-ynyl)cyclopent-1-enyl)(phenylamino)methylphosphonate (7i). Yellowish oil. Yield 0.36 g, 50%. IR (KBr): v_{max} 3440 (NH), 2214 (C \equiv C) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 0.94 (3H, t, ³J = 7.2 Hz, CH₂(CH₂)₂CH₃), 1.42–1.63 (4H, m, CH₂(CH₂)₂CH₃), 1.69–1.91 (2H, m, CH₂CH₂CH₂), 2.29–2.55 (6H, m, $\underline{CH}_2\underline{CH}_2\underline{CH}_2$ and $\underline{CH}_2(CH_2)_2CH_3$), 3.77 (3H, d, ${}^3J_{H,P} = 10.5$ Hz, OCH₃), 3.82 (3H, d, ${}^{3}J_{H,P}$ = 10.8 Hz, OCH₃), 4.78 (1H, d, ${}^{3}J_{H,P}$ = 24.6 Hz, CH), 6.66-6,69 (2H, m, ArH), 6.71-6.76 (1H, m, ArH), 7.13-7.18 (2H, m, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 13.5 (CH₃), 19.3 (CH₂), 21.9 (CH₂), 22.0 (CH₂), 32.0 (CH₂), 36.9 (d, ${}^{5}J_{C,P}$ = 2.1 Hz, CH₂), 50.9 (d, ${}^{1}J_{C,P}$ = 154.2 Hz, CH), 53.5 (d, ${}^{2}J_{C,P}$ = 7.3 Hz, OCH₃), 53.6 (d, ${}^{2}J_{C,P}$ = 6.9 Hz, OCH₃), 76.2 (d, ${}^{4}J_{C,P}$ = 5.4 Hz, C-sp), 97.3 (d, ${}^{5}J_{C,P}$ = 2.2 Hz, C-sp), 113.7 (ArC), 118.5 (ArC), 124.9 (d, ${}^{3}J_{C,P} = 13.0 \text{ Hz}, \text{ C-sp}^{2}$), 129.1 (ArC), 142.3 (d, ${}^{2}J_{C,P} = 4.4 \text{ Hz}, \text{ C-}$ sp^2), 146.2 (d, ${}^{3}J_{C,P}$ = 15.5 Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 384.1698. C₂₀H₂₈NNaO₃P requires 384.1704.

Dimethyl (2-(Hex-1-ynyl)cyclopent-1-enyl)(4methoxyphenylamino)methylphosphonate (7j). Yellowish oil. Yield 0.46 g, 59%. IR (KBr): v_{max} 3418 (NH), 2211 (C \equiv C) cm⁻¹. ¹H NMR (400 MHz, $CDCl_3$): δ 0.94 (3H, t, ³J = 7.6 Hz, CH₂(CH₂)₂CH₃), 1.43–1.61 (4H, m, CH₂(CH₂)₂CH₃), 1.69–1.88 (2H, m, $CH_2CH_2CH_2$), 2.26–2.56 (6H, m, $CH_2CH_2CH_2$ and <u>CH₂(CH₂)₂CH₃), 3.72</u> (3H, s, OCH₃), 3.76 (3H, \overline{d} , ${}^{3}J_{H,P} = 10.8$ Hz, OCH₃), 3.81 (3H, d, ${}^{3}J_{H,P}$ = 10.8 Hz, OCH₃), 4.83 (1H, d, ${}^{3}J_{H,P}$ = 24.4 Hz, CH), 6.62 (2H, d, ³*J* = 9.2 Hz, ArH), 6.74 (2H, d, ³*J* = 9.2 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 13.5 (CH₃), 19.3 (CH₂), 21.9 (CH₂), 22.0 (CH₂), 32.0 (d, ${}^{3}J_{C,P}$ = 1.0 Hz, CH₂), 36.9 (d, ${}^{5}J_{C,P}$ = 2.3 Hz, CH₂), 51.7 (d, ${}^{1}J_{C,P}$ = 154.2 Hz, CH), 53.4 (d, ${}^{2}J_{C,P}$ = 7.1 Hz, OCH₃), 53.6 (d, ${}^{2}J_{C,P}$ = 6.7 Hz, OCH₃), 55.5 (OCH₃), 76.3 (d, ${}^{4}J_{C,P}$ = 5.2 Hz, C-sp), 97.1 (d, ${}^{5}J_{C,P}$ = 2.5 Hz, C-sp), 114.6 (ArC), 115.0 (ArC), 124.9 (d, ${}^{3}J_{C,P} = 13.0$ Hz, C-sp²), 140.2 (d, ${}^{3}J_{C,P} = 16.6$ Hz, ArC), 142.6 (d, ${}^{2}J_{C,P} = 4.5$ Hz, C-sp²), 152.7 (ArC) ppm. HRMS (ESI): MNa⁺, found 414.1785. $C_{21}H_{30}NNaO_4P$ requires 414.1810.

Dimethyl (4-Fluorophenylamino)(2-(hex-1-ynyl)cyclopent-1-enyl)methylphosphonate (7k). Yellow solid, mp 68–70 °C. Yield 0.42 g, 55%. IR (KBr): v_{max} 3469 (NH), 2216 (C=C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.94 (3H, t, ³J = 7.6 Hz, CH₂(CH₂)₂CH₃), 1.43–1.52 (2H, m, CH₂CH₂CH₂CH₃), 1.54–1.61 (2H, m, CH₂CH₂CH₂CH₃), 1.70–1.89 (2H, m, CH₂CH₂CH₂), 2.25– 2.34 (1H, m, CH₂CH₂CH₂), 2.41–2.57 (5H, m, CH₂CH₂CH₂), 2.25– 2.34 (1H, m, CH₂CH₃CH₃), 4.83 (1H, d, ³J_{H,P} = 10.4 Hz, OCH₃), 3.82 (3H, d, ³J_{H,P} = 10.4 Hz, OCH₃), 4.83 (1H, d, ³J_{H,P} = 24.4 Hz, CH), 6.58–6.61 (2H, m, ArH), 6.83–6.88 (2H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 13.5 (CH₃), 19.3 (CH₂), 21.9 (CH₂), 22.1 (CH₂), 30.9 (CH₂), 32.0 (d, ³J_{C,P} = 1.0 Hz, CH₂), 36.9 (d, ⁵J_{C,P} = 2.3 Hz, CH₂), 51.5 (d, ¹J_{C,P} = 154.3 Hz, CH), 53.5 (d, ²J_{C,P} = 7.1 Hz, OCH₃), 53.6 (d, ²J_{C,P} = 6.8 Hz, OCH₃), 76.2 (d, ⁴J_{C,P} = 5.2 Hz, C-sp), 97.4 (d, ⁵J_{C,P}) = 2.5 Hz, C-sp), 114.7 (d, ${}^{3}J_{C,F}$ = 7.4 Hz, ArC), 115.5, (d, ${}^{2}J_{C,F}$ = 22.2 Hz, ArC), 125.3 (d, ${}^{3}J_{C,P}$ = 12.9 Hz, C-sp²), 142.1 (d, ${}^{2}J_{C,P}$ = 4.6 Hz, C-sp²), 142.5 (dd, ${}^{3}J_{C,P}$ = 16.2 Hz, ${}^{4}J_{C,F}$ = 1.8 Hz, ArC), 156.3 (d, ${}^{1}J_{C,F}$ = 234.7 Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 402.1603. C₂₀H₂₇FNNaO₃P requires 402.1605.

Dimethyl (4-Chlorophenylamino)(2-(hex-1-ynyl)cyclopent-1-enyl)methylphosphonate (7l). Yellow solid, mp 73-75 Yield 0.36 g, 45%. IR (KBr): $v_{\rm max}$ 3433 (NH), 2213 (C=C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.94 (3H, t, ³J = 7.2 Hz, CH₂(CH₂)₂CH₃), 1.42-1.51 (2H, m, CH₂CH₂CH₂CH₃), 1.53-1.61 (2H, m, CH₂CH₂CH₂CH₃), 1.70-1.89 (2H, m, CH₂CH₂CH₂), 2.26-2.31 (1H, m, CH2CH2CH2), 2.41-2.55 (5H, m, CH2CH2CH2 and $\frac{CH_2(CH_2)_2CH_3}{J_{H,P}} = 10.4 \text{ Hz}, \text{ OCH}_3, 3.76 \text{ (3H, d, } {}^3J_{H,P} = 10.4 \text{ Hz}, \text{ OCH}_3, 3.81 \text{ (3H, d, } {}^3J_{H,P} = 10.8 \text{ Hz}, \text{ OCH}_3), 4.84 \text{ (1H, d, } {}^3J_{H,P} = 24.8 \text{ Hz}, \text{ CH}), 6.58 \text{ (2H, d, } {}^3J = 9.2 \text{ Hz}, \text{ ArH}), 7.09 \text{ (2H, d, } {}^3J = 8.8 \text{ Hz}, \text{ ArH}) \text{ pm.}^{-13}\text{C NMR}$ (100 MHz, $CDCl_3$): δ 13.5 (CH₃), 19.2 (CH₂), 21.9 (CH₂), 22.0 (CH₂), 30.9 (CH₂), 32.0 (d, ${}^{3}J_{C,P} = 1.1$ Hz, CH₂), 36.8 (d, ${}^{5}J_{C,P} = 2.2$ Hz, CH₂), 51.0 (d, ${}^{1}J_{C,P}$ = 154.3 Hz, CH), 53.5 (d, ${}^{2}J_{C,P}$ = 4.3 Hz, OCH₃), 53.6 (d, ${}^{2}J_{C,P}$ = 3.9 Hz, OCH₃), 76.1 (d, ${}^{4}J_{C,P}$ = 5.3 Hz, C-sp), 97.5 (d, ${}^{5}J_{C,P}$ = 2.4 Hz, C-sp), 114.9 (ArC), 123.1 (ArC), 125.4 (d, ${}^{3}J_{C,P} = 12.9$ Hz, C-sp²), 128.9 (ArC), 141.8 (d, ${}^{2}J_{C,P} = 4.6$ Hz, C-sp²), 144.8 (d, ${}^{3}J_{C,P}$ = 16.6 Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 418.1301. C₂₀H₂₇ClNNaO₃P requires 418.1309

Dimethyl (2-(Hept-1-ynyl)cyclopent-1-enyl)(phenylamino)methylphosphonate (7m). Yellowish oil. Yield 0.31 g, 41%. IR (KBr): v_{max} 3409 (NH), 2216 (C=C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.91 (3H, t, ³*J* = 7.6 Hz, CH₂(CH₂)₃<u>CH₃</u>), 1.30–1.39 (2H, m, CH₂(CH₂)₂CH₂CH₃), 1.40–1.48 (2H, m, CH₂CH₂CH₂CH₂CH₂CH₃), 1.60 (2H, quint, ${}^{3}J$ = 7.2 Hz, CH₂CH₂CH₂CH₂CH₃), 1.71–1.89 (2H, m, CH₂CH₂CH₂), 2.31-2.59 (6H, m, CH₂CH₂CH₂ and <u>CH₂(CH₂)₃CH₃), 3.77</u> (3H, d, ${}^{3}J_{H,P}$ = 10.8 Hz, OCH₃), 3.82 (3H, $\overline{d, {}^{3}J_{H,P}}$ = 10.4 Hz, OCH₃), 4.92 (1H, d, {}^{3}J_{H,P} = 24.8 Hz, CH), 6.67 $(2H, d, {}^{3}J = 7.6 \text{ Hz}, \text{ArH}), 6.74 (1H, t, {}^{3}J = 7.6 \text{ Hz}, \text{ArH}), 7.16 (2H, t, t)$ ${}^{3}J$ = 7.6 Hz, ArH) ppm. 13 C NMR (100 MHz, CDCl₃): δ 13.9 (CH₃), 19.6 (CH₂), 22.0 (CH₂), 22.2 (CH₂), 28.5 (CH₂), 31.0 (CH₂), 32.0 (d, ${}^{3}J_{C,P}$ = 1.0 Hz, CH₂), 36.9 (d, ${}^{5}J_{C,P}$ = 2.3 Hz, CH₂), 50.9 (d, ${}^{1}J_{C,P}$ = 154.0 Hz, CH), 53.5 (d, ${}^{2}J_{C,P}$ = 7.0 Hz, OCH₃), 53.7 (d, ${}^{2}J_{C,P}$ = 6.8 Hz, OCH₃), 76.2 (d, ${}^{4}J_{C,P}$ = 5.3 Hz, C-sp), 97.3 (d, ${}^{5}J_{C,P}$ = 2.5 Hz, C-sp), 113.7 (ArC), 118.5 (ArC), 124.9 (d, ${}^{3}J_{C,P}$ = 13.0 Hz, C-sp²), 129.1 (ArC), 142.3 (d, ${}^{2}J_{C,P}$ = 4.5 Hz, C-sp²), 146.2 (d, ${}^{3}J_{C,P}$ = 15.4 Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 398.1851. C₂₁H₃₀NNaO₃P requires 398.1856.

Dimethyl (2-(Hept-1-ynyl)cyclopent-1-enyl)(4-methoxyphenylamino)methylphosphonate (7n). Yellowish oil. Yield 0.41 g, 50%. IR (KBr): v_{max} 3450 (NH), 2221 (C=C) cm⁻¹. ¹H NMR (400 MHz, $CDCl_3$): δ 0.91 (3H, t, ${}^{3}J$ = 7.2 Hz, CH₂(CH₂)₃CH₃), 1.30-1.37 (2H, m, CH₂(CH₂)₂CH₂CH₃), 1.39-1.47 (2H, m, $CH_2CH_2CH_2CH_2CH_3$), 1.59 (2H, quint, ${}^{3}J$ = 7.2 Hz, CH₂CH₂CH₂CH₂CH₃), 1.70–1.88 (2H, m, CH₂CH₂CH₂), 2.30–2.56 (6H, m, <u>CH₂CH₂CH₂</u> and <u>CH₂(CH₂)₃CH₃)</u>, 3.73 (3H, s, OCH₃), 3.77 (3H, d, ${}^{3}J_{H,P} = 10.4$ Hz, OCH₃), 3.82 (3H, d, ${}^{3}J_{H,P} = 10.4$ Hz, OCH₃), 4.84 (1H, d, ${}^{3}J_{H,P}$ = 24.4 Hz, CH), 6.65 (2H, d, ${}^{3}J$ = 9.2 Hz, ArH), 6.75 (2H, d, ${}^{3}J$ = 8.8 Hz, ArH) ppm. ${}^{13}C$ NMR (100 MHz, CDCl₃): δ 13.9 (CH₃), 19.6 (CH₂), 22.1 (CH₂), 22.2 (CH₂), 28.5 (CH_2) , 31.0 (CH_2) , 32.0 (CH_2) , 36.9 $(d, {}^{5}J_{C,P} = 2.2 \text{ Hz}, CH_2)$, 51.9 $(d, {}^{5}J_{C,P} = 2$ ${}^{1}J_{C,P}$ = 154.3 Hz, CH), 53.5 (d, ${}^{2}J_{C,P}$ = 7.0 Hz, OCH₃), 53.7 (d, ${}^{2}J_{C,P}$ = 6.7 Hz, OCH₃), 55.6 (OCH₃), 76.2 (d, ${}^{4}J_{C,P}$ = 5.3 Hz, C-sp), 97.3 (d, ${}^{5}J_{C,P}$ = 2.5 Hz, C-sp), 114.6 (ArC), 115.4 (ArC), 125.1 (d, ${}^{3}J_{C,P}$ = 13.1 Hz, C-sp²), 139.8 (d, ${}^{3}J_{C,P}$ = 16.2 Hz, ArC), 142.3 (d, ${}^{2}J_{C,P}$ = 4.6 Hz, Csp²), 152.9 (ArC) ppm. HRMS (ESI): MNa⁺, found 428.1958. C₂₂H₃₂NNaO₄P requires 428.1961.

Dimethyl (2-(Cyclopropylethynyl)cyclopent-1-enyl)-(phenylamino)methylphosphonate (7o). Yellow solid, mp 143–145 °C. Yield 0.37 g, 53%. IR (KBr): v_{max} 3407 (NH), 2211 (C=C) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 0.73–0.78 (2H, m, CH(<u>CH₂)₂</u>), 0.85–0.92 (2H, m, CH(<u>CH₂)₂</u>), 1.41–1.50 (1H, m, <u>CH(CH₂)₂</u>), 1.67–1.89 (2H, m, CH(<u>CH₂CH₂)</u>, 2.27–2.58 (4H, m, <u>CH₂CH₂CH₂</u>), 3.77 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 3.82 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 4.86 (1H, d, ³J_{H,P} = 24.9 Hz, CH), 6.63–6.67 (2H, m, ArH), 6.71–6.76 (1H, m, ArH), 7.12–7.19 (2H, m, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 0.3 (<u>CH</u>(CH₂)₂), 8.9 (CH(<u>CH₂</u>)₂), 9.0 (CH(<u>CH₂</u>)₂), 22.0 (CH₂), 32.1 (CH₂), 36.8 (d, ⁵*J*_{C,P} = 2.2 Hz, CH₂), 50.9 (d, ¹*J*_{C,P} = 154.2 Hz, CH), 53.5 (d, ²*J*_{C,P} = 7.1 Hz, OCH₃), 53.7 (d, ²*J*_{C,P} = 6.7 Hz, OCH₃), 71.3 (d, ⁴*J*_{C,P} = 5.1 Hz, C-sp), 100.4 (d, ⁵*J*_{C,P} = 2.5 Hz, C-sp), 113.6 (ArC), 118.4 (ArC), 124.6 (d, ³*J*_{C,P} = 13.2 Hz, C-sp²), 129.1 (ArC), 142.8 (d, ²*J*_{C,P} = 4.5 Hz, C-sp²), 146.3 (d, ³*J*_{C,P} = 16.6 Hz, ArC) ppm. HRMS (ESI): MH⁺, found 346.1569. C₁₉H₂₅NO₃P requires 346.1567.

Dimethyl (2-(Cyclopropylethynyl)cyclopent-1-enyl)(4methoxyphenylamino)methylphosphonate (7p). Yellowish oil. Yield 0.41 g, 55%. IR (KBr): v_{max} 3451 (NH), 2211 (C=C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.73-0.77 (2H, m, CH(<u>CH₂</u>)₂), 0.86-0.90 (2H, m, CH(<u>CH₂</u>)₂), 1.42-1.48 (1H, m, <u>CH</u>(CH₂)₂), 1.69-1.87 (2H, m, CH₂<u>CH₂</u>CH₂), 2.27-2.56 (4H, m, <u>CH₂CH₂CH₂</u>), 3.73 (3H, s, OCH₃), 3.76 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 3.82 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 4.79 (1H, d, ³J_{H,P} = 24.4 Hz, CH), 6.61 (2H, d, ³J = 9.2 Hz, ArH), 6.75 (1H, d, ³J = 9.2 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 0.42 (<u>CH</u>(CH₂)₂), 8.9 (CH(<u>CH₂</u>)₂), 9.0 (CH-(<u>CH₂</u>)₂), 22.1 (CH₂), 32.2 (d, ³J_{C,P} = 1.2 Hz, CH₂), 36.9 (d, ⁵J_{C,P} = 2.1 Hz, CH₂), 51.8 (d, ¹J_{C,P} = 154.0 Hz, CH), 53.4 (d, ²J_{C,P} = 7.1 Hz, OCH₃), 53.7 (d, ²J_{C,P} = 6.7 Hz, OCH₃), 55.6 (OCH₃), 71.4 (d, ⁴J_{C,P} = 5.3 Hz, C-sp), 100.4 (d, ⁵J_{C,P} = 2.3 Hz, C-sp), 114.6 (ArC), 115.1 (ArC), 124.6 (d, ³J_{C,P} = 13.0 Hz, C-sp²), 140.2 (d, ³J_{C,P} = 16.4 Hz, ArC), 143.0 (d, ²J_{C,P} = 4.5 Hz, C-sp²), 152.7 (ArC) ppm. HRMS (ESI): MNa⁺, found 398.1487. C₂₀H₂₆NNaO₄P requires 398.1492.

Dimethyl (2-(Cyclopropylethynyl)cyclopent-1-enyl)(4ethoxyphenylamino)methylphosphonate (7r). Yellow solid, mp 139–141 °C. Yield 0.44 g, 57%. IR (KBr): v_{max} 3460 (NH), 2212 (C=C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.73–0.77 (2H, m, CH(<u>CH₂)₂)</u>, 0.85–0.90 (2H, m, CH(<u>CH₂)₂)</u>, 1.35 (3H, t, ³J = 7.2 Hz, OCH₂<u>CH₃</u>), 1.41–1.48 (1H, m, <u>CH</u>(CH₂)₂), 1.68–1.87 (2H, m, CH₂<u>CH₂CH₂)</u>, 2.26–2.54 (4H, m, <u>CH₂CH₂CH₂)</u>, 3.76 (3H, d, ³J_{H,P} = 10.4 Hz, OCH₃), 3.82 (3H, d, ³J_{H,P} = 10.4 Hz, OCH₃), 3.94 (2H, q, ³J = 7.2 Hz, O<u>CH₂CH₃</u>), 4.79 (1H, d, ³J_{H,P} = 24.4 Hz, CH), 6.59 (2H, d, ³J = 8.8 Hz, ArH), 6.74 (1H, d, ³J = 8.8 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 0.38 (<u>CH</u>(CH₂)₂), 8.9 (CH(<u>CH₂)₂</u>), 9.0 (CH-(<u>CH₂)₂</u>), 14.9 (OCH₂<u>CH₃</u>), 22.1 (CH₂), 32.2 (d, ³J_{C,P} = 1.0 Hz, CH₂), 36.9 (d, ⁵J_{C,P} = 2.3 Hz, CH₂), 51.7 (d, ¹J_{C,P} = 154.1 Hz, CH), 53.4 (d, ²J_{C,P} = 7.1 Hz, OCH₃), 53.7 (d, ²J_{C,P} = 6.7 Hz, OCH₃), 63.8 (O<u>CH₂CH₃</u>), 71.4 (d, ⁴J_{C,P} = 5.4 Hz, C-sp), 100.3 (d, ⁵J_{C,P} = 2.4 Hz, C-sp), 115.0 (ArC), 115.4 (ArC), 124.5 (d, ³J_{C,P} = 12.9 Hz, C-sp²), 140.2 (d, ³J_{C,P} = 16.4 Hz, ArC), 143.1 (d, ²J_{C,P} = 4.5 Hz, C-sp²), 152.0 (ArC) ppm. HRMS (ESI): MH⁺, found 390.1844. C₂₁H₂₉NO₄P requires 390.1829.

Dimethyl (Phenylamino)(2-((trimethylsilyl)ethynyl)cyclopent-1-enyl)methylphosphonate (7s-TMS). Yellow solid, mp 141–143 °C. Yield 0.41 g, 54%. IR (KBr): v_{max} 3437 (NH), 2134 (C=C), cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.24 (9H, s, Si(CH₃)₃), 1.73–1.91 (2H, m, CH₂CH₂CH₂), 2.35–2.60 (4H, m, CH₂CH₂CH₂), 3.78 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 3.83 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 4.93 (1H, d, ³J_{H,P} = 24.8 Hz, CH), 6.68 (2H, d, ³J = 7.6 Hz, ArH), 6.76 (1H, t, ³J = 7.6 Hz, ArH), 7.15–7.19 (2H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 0.0 (Si(CH₃)₃), 22.2 (CH₂), 32.5 (d, ³J_{C,P} = 1.2 Hz, CH₂), 36.5 (d, ⁵J_{C,P} = 2.1 Hz, CH₂), S0.9 (d, ¹J_{C,P} = 153.3 Hz, CH), S3.5 (d, ²J_{C,P} = 7.1 Hz, OCH₃), 53.8 (d, ²J_{C,P} = 6.8 Hz, OCH₃), 101.0 (d, ⁴J_{C,P} = 5.0 Hz, C-sp), 101.3 (d, ⁵J_{C,P} = 2.1 Hz, C-sp), 113.7 (ArC), 118.6 (ArC), 124.2 (d, ³J_{C,P} = 12.6 Hz, C-sp²), 129.2 (ArC), 146.1 (d, ³J_{C,P} = 15.2 Hz, ArC), 146.5 (d, ²J_{C,P} = 4.2 Hz, C-sp²) ppm. HRMS (ES): MNa⁺, found 400.1464. C₁₉H₂₈NNaO₃PSi requires 400.1468.

Dimethyl (2-Ethynylcyclopent-1-enyl)(phenylamino)methylphosphonate (7s). This compound was synthesized from 7s-TMS by treating by 2 equiv of KF₂·H₂O in methanol at room temperature for 2 h. After evaporation of solvent, the residue was purified by column chromatography. Yellow solid, mp 118–119 °C. Yield 0.27 g, 83%. IR (KBr): v_{max} 3452 (NH), 2088 (C=C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.74–1.92 (2H, m, CH₂CH₂CH₂), 2.34– 2.40 (1H, m, <u>CH₂CH₂CH₂)</u>, 2.49–2.61 (3H, m, <u>CH₂CH₂CH₂), 3.38</u> (1H, br. s, C=C<u>H</u>), 3.78 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 3.83 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 4.93 (1H, d, ³J_{H,P} = 24.8 Hz, CH), 6.64–6.67 (2H, m, ArH), 6.73–6.77 (1H, m, ArH), 7.14–7.19 (2H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 22.0 (CH₂), 32.4 (d, ³J_{C,P} = 1.1 Hz, CH₂), 36.6 (d, ⁵J_{C,P} = 2.3 Hz, CH₂), 50.9 (d, ¹J_{C,P} = 153.5 Hz, CH), 53.5 (d, ²J_{C,P} = 7.2 Hz, OCH₃), 53.8 (d, ²J_{C,P} = 6.7 Hz, OCH₃), 79.4 (d, ⁴J_{C,P} = 5.2 Hz, C-sp), 83.9 (d, ⁵J_{C,P} = 2.6 Hz, C-sp), 113.6 (ArC), 118.6 (ArC), 123.1 (d, ³J_{C,P} = 12.7 Hz, C-sp²), 129.2 (ArC), 146.1 (d, ³J_{C,P} = 15.4 Hz, ArC), 146.9 (d, ²J_{C,P} = 4.6 Hz, C-sp²) ppm. HRMS (ESI): MH⁺, found 306.1261. C₁₆H₂₁NO₃P requires 306.1254.

Physic (197), Mir (196), 1971 (1971), 197

Dimethyl (4-Methoxyphenylamino)(2-(phenylethynyl)cyclohex-1-enyl)methylphosphonate (8b). Brownish solid, mp 142–141 °C. Yield 0.43 g, 51%. IR (KBr): v_{max} 3343 (NH), 2202 (C≡C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.52–1.65 (4H, m, 2 × CH₂), 2.02–2.08 (1H, m, C<u>H</u>H), 2.31–2.39 (3H, m, CH<u>H</u>, CH₂), 3.73 (3H, s, OCH₃), 3.79 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 3.83 (3H, d, ³J_{H,P} = 10.4 Hz, OCH₃), 5.22 (1H, d, ²J_{H,P} = 25.6 Hz, C<u>H</u>NH), 6.67 (2H, d, J = 8.8 Hz, ArH), 6.76 (2H, d, J = 9.2 Hz, ArH), 7.31–7.35 (3H, m, ArH), 7.46–7.49 (2H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 21.9 (CH₂), 22.0 (CH₂), 24.8 (d, ³J_{C,P} = 1.2 Hz, CH₂), 30.4 (d, ⁴J_{C,P} = 1.8 Hz, CH₂), 53.6 (d, ²J_{C,P} = 2.6 Hz, OCH₃), 53.7 (d, ²J_{C,P} = 2.9 Hz, OCH₃), 55.6 (d, ¹J_{C,P} = 150.8 Hz, CH), 55.6 (OCH₃), 88.6 (d, ⁴J_{C,P} = 5.0 Hz, C_{sp}), 94.5 (d, ⁵J_{C,P} = 2.2 Hz, C_{sp}), 114.8 (ArC), 114.9 (ArC), 120.9 (d, ³J_{C,P} = 12.4 Hz, C_{sp}²), 123.3 (ArC), 128.2 (ArC), 128.4 (ArC), 131.3 (ArC), 139.6 (d, ²J_{C,P} = 3.6 Hz, C_{sp}²), 140.1 (d, ³J_{C,P} = 16.9 Hz, ArC), 152.7 (ArC) ppm. HRMS (ESI): MNa⁺, found 448.1641. C₂₄H₂₈NNaO₄P requires 448.1648.

Dimethyl (4-Fluorophenylamino)(2-(phenylethynyl)cyclohex-1-enyl)methylphosphonate (8c). Brownish solid, mp 158–159 °C. Yield 0.46 g, 56%. IR (KBr): v_{max} 3295 (NH), 2158 (C=C) cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 1.51–1.67 (4H, m, 2 × CH₂), 1.98–2.01 (1H, m, C<u>H</u>H), 2.32–2.35 (3H, m, CH<u>H</u>, CH₂), 3.80 (3H, d, ³J_{H,P} = 8.4 Hz, OCH₃), 3.83 (3H, d, ³J_{H,P} = 8.8 Hz, OCH₃), 5.21 (1H, d, ²J_{H,P} = 25.6 Hz, C<u>H</u>NH), 6.63 (2H, dd, J = 13.2; 4.4 Hz, ArH), 6.88 (2H, t, J = 8.8 Hz, ArH), 7.33–7.36 (3H, m, ArH), 7.46–7.48 (2H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 21.8 Hz, CH₂), 53.6 (d, ³J_{C,P} = 1.5 Hz, CH₂), 30.4 (d, ⁴J_{C,P} = 1.8 Hz, CH₂), 55.3 (d, ¹J_{C,P} = 150.9 Hz, CH), 88.4 (d, ⁴J_{C,P} = 5.0 Hz, C_{sp}), 94.7 (d, ⁵J_{C,P} = 2.2 Hz, C_{sp}), 114.5 (d, ³J_{C,F} = 7.4 Hz, ArC), 115.7 (d, ²J_{C,F} = 22.3 Hz, ArC), 121.2 (d, ³J_{C,P} = 12.4 Hz, C_{sp}²), 123.2 (ArC), 128.3 (ArC), 128.4 (ArC), 131.3 (ArC), 139.2 (d, ²J_{C,P} = 3.9 Hz, C_{sp}²), 142.5 (dd, ³J_{C,P} = 16.7 Hz, ⁴J_{C,F} = 1.8 Hz, ArC), 156.3 (d, ¹J_{C,F} = 234.6 Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 436.1444. C₂₃H₂₅FNNaO₃P requires 436.1448.

Dimethyl (4-Chlorophenylamino)(2-(phenylethynyl)cyclohex-1-enyl)methylphosphonate (8d). Yellowish solid, mp 139–140 °C. Yield 0.38 g, 44%. IR (KBr): v_{max} 3296 (NH), 2201 (C=C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.50–1.66 (4H, m, 2 × CH₂), 1.98–1.99 (1H, m, C<u>H</u>H), 2.32–2.33 (3H, m, CH<u>H</u>, CH₂), 3.80 (3H, d, ³J_{H,P} = 6.4 Hz, OCH₃), 3.83 (3H, d, ³J_{H,P} = 6.4 Hz, OCH₃), 5.22 (1H, d, ²J_{H,P} = 26.0 Hz, C<u>H</u>NH), 6.63 (2H, d, J = 8.8 Hz, ArH), 7.11 (2H, d, J = 8.8 Hz, ArH), 7.33–7.35 (3H, m, ArH), 7.46– 7.48 (2H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 21.9 (CH₂), 24.8 (d, ³J_{C,P} = 1.4 Hz, CH₂), 30.3 (d, ⁴J_{C,P} = 1.8 Hz, CH₂), 53.6 (d, ²J_{C,P} = 6.9 Hz, OCH₃), 53.7 (d, ²J_{C,P} = 7.1 Hz, OCH₃), 54.9 (d, ¹J_{C,P} = 151.0 Hz, CH), 88.3 (d, ${}^{4}J_{C,P}$ = 5.1 Hz, C_{sp}), 94.8 (d, ${}^{5}J_{C,P}$ = 2.2 Hz, C_{sp}), 114.7 (ArC), 121.2 (d, ${}^{3}J_{C,P}$ = 12.4 Hz, C_{sp}²), 123.0 (ArC), 123.1 (d, ${}^{6}J_{C,P}$ = 0.8 Hz, ArC), 128.3 (ArC), 128.4 (ArC), 129.1 (ArC), 131.3 (ArC), 138.9 (d, ${}^{2}J_{C,P}$ = 4.0 Hz, C_{sp}²), 144.9 (d, ${}^{3}J_{C,P}$ = 16.3 Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 452.1145. C₂₃H₂₅ClNNaO₃P requires 452.1153.

Dimethyl (Phenylamino)(2-(p-tolylethynyl)cyclohex-1-enyl)methylphosphonate (8e). Light orange solid, mp 133-134 °C Yield 0.43 g, 53%. IR (KBr): v_{max} 3304 (NH), 2201 ($\tilde{C}\equiv C$) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.54–1.65 (4H, m, 2 × CH₂), 2.05–2.08 (1H, m, CHH), 2.33 (3H, br. s, CHH, CH2), 2.36 (3H, s, CH3), 3.80 $(3H, d, {}^{3}J_{H,P} = 6.4 \text{ Hz}, \text{ OCH}_{3}), 3.82 (3H, d, {}^{3}J_{H,P} = 6.4 \text{ Hz}, \text{ OCH}_{3}),$ 5.29 (1H, d, ${}^{2}J_{H,P}$ = 26.0 Hz, C<u>H</u>NH), 6.70–6.76 (3H, m, ArH), 7.16 (4H, dd, J = 13.3; 7.6 Hz ArH), 7.37 (2H, d, J = 7.6 Hz ArH), 7.47– 7.49 (2H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 21.5 (CH₃), 22.0 (2 × CH₂), 24.8 (CH₂), 30.4 (d, ${}^{4}J_{C,P}$ = 1.8 Hz, CH₂), 53.6 (d, ${}^{2}J_{C,P} = 6.8 \text{ Hz}, \text{ OCH}_{3}$), 53.8 (d, ${}^{2}J_{C,P} = 7.0 \text{ Hz}, \text{ OCH}_{3}$), 54.7 (d, ${}^{1}J_{C,P} =$ 150.2 Hz, CH), 87.9 (d, ${}^{4}J_{C,P}$ = 5.2 Hz, C_{sp}), 94.8 (d, ${}^{5}J_{C,P}$ = 1.8 Hz, C_{sp} , 113.5 (ArC), 118.3 (ArC), 120.3 (ArC), 120.9 (d, ${}^{3}J_{C,P} = 12.6$ Hz, C_{sp²}), 129.2 (ArC), 129.3 (ArC), 131.2 (ArC), 138.4 (ArC), 139.0 $(d, {}^{2}J_{C,P} = 4.0 \text{ Hz}, C_{sp}{}^{2}), 146.3 (d, {}^{3}J_{C,P} = 15.8 \text{ Hz}, \text{ArC}) \text{ ppm. HRMS}$ (ESI): MNa⁺, found 432.1699. C₂₄H₂₈NNaO₃P requires 432.1699.

Dimethyl (4-Methoxyphenylamino)(2-(p-tolylethynyl)cyclohex-1-enyl)methylphosphonate (8f). Light orange solid, mp 96–97 °C. Yield 0.39 g, 44%. IR (KBr): v_{max} 3503 (NH), 2197 $(C \equiv C) \text{ cm}^{-1}$. ¹H NMR (400 MHz, CDCl₃): δ 1.50–1.66 (4H, m, 2) × CH₂), 2.01–2.08 (1H, m, C<u>H</u>H), 2.28–2.31 (3H, m, CH<u>H</u>, CH₂), 2.36 (3H, s, CH₃), 3.72 (3H, s, OCH₃), 3.79 (3H, d, ${}^{3}J_{HP} = 10.4$ Hz, OCH₃), 3.82 (3H, d, ${}^{3}J_{H,P}$ = 10.8 Hz, OCH₃), 5.22 (1H, d, ${}^{2}J_{H,P}$ = 25.6 Hz, C<u>H</u>NH), 6.67 (2H, d, J = 9.2 Hz ArH), 6.76 (2H, d, J = 9.2 Hz ArH), 7.14 (2H, d, J = 8.0 Hz ArH), 7.36 (2H, d, J = 8.0 Hz ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 21.5 (CH₃), 22.0 (2 × CH₂), 24.8 (d, ${}^{3}J_{C,P} = 1.1$ Hz, CH₂), 30.4 (d, ${}^{4}J_{C,P} = 1.7$ Hz, CH₂), 53.7 (d, ${}^{2}J_{C,P}$ = 3.8 Hz, OCH₃), 53.7 (d, ${}^{2}J_{C,P}$ = 3.9 Hz, OCH₃), 55.6 (d, ${}^{1}J_{C,P}$ = 150.6 Hz, CH), 55.6 (OCH₃), 88.0 (d, ${}^{4}J_{C,P}$ = 5.2 Hz, C_{sp}), 94.7 (d, ${}^{5}J_{C,P} = 2.0 \text{ Hz}, C_{sp}$), 114.8 (ArC), 115.0 (ArC), 120.3 (ArC), 121.1 (d, ${}^{3}J_{C,P} = 12.4 \text{ Hz}, C_{\text{sp}^{2}}$, 129.2 (ArC), 131.2 (ArC), 138.4 (ArC), 139.1 (d, ${}^{2}J_{C,P}$ = 3.6 Hz, $C_{sp}{}^{2}$), 140.1 (d, ${}^{3}J_{C,P}$ = 15.9 Hz, ArC), 152.7 (ArC) ppm. HRMS (ESI): MNa⁺, found 462.1795. C₂₅H₃₀NNaO₄P requires 462.1805

Dimethyl (2-(Pent-1-ynyl)cyclohex-1-enyl)(phenylamino)methylphosphonate (8g). Light orange solid, mp 65-66 °C. Yield 0.18 g, 25%. IR (KBr): v_{max} 3434 (NH), 2216 (C=C) cm⁻¹. ¹H NMR (400 MHz, $CDCl_3$): δ 1.05 (3H, t, J = 7.6 Hz, CH_3), 1.46–1.56 $(4H, m, 2 \times CH_2)$, 1.62 (2H, sexst., C=CCH₂CH₂), 1.95-2.01 (1H, m, C<u>H</u>H), 2.17–2.20 (2H, m, CH₂), 2.27 (1H, dd, J = 20.0; 4.0 Hz CH<u>H</u>), 2.40 (2H, t, J = 7.2 Hz, C \equiv CC<u>H</u>₂CH₂), 3.78 (3H, d, ³ $J_{H,P} =$ 8.8 Hz, OCH₃), 3.80 (3H, d, ${}^{3}J_{H,P}$ = 9.2 Hz, OCH₃), 5.21 (1H, d, ${}^{2}J_{H,P}$ = 26.0 Hz, C<u>H</u>NH), 6.66–6.69 (2H, m, ArH), 6.73 (1H, t, *J* = 7.6 Hz, ArH), 7.16 (2H, dd, J = 8,4; 7.2 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 13.5 (CH₃), 21.6 (CH₂), 22.0 (CH₂, 2 × CH_{2chex}), 22.4 (CH_2) , 24.4 (d, ${}^{3}J_{C,P} = 1.5 \text{ Hz}$, CH_2), 30.8 (d, ${}^{4}J_{C,P} = 1.9 \text{ Hz}$, CH_2), $(J_{2,P}) = (J_{2,P}) = (J_{$ C_{sp}^{2}), 129.2 (ArC), 136.9 (d, ${}^{2}J_{C,P}$ = 3.5 Hz, C_{sp}^{2}), 146.2 (d, ${}^{3}J_{C,P}$ = 16.0 Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 384.1695. C₂₀H₂₈NNaO₃P requires 384.1699.

Dimethyl (4-Methoxyphenylamino)(2-(pent-1-ynyl)cyclohex-1-enyl)methylphosphonate (8h). Brownish solid, mp 92–93 °C. Yield 0.51 g, 65%. IR (KBr): v_{max} 3308 (NH), 2216 (C= C) cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 1.04 (3H, t, J = 7.2 Hz, CH₃), 1.41–1.55 (4H, m, 2 × CH₂), 1.61 (2H, sexst., J = 7.2 Hz, C= CCH₂CH₂), 1.92–1.98 (1H, m, CHH), 2.15–2.18 (2H, m, CH₂), 2.24–2.29 (1H, m, CHH), 2.39 (2H, t, J = 6.8 Hz, C=CCH₂CH₂), 3.73 (3H, s, OCH₃), 3.77 (3H, d, ³J_{H,P} = 10.4 Hz, OCH₃), 3.80 (3H, d, ³J_{H,P} = 10.4 Hz, OCH₃), 5.14 (1H, d, ²J_{H,P} = 25.6 Hz, CHNH), 6.63 (2H, d, J = 9.2 Hz, ArH), 6.75 (2H, d, J = 8.8 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 13.5 (CH₃), 21.6 (CH₂), 22.0 (2 × CH₂chex), 22.4 (CH₂), 24.4 (d, ³J_{C,P} = 1.3 Hz, CH₂), 30.8 (d, ⁴J_{C,P} = 1.8 Hz, CH₂), 53.5 (d, ${}^{2}J_{C,P}$ = 6.8 Hz, OCH₃), 53.6 (d, ${}^{2}J_{C,P}$ = 7.0 Hz, OCH₃), 55.3 (d, ${}^{1}J_{C,P}$ = 151.2 Hz, CH), 55.6 (OCH₃), 80.0 (d, ${}^{4}J_{C,P}$ = 4.9 Hz, C_{sp}), 95.4 (d, ${}^{5}J_{C,P}$ = 2.1 Hz, C_{sp}), 114.7 (ArC), 115.0 (ArC), 121.6 (d, ${}^{3}J_{C,P}$ = 12.7 Hz, C_{sp}²), 136.9 (d, ${}^{2}J_{C,P}$ = 3.4 Hz, C_{sp}²), 140.1 (d, ${}^{3}J_{C,P}$ = 16.5 Hz, ArC), 152.6 (ArC) ppm. HRMS (ESI): MNa⁺, found 414.1811. C₂₁H₃₀NNaO₄P requires 414.1805.

Dimethyl (4-Fluorophenylamino)(2-(pent-1-ynyl)cyclohex-1-enyl)methylphosphonate (8i). Brownish solid, mp 97-98 °C. Yield 0.27 g, 35%. IR (KBr): v_{max} 3315 (NH), 2216 (C \equiv C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.03 (3H, t, J = 7.2 Hz, CH₃), 1.45–1.63 (6H, 2m (overlap.), C \equiv CCH₂CH₂, 2 × CH₂), 1.89–1.94 (1H, m, CHH), 2.15-2.18 (2H, m, CH₂), 2.26-2.28 (1H, m, CHH), 2.39 (2H, t, J = 7.2 Hz, C=CC<u>H₂</u>CH₂), 3.77 (3H, d, ${}^{3}J_{H,P} = 10.8$ Hz, OCH₃), 3.80 (3H, d, ${}^{3}J_{H,P} = 10.4$ Hz, OCH₃), 5.13 (1H, d, ${}^{2}J_{H,P} = 25.6$ Hz, C<u>H</u>NH), 6.59 (2H, dd, J = 8.8 Hz, ${}^{3}J_{HF} = 4.4$ Hz, ArH), 6.86 (2H, t, J = 8.8 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 13.5 (CH₃), 21.5 (CH₂), 22.0 ($2 \times$ CH_{2chex}), 22.4 (CH₂), 24.3 (d, ${}^{3}J_{C,P}$ = 1.4 Hz, CH₂), 30.7 (d, ${}^{4}J_{C,P}$ = 1.8 Hz, CH₂), 53.4 (d, ${}^{2}J_{C,P}$ = 6.8 Hz, OCH₃), 53.7 (d, ${}^{2}J_{C,P} = 7.0$ Hz, OCH₃), 55.0 (d, ${}^{1}J_{C,P} = 151.3$ Hz, CH), 79.9 (d, ${}^{4}J_{C,P}$ = 4.9 Hz, C_{sp}), 95.6 (d, ${}^{5}J_{C,P}$ = 2.0 Hz, C_{sp}), 114.5 (d, ${}^{3}J_{C,F}$ = 7.3 Hz, ArC), 115.6 (d, ${}^{2}J_{C,F} = 22.2$ Hz), 121.9 (d, ${}^{3}J_{C,P} = 12.6$ Hz, $C_{sp}{}^{2}$), 136.5 (d, ${}^{2}J_{C,P} = 3.5$ Hz, $C_{sp}{}^{2}$), 142.4 (dd, ${}^{3}J_{C,P} = 17.3$ Hz, ${}^{4}J_{C,F} =$ 1.3 Hz, ArC), 156.2 (d, ${}^{1}J_{C,F}$ = 234.4 Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 402.1598. C₂₀H₂₇FNNaO₃P requires 402.1605.

Dimethyl (2-(Hex-1-ynyl)cyclohex-1-enyl)(phenylamino)methylphosphonate (8j). Yellowish solid, mp 55–56 °C. Yield 0.37 g, 49%. IR (KBr): v_{max} 3514 (NH), 2214 (C=C) cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 0.97 (3H, t, J = 7.2 Hz, CH₃), 1.46–1.60 (8H, m, C=CCH₂CH₂CH₂, 2 × CH₂), 1.96–2.01 (1H, m, CHH), 2.18– 2.19 (2H, m, CH₂), 2.25–2.30 (1H, m, CHH), 2.43 (2H, t, J = 6.4 Hz, C=CCH₂CH₂CH₂CH₂), 3.78 (3H, d, ³J_{H,P} = 9.6 Hz, OCH₃), 3.80 (3H, d, ³J_{H,P} = 9.6 Hz, OCH₃), 5.20 (1H, d, ²J_{H,P} = 25.6 Hz, CHNH), 6.68 (2H, dd, J = 8.4; 0.8 Hz, ArH), 6.73 (1H, tt, J = 7.6; 1.2 Hz, ArH), 7.16 (2H, dd, J = 8.4; 0.8 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 13.6 (CH₃), 19.2 (CH₂), 22.0 (CH₂, 2 × CH_{2chex}), 24.4 (d, ³J_{C,P} = 1.5 Hz, CH₂), 30.8 (d, ⁴J_{C,P} = 1.8 Hz, CH₂), 31.0 (CH₂), 53.4 (d, ²J_{C,P} = 6.9 Hz, OCH₃), 53.7 (d, ²J_{C,P} = 7.2 Hz, OCH₃), 54.6 (d, ¹J_{C,P} = 150.7 Hz, CH), 79.9 (d, ⁴J_{C,P} = 4.8 Hz, C_{sp}), 95.6 (d, ⁵J_{C,P} = 2.0 Hz, C_{sp}), 113.6 (ArC), 118.2 (ArC), 121.5 (d, ³J_{C,P} = 12.6 Hz, C_{sp}²), 129.2 (ArC), 136.8 (d, ²J_{C,P} = 3.6 Hz, C_{sp}²), 146.2 (d, ³J_{C,P} = 16.0 Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 398.1858. C₂₁H₃₀NNaO₃P requires 398.1856.

Dimethyl (2-(Hex-1-ynyl)cyclohex-1-enyl)(4methoxyphenylamino)methylphosphonate (8k). Light brown solid, mp 72–71 °C. Yield 0.45 g, 56%. IR (KBr): v_{max} 3307 (NH), 2213 (C=C) cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 0.93 (3H, t, *J* = 7.2 Hz, CH₃), 1.43–1.60 (8H, m, C=CCH₂CH₂CH₂, 2 × CH₂), 1.93–1.98 (1H, m, C<u>H</u>H), 2.14–2.17 (2H, m, CH₂), 2.24–2.29 (1H, m, CH<u>H</u>), 2.41 (2H, t, *J* = 6.4 Hz, C=CCH₂CH₂CH₂CH₂), 3.73 (3H, s, OCH₃), 3.77 (3H, d, ³J_{H,P} = 10.4 Hz, OCH₃), 3.80 (3H, d, ³J_{H,P} = 10.4 Hz, OCH₃), 5.13 (1H, d, ²J_{H,P} = 25.6 Hz, C<u>H</u>NH), 6.63 (2H, d, *J* = 9.2 Hz, ArH), 6.75 (2H, d, *J* = 9.2 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 13.6 (CH₃), 19.2 (CH₂), 21.9 (CH₂), 22.0 (2 × CH_{2chex}), 24.4 (d, ³J_{C,P} = 1.4 Hz, CH₂), 30.8 (d, ⁴J_{C,P} = 1.8 Hz, CH₂), 31.0 (CH₂), 53.5 (d, ²J_{C,P} = 6.8 Hz, OCH₃), 53.6 (d, ²J_{C,P} = 7.1 Hz, OCH₃), 55.3 (d, ¹J_{C,P} = 151.1 Hz, CH), 55.6 (OCH₃), 79.9 (d, ⁴J_{C,P} = 4.9 Hz, C_{sp}), 95.5 (d, ⁵J_{C,P} = 2.0 Hz, C_{sp}), 114.7 (ArC), 114.9 (ArC), 121.6 (d, ³J_{C,P} = 12.6 Hz, C_{sp}²), 136.9 (d, ²J_{C,P} = 3.4 Hz, C_{sp}²), 140.1 (d, ³J_{C,P} = 16.9 Hz, ArC), 152.6 (ArC) ppm. HRMS (ESI): MNa⁺, found 428.1953. C₂₂H₃₂NNaO₄P requires 428.1961.

Dimethyl (2-(Cyclopropylethynyl)cyclohex-1-enyl)-(phenylamino)methylphosphonate (8l). Yellowish solid, mp 125–124 °C. Yield 0.26 g, 36%. IR (KBr): v_{max} 3308 (NH), 2207 (C=C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.74–0.77 (2H, m, CH(CH₂)₂), 0.85–0.89 (2H, m, CH(CH₂)₂), 1.51–1.58 (5H, m, CH(CH₂)₂, 2 × CH₂), 1.95–2.00 (1H, m, CHH), 2.15–2.17 (2H, m, CH₂), 2.21–2.28 (1H, m, CHH), 3.77 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 3.81 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 5.14 (1H, d, ²J_{H,P} = 25.6 Hz, CHNH), 6.65 (2H, d, J = 7.6 Hz, ArH), 6.74 (1H, t, J = 7.6 Hz, ArH), 7.33–7.35 (2H, dd, J = 8.4; 7.6 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 0.3 (<u>C</u>H(CH₂)₂), 8.8 (CH(<u>C</u>H₂)₂), 9.0 (CH-(<u>C</u>H₂)₂), 22.0 (2 × CH₂), 24.5 (d, ³J_{C,P} = 1.6 Hz, CH₂), 30.6 (d, ⁴J_{C,P} = 1.7 Hz, CH₂), 53.5 (d, ²J_{C,P} = 6.8 Hz, OCH₃), 53.7 (d, ²J_{C,P} = 7.1 Hz, OCH₃), 54.6 (d, ¹J_{C,P} = 150.8 Hz, CH), 74.9 (d, ⁴J_{C,P} = 5.0 Hz, C_{sp}), 98.9 (d, ⁵J_{C,P} = 2.0 Hz, C_{sp}), 113.6 (ArC), 118.2 (ArC), 121.3 (d, ³J_{C,P} = 12.4 Hz, C_{sp²}), 129.2 (ArC), 137.3 (d, ²J_{C,P} = 3.5 Hz, C_{sp²}), 146.3 (d, ³J_{C,P} = 15.7 Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 382.1542. C₂₀H₂₆NNaO₃P requires 382.1543

Dimethyl (2-(Cyclopropylethynyl)cyclohex-1-enyl)(4methoxyphenylamino)methylphosphonate (8m). Yellowish solid, mp 98–99 °C. Yield 0.45 g, 58%. IR (KBr): v_{max} 3306 (NH), 2213 (C=C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.72–0.76 (2H, m, CH(CH₂)₂), 0.85–0.89 (2H, m, CH(CH₂)₂), 1.41–1.58 (5H, m, CH(CH₂)₂, 2 × CH₂), 1.91–1.97 (1H, m, CHH), 2.13–2.16 (2H, m, CH₂), 2.23–2.28 (1H, m, CHH), 3.74 (3H, s, OCH₃), 3.76 (3H, d, ³J_{H,P} = 10.4 Hz, OCH₃), 3.81 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 5.07 (1H, d, ²J_{H,P} = 25.6 Hz, CHNH), 6.60 (2H, d, J = 8.8 Hz, ArH), 6.76 (2H, d, J = 9.2 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 0.3 (CH(CH₂)₂), 8.8 (CH(CH₂)₂), 9.0 (CH(CH₂)₂), 22.0 (2 × CH₂), 24.5 (CH₂), 30.6 (d, ⁴J_{C,P} = 1.8 Hz, CH₂), 53.5 (d, ²J_{C,P} = 6.9 Hz, OCH₃), 53.6 (d, ²J_{C,P} = 7.0 Hz, OCH₃), 55.2 (d, ¹J_{C,P} = 150.7 Hz, CH), 55.7 (OCH₃), 75.0 (d, ⁴J_{C,P} = 5.0 Hz, C_{sp}), 98.7 (d, ⁵J_{C,P} = 2.0 Hz, C_{sp}), 114.7 (ArC), 114.8 (ArC), 121.3 (d, ³J_{C,P} = 12.5 Hz, C_{sp²}), 137.5 (d, ²J_{C,P} = 3.6 Hz, C_{sp²}), 140.2 (d, ³J_{C,P} = 17.0 Hz, ArC), 152.5 (ArC) ppm. HRMS (ESI): MNa⁺, found 412.1640. C₂₁H₂₈NNaO₄P requires 412.1648.

Dimethyl (4-Chlorophenylamino)(2-(cyclopropylethynyl)cyclohex-1-enyl)methylphosphonate (8n). Brownish solid, mp 114–115 °C. Yield 0.44 g, 56%. IR (KBr): v_{max} 3295 (NH), 2212 (C=C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.71–0.75 (2H, m, CH(CH₂)₂), 0.86–0.89 (2H, m, CH(CH₂)₂), 1.41–1.47 (1H, m, CH(CH₂)₂), 1.49–1.56 (3H, m, CH₂), 1.88–1.93 (1H, m, C<u>H</u>H), 2.13–2.16 (2H, m, CH₂), 2.19–2.26 (1H, m, CH<u>H</u>), 3.76 (3H, d, ³J_{H,P} = 10.4 Hz, OCH₃), 3.80 (3H, d, ³J_{H,P} = 10.4 Hz, OCH₃), 5.07 (1H, d, ²J_{H,P} = 25.6 Hz, C<u>H</u>NH), 6.57 (2H, d, J = 9.2 Hz, ArH), 7.10 (2H, d, J = 8.8 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 0.3 (<u>C</u>H(CH₂)₂), 8.8 (CH(<u>C</u>H₂)₂), 9.0 (CH(<u>C</u>H₂)₂), 22.0 (2 × CH₂), 24.5 (d, ³J_{C,P} = 1.4 Hz, CH₂), 30.6 (d, ⁴J_{C,P} = 1.8 Hz, CH₂), 53.4 (d, ²J_{C,P} = 6.9 Hz, OCH₃), 53.7 (d, ²J_{C,P} = 7.0 Hz, OCH₃), 54.6 (d, ¹J_{C,P} = 151.1 Hz, CH), 74.8 (d, ⁴J_{C,P} = 4.9 Hz, C_{sp}), 99.1 (d, ⁵J_{C,P} = 2.0 Hz, C_{sp}), 114.7 (ArC), 121.7 (d, ³J_{C,P} = 12.5 Hz, C_{sp}²), 122.9 (ArC), 129.0 (ArC), 136.7 (d, ²J_{C,P} = 3.9 Hz, C_{sp}²), 144.9 (d, ³J_{C,P} = 16.3 Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 416.1150. C₂₀H₂₅ClNNaO₃P requires 416.1153.

Dimethyl (4-Chlorophenylamino)(2-(p-tolylethynyl)cyclohex-1-enyl)methylphosphonate (80). Yellowish solid, mp 112–113 °C. Yield 0.47 g, 53%. IR (KBr): v_{max} 3309 (NH), 2118 (C=C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.52–1.65 (4H, m, 2 × CH₂), 1.97–2.03 (1H, m, C<u>H</u>H), 2.31–2.34 (3H, m, CH<u>H</u>, CH₂), 2.36 (3H, s, CH₃), 3.79 (3H, d, ³J_{H,P} = 6.0 Hz, OCH₃), 3.82 (3H, d, ³J_{H,P} = 6.0 Hz, OCH₃), 5.22 (1H, d, ²J_{H,P} = 25.6 Hz, C<u>H</u>NH), 6.63 (2H, d, J = 8.8 Hz, ArH), 7.11 (2H, d, J = 8.8 Hz, ArH), 7.15 (2H, d, J = 7.6 Hz, ArH), 7.36 (2H, d, J = 8.0 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 21.4 (CH₃), 21.9 (CH₂), 22.0 (CH₂), 24.7 (d, ³J_{C,P} = 1.4 Hz, CH₂), 30.3 (d, ⁴J_{C,P} = 1.7 Hz, CH₂), 53.6 (d, ²J_{C,P} = 6.9 Hz, OCH₃), 53.8 (d, ²J_{C,P} = 7.2 Hz, OCH₃), 54.9 (d, ¹J_{C,P} = 150.9 Hz, CH), 87.7 (d, ⁴J_{C,P} = 5.1 Hz, C_{sp}), 95.0 (d, ⁵J_{C,P} = 2.2 Hz, C_{sp}), 114.7 (ArC), 120.0 (ArC), 121.4 (d, ³J_{C,P} = 12.4 Hz, C_{sp²}), 123.0 (ArC), 129.1 (ArC), 129.2 (ArC), 131.1 (ArC), 138.4 (d, ²J_{C,P} = 4.0 Hz, C_{sp²}), 138.5 (ArC), 144.9 (d, ³J_{C,P} = 16.3 Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 466.1307. C₂₄H₂₇ClNNaO₃P requires 466.1309.

Dimethyl (Phenylamino)(2-(phenylethynyl)phenyl)methylphosphonate (9a). White solid, mp 154–155 °C. Yield 0.34 g, 44%. IR (KBr): v_{max} 3348 (NH), 2212 (C=C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.44 (3H, d, ³J_{H,P} = 10.4 Hz, OCH₃), 3.85 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 5.59 (1H, d, ²J_{H,P} = 24.4 Hz, C<u>H</u>NH), 6.67–6.72 (3H, m, ArH), 7.09–7.13 (2H, m, ArH), 7.25-7.35 (2H, m, ArH), 7.38–7.41 (3H, m, ArH), 7.57–7.64 (4H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 52.9 (d, ¹J_{C,P} = 151.0 Hz, CH), 53.8 (d, ²J_{C,P} = 6.3 Hz, OCH₃), 53.9 (d, ²J_{C,P} = 6.2 Hz, OCH₃), 86.8 (d, ⁴J_{C,P} = 2.0 Hz, C_{sp}), 95.1 (C_{sp}), 113.8 (ArC), 118.6 (ArC), 122.9 (ArC), 123.2 (d, ${}^{3}J_{C,P} = 8.7$ Hz, ArC), 127.4 (d, ${}^{3}J_{C,P} = 4.4$ Hz, ArC), 127.9 (d, ${}^{5}J_{C,P} = 3.1$ Hz, ArC), 128.5 (ArC), 128.7 (ArC), 129.0 (d, ${}^{4}J_{C,P} = 3.1$ Hz, ArC), 129.2 (ArC), 131.5 (ArC), 132.2 (d, ${}^{4}J_{C,P} = 2.1$ Hz, ArC), 137.7 (d, ${}^{2}J_{C,P} = 1.8$ Hz, ArC), 145.7 (d, ${}^{3}J_{C,P} = 14.8$ Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 414.1228. $C_{23}H_{22}NNaO_{3}P$ requires 414.1230.

Dimethyl (4-Chlorophenylamino)(2-(phenylethynyl)phenyl)methylphosphonate (9b). Yellowish solid, mp 149–150 °C. Yield0.51 g, 60%. IR (KBr): v_{max} 3508 (NH), 2213 (C≡C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.44 (3H, d, ³J_{H,P} = 10.4 Hz, OCH₃), 3.85 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 4.44 (1H, br. s, NH), 5.53 (1H, d, ²J_{H,P} = 24.4 Hz, C<u>H</u>NH), 6.59 (2H, d, J = 8.8 Hz, ArH), 7.05 (2H, d, J = 8.8 Hz, ArH), 7.28–7.35 (2H, m, ArH), 7.38–7.40 (3H, m, ArH), 7.57–7.61 (4H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 53.0 (d, ¹J_{C,P} = 151.5 Hz, CH), 53.8 (d, ²J_{C,P} = 6.9 Hz, OCH₃), 53.9 (d, ²J_{C,P} = 7.0 Hz, OCH₃), 86.7 (d, ⁴J_{C,P} = 2.0 Hz, C_{sp}), 95.3 (C_{sp}), 114.9 (ArC), 122.8 (ArC), 123.2 (ArC), 123.2 (d, ⁶J_{C,P} = 7.0 Hz, ArC), 127.3 (d, ³J_{C,P} = 4.3 Hz, ArC), 128.0 (d, ⁵J_{C,P} = 3.0 Hz, ArC), 128.5 (ArC), 128.8 (ArC), 129.0 (d, ⁴J_{C,P} = 3.1 Hz, ArC), 129.1 (ArC), 131.5 (ArC), 132.3 (d, ⁴J_{C,P} = 2.2 Hz, ArC), 137.2 (d, ²J_{C,P} = 2.1 Hz, ArC), 144.4 (d, ³J_{C,P} = 15.1 Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 448.0836. C₂₃H₂₁ClNNaO₃P requires 448.0840.

Dimethyl (4-Methoxyphenylamino)(2-((trimethylsilyl)ethynyl)phenyl)methylphosphonate (9c-TMS). Yellowish solid, mp 115–116 °C. Yield 0.59 g, 71%. IR (KBr): v_{max} 2157 (C=C), 3287 (NH) cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 0.30 (9H, s, CH₃), 3.43 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 3.68 (3H, s, OCH₃), 3.84 (3H, d, ³J_{H,P} = 10.4 Hz, OCH₃), 5.46 (1H, d, ²J_{H,P} = 24.8 Hz, C<u>H</u>NH), 6.62 (2H, d, J = 8.8 Hz, ArH), 6.70 (2H, d, J = 9.2 Hz, ArH), 7.20 (1H, tt, J = 7.6 Hz; 1.6 Hz, ArH), 7.30 (1H, t, J = 7.6 Hz, ArH), 7.47 (1H, d, J = 7.6 Hz, ArH), 7.58 (1H, d, J = 7.2 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 0.1 (CH₃), 53.4 (d, ¹J_{C,P} = 150.2 Hz, CH), 53.7 (d, ²J_{C,P} = 6.1 Hz, OCH₃), 53.8 (d, ²J_{C,P} = 6.2 Hz, OCH₃), 55.6 (OCH₃), 100.3 (C_{sp}), 102.7 (C_{sp}), 114.7 (ArC), 115.2 (ArC), 123.2 (d, ³J_{C,P} = 7.5 Hz, ArC), 127.4 (ArC), 127.7 (d, ⁵J_{C,P} = 2.4 Hz, ArC), 129.2 (d, ⁴J_{C,P} = 3.0 Hz, ArC), 132.3 (d, ⁴J_{C,P} = 1.9 Hz, ArC), 138.1 (ArC), 139.4 (ArC), 152.9 (ArC) ppm. HRMS (ES): MNa⁺, found 440.1419. C₂₁H₂₈NNaO₄PSi requires 440.1417.

Dimethyl (2-Ethynylphenyl)(4-methoxyphenylamino)methylphosphonate (9c). This compound was synthesized from 9c-TMS by treating with 2 equiv of $KF_2 \cdot H_2O$ in methanol at room temperature for 2 h. After evaporation of solvent, the residue was purified by column chromatography. White solid, mp 171-172 °C. Yield 0.38 g, 78%. IR (KBr): v_{max} 3504 (NH), 2101 (C=C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.44 (4H, d and s (overlap.), ${}^{3}J_{H,P} = 10.8$ Hz, OCH₃, CH), 3.68 (3H, s, OCH₃), 3.85 (3H, d, ³J_{H,P} = 10.8 Hz, OCH₃), 5.44 (1H, d, ${}^{2}J_{H,P}$ = 24.0 Hz, C<u>H</u>NH), 6.64 (2H, d, J = 8.8 Hz, ArH), 6.69 (2H, d, J = 9.2 Hz, ArH), 7.24 (1H, tt, J = 7.6 Hz; 1.6 Hz, ArH), 7.34 (1H, t, J = 7.2 Hz, ArH), 7.52 (1H, d, J = 7.6 Hz, ArH), 7.63 (1H, d, J = 7.6 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 53.7 (d, ${}^{1}J_{C,P}$ = 151.1 Hz, CH), 53.8 (d, ${}^{2}J_{C,P}$ = 7.0 Hz, OCH₃), 54.0 (d, ${}^{2}J_{C,P}$ = 6.8 Hz, OCH₃), 55.6 (OCH₃), 81.2 (d, ${}^{4}J_{C,P}$ = 1.9 Hz, C_{sp}), 82.8 (C_{sp}), 114.7 (ArC), 115.7 (ArC), 122.2 (d, ${}^{3}J_{C,P}$ = 7.2 Hz, ArC), 127.5 (d, ${}^{3}J_{C,P}$ = 4.2 Hz, ArC), 127.9 (d, ${}^{5}J_{C,P}$ = 3.0 Hz, ArC), 129.5 (d, ${}^{4}J_{C,P}$ = 3.0 Hz, ArC), 132.9 (d, ${}^{4}J_{C,P}$ = 2.1 Hz, ArC), 138.0 (ArC), 138.9 (ArC), 153.2 (d, ${}^{6}J_{C,P}$ = 1.2 Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 368.1022. C₁₈H₂₀NNaO₄P requires 368.1022.

Dimethyl (1-Benzyl³-2-(phenylethynyl)-1*H*-indol-3-yl)-(phenylamino)methylphosphonate (19a). Yellowish solid, mp156–157 °C. Yield 0.44 g, 42%. IR (KBr): v_{max} 3316 (NH), 2214 (C=C) cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 3.50 (3H, d, ³J_{H,P} = 10.4 Hz, OCH₃), 3.88 (3H, d, ³J_{H,P} = 10.4 Hz, OCH₃), 5.47 (1H, d, ²J_{H,P} = 24.4 Hz, C<u>H</u>NH), 5.47 (2H, s, NCH₂), 6.71 (1H, t, *J* = 7.2 Hz, ArH), 6.81 (2H, d, *J* = 8.0 Hz, ArH), 7.09- 7.26 (10H, m, ArH), 7.40– 7.41 (3H, m, ArH), 7.55–7.58 (2H, m, ArH), 8.03 (1H, d, *J* = 6.4 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 48.0 (NCH₂), 49.4 (d, ¹J_{C,P} = 160.2 Hz, CH), 53.6 (d, ²J_{C,P} = 7.0 Hz, OCH₃), 53.7 (d, ²J_{C,P} = 7.0 Hz, OCH₃), 79.6 (d, ⁴J_{C,P} = 3.5 Hz, C_{sp}), 99.6 (d, ⁵J_{C,P} = 1.5 Hz, $\rm C_{sp}),\,110.1$ (ArC), 114.1 (2 × ArC), 114.9 (d, J = 1.6 Hz, ArC), 118.4 (ArC), 120.7 (ArC), 121.7 (d, ${}^3J_{\rm C,P}$ = 10.1 Hz, ArC), 122.1 (ArC), 123.7 (ArC), 125.9 (d, ${}^2J_{\rm C,P}$ = 3.0 Hz, ArC), 126.5 (ArC), 127.4 (ArC), 128.5 (ArC), 128.6 (ArC), 128.9 (ArC), 129.0 (ArC), 131.4 (ArC), 136.9 (ArC), 137.3 (ArC), 146.3 (d, ${}^3J_{\rm C,P}$ = 14.9 Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 543.1807. $\rm C_{32}H_{29}N_2NaO_3P$ requires 543.1808.

Dimethyl (1-Benzyl-2-(hex-1-ynyl)-1H-indol-3-yl)(4methoxyphenylamino)methylphosphonate (19b). Yellowish solid, mp 132–133 °C. Yield 0.24 g, 46%. IR (KBr): v_{max} 3480 (NH), 2214 (C=C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.93 (3H, t, J = 7.2 Hz, CH₃), 1.46 (2H, sext., J = 7.2 Hz, C=CCH₂CH₂CH₂CH₂), 1.58–1.65 (2H, m, C \equiv CCH₂CH₂CH₂), 2.55 (2H, t, J = 7.2 Hz, C \equiv $CCH_2CH_2CH_2)$, 3.46 (3H, d, ${}^{3}J_{H,P}$ = 10.4 Hz, OCH₃), 3.68 (3H, s, OCH_3 , 3.85 (3H, d, ${}^{3}J_{H,P}$ = 10.8 Hz, OCH_3), 5.25 (1H, d, ${}^{2}J_{H,P}$ = 24.0 Hz, CHNH), 5.37 (2H, s, NCH2), 6.53-6.72 (4H, m, ArH), 6.96-6.98 (2H, m, ArH), 7.11- 7.12 (3H, m, ArH), 7.20-7.21 (3H, m, ArH), 7.94–7.97 (1H, m, ArH) ppm. 13 C NMR (100 MHz, CDCl₂): δ 13.6 (CH₃), 19.5 (CH₂), 21.9 (CH₂), 30.6 (CH₂), 47.8 (NCH₂), 50.5 (d, ${}^{1}J_{C,P}$ = 161.0 Hz, CH), 53.6 (d, ${}^{2}J_{C,P}$ = 5.4 Hz, OCH₃), 53.7 (d, ${}^{2}J_{C,P}$ = 5.5 Hz, OCH₃), 55.6 (OCH₃), 71.1 (d, ${}^{4}J_{C,P}$ = 3.2 Hz, C_{sp}), 101.1 (d, ${}^{5}J_{C,P} = 1.4$ Hz, C_{sp}), 109.9 (ArC), 113.4 (ArC), 114.5 (ArC), 115.8 (ArC), 120.4 (ArC), 120.6 (ArC), 122.9 (d, ${}^{3}J_{C,P} = 10.5$ Hz, ArC), 123.1 (ArC), 125.8 (d, ${}^{2}J_{C,P}$ = 2.7 Hz, ArC), 126.3 (ArC), 127.2 (ArC), 128.5 (ArC), 136.4 (ArC), 137.5 (ArC), 140.3 (d, ${}^{3}J_{C,P}$ = 15.9 Hz, ArC), 152.8 (ArC) ppm. HRMS (ESI): MNa⁺, found 553.2218. C₃₁H₃₅N₂NaO₄P requires 553.2227.

Dimethyl (1-Benzyl-2-(cyclopropylethynyl)-1H-indol-3-yl)-(phenylamino)methylphosphonate (19c). Yellowish solid, mp 106–107 °C. Yield 0.31 g, 32%. IR (KBr): $v_{\rm max}$ 3314 (NH), 2219 (C≡C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.16–1.19 (2H, m, $CH(CH_2)_2)$, 1.29–1.32 (2H, m, $CH(CH_2)_2)$, 1.89–1.95 (1H, m, $CH(CH_2)_2$, 3.78 (3H, d, ${}^{3}J_{H,P}$ = 10.8 Hz, OCH₃), 4.18 (3H, d, ${}^{3}J_{H,P}$ = 10.8 Hz, OCH₃), 5.65 (1H, d, ${}^{2}J_{H,P} = 24.4$ Hz, CHNH), 5.70 (2H, s, AL) NCH₂), 7.03 (1H, t, J = 7.2 Hz, ArH), 7.08 (2H, d, J = 8.0 Hz, ArH), 7.34- 7.57 (10H, m, ArH), 8.27-8.29 (1H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 0.5 (<u>C</u>H(CH₂)₂), 9.3 (2 × CH(<u>C</u>H₂)₂), 47.8 (NCH₂), 49.3 (d, ${}^{1}J_{C,P}$ = 160.7 Hz, CH), 53.6 (d, ${}^{2}J_{C,P}$ = 6.9 Hz, OCH₃), 53.7 (d, ${}^{2}J_{C,P}$ = 6.9 Hz, OCH₃), 65.8 (d, ${}^{4}J_{C,P}$ = 3.3 Hz, C_{sp}), 104.5 (d, ${}^{4}J_{C,P} = 1.1$ Hz, C_{sp}), 110.0 (ArC), 113.8 (ArC), 114.1 (2 × ArC), 118.4 (ArC), 120.4 (ArC), 122.6 (d, ${}^{3}J_{C,P} = 10.4$ Hz, ArC), 123.2 (ArC), 125.8 (d, ${}^{2}J_{C,P} = 2.8$ Hz, ArC), 126.4 (ArC), 127.3 (ArC), 128.5 (ArC), 128.9 (ArC), 136.4 (ArC), 137.5 (ArC), 146.4 (d, ${}^{3}J_{C,P}$ = 15.0 Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 507.1793. C₂₉H₂₉N₂NaO₃P requires 507.1808.

General Procedure for the Preparation of Compounds 10 and 14. To a solution of the corresponding acetylenic α anilinomethylphosphonate 7 were added 8 (1 mmol) in dry chloroform (5 mL) and potassium *tert*-butanoate (0.112 g, 1 mmol), together with gold(III) bromide (43.7 mg, 0.1 mmol). The resulting solution was stirred at room temperature. When the completion of the reaction was observed by TLC (after 0.5–2 h), the solution was evaporated under reduced pressure, and the residue was purified by flash column chromatography eluting with hexane—ethyl acetate mixtures.

Dimethyl 3-Benzyl-2-phenyl-2,4,5,6-tetrahydrocyclopenta-[c]pyrrol-1-ylphosphonate (10a). Yellowish oil. Yield 0.37 g, 98%. ¹H NMR (400 MHz, CDCl₃): δ 2.24–2.32 (2H, m, CH₂CH₂CH₂), 2.35–2.38 (2H, m, CH₂CH₂CH₂), 2.84–2.87 (2H, m, CH₂CH₂CH₂), 3.42 (6H, d, ³J_{H,P} = 11.2 Hz, 2 × OCH₃), 3.65 (2H, br. s, CH₂), 6.91–6.93 (2H, m, ArH), 7.12–7.21 (5H, m, ArH), 7.35–7.39 (3H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 24.8 (CH₂), 26.6 (CH₂), 30.3 (CH₂), 32.3 (CH₂), 52.0 (d, ²J_{C,P} = 5.6 Hz, OCH₃), 110.2 (d, ¹J_{C,P} = 234.2 Hz, C-sp²), 126.0 (ArC), 128.1 (ArC), 128.3 (ArC), 128.5 (ArC), 128.8 (ArC), 129.4 (d, ³J_{C,P} = 14.2 Hz, C-sp²), 131.5 (d, ⁴J_{C,P} = 8.5 Hz, C-sp²), 138.5 (ArC), 138.7 (ArC), 144.5 (d, ²J_{C,P} = 17.4 Hz, C-sp²) ppm. HRMS (ESI): MNa⁺, found 404.1388. C₂₂H₂₄NNaO₃P requires 404.1386.

Dimethyl 3-Benzyl-2-(4-methoxyphenyl)-2,4,5,6tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (10b). Yellowish oil. Yield 0.30 g, 74%. ¹H NMR (400 MHz, CDCl₃): δ 2.23–2.30 (2H, m, CH₂CH₂CH₂), 2.34–2.37 (2H, m, CH₂CH₂CH₂), 2.82–2.86 (2H, m, CH₂CH₂CH₂), 3.51 (6H, d, ³J_{H,P} = 11.2 Hz, 2 × OCH₃), 3.63 (2H, br. s, CH₂), 3.82 (3H, s, OCH₃), 6.86 (2H, d, ³J = 9.2 Hz, ArH), 6.92–6.94 (2H, m, ArH), 7. Ten (2H, d, J = 9.2 Hz, ArH), 7.14–7.21 (3H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 24.8 (CH₂), 26.6 (CH₂), 30.3 (CH₂), 32.3 (CH₂), 52.1 (d, ²J_{C,P} = 5.5 Hz, OCH₃), 55.3 (OCH₃), 110.1 (d, ¹J_{C,P} = 234.7 Hz, C-sp²), 113.4 (ArC), 126.0 (ArC), 128.1 (ArC), 128.6 (ArC), 129.1 (d, ³J_{C,P} = 14.2 Hz, C-sp²), 129.8 (ArC), 131.5 (ArC), 131.9 (d, ⁴J_{C,P} = 8.5 Hz, C-sp²), 138.6 (ArC), 144.2 (d, ²J_{C,P} = 17.5 Hz, C-sp²), 159.2 (ArC) ppm. HRMS (ESI): MNa⁺, found 434.1497. C₂₃H₂₆NNaO₄P requires 434.1492.

Dimethyl 3-Benzyl-2-(4-ethoxyphenyl)-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (10c). Yellowish oil. Yield 0.32 g, 76%. ¹H NMR (400 MHz, CDCl₃): δ 1.42 (3H, t, ³J = 6.8 Hz, OCH₂CH₃), 2.23–2.31 (2H, m, CH₂CH₂CH₂), 2.34–2.37 (2H, m, CH₂CH₂CH₂), 2.82–2.86 (2H, m, CH₂CH₂CH₂), 3.50 (6H, d, ³J_{H,P} = 11.2 Hz, 2 × OCH₃), 3.63 (2H, br. s, CH₂), 4.04 (2H, q, ³J = 6.8 Hz, OCH₂CH₃), 6.85 (2H, d, ³J = 8.8 Hz, ArH), 6.93–6.95 (2H, m, ArH), 7. Ten (2H, d, ³J = 8.8 Hz, ArH), 7.14–7.21 (3H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 14.7 (CH₃), 24.8 (CH₂), 26.6 (CH₂), 30.3 (CH₂), 32.3 (CH₂), 52.0 (d, ³J_{C,P} = 5.5 Hz, OCH₃), 63.5 (OCH₂CH₃), 110.2 (d, ¹J_{C,P} = 234.4 Hz, C-sp²), 113.9 (ArC), 126.0 (ArC), 128.1 (ArC), 128.6 (ArC), 129.0 (d, ³J_{C,P} = 14.3 Hz, C-sp²), 129.8 (ArC), 131.3 (ArC), 131.8 (d, ⁴J_{C,P} = 8.6 Hz, C-sp²), 138.6 (ArC), 144.2 (d, ²J_{C,P} = 17.5 Hz, C-sp²), 158.6 (ArC) ppm. HRMS (ESI): MNa⁺, found 448.1649. C₂₄H₂₈NNaO₄P requires 448.1648.

Dimethyl 3-Benzyl-2-(4-fluorophenyl)-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (10d). Yellowish oil. Yield 0.32 g, 86%. ¹H NMR (400 MHz, CDCl₃): δ 2.25–2.33 (2H, m, CH₂CH₂CH₂), 2.38–2.41 (2H, m, CH₂CH₂CH₂), 2.82–2.86 (2H, m, CH₂CH₂CH₂), 3.52 (6H, d, ³J_{H,P} = 11.2 Hz, 2 × OCH₃), 3.64 (2H, br. s, CH₂), 6.89–6.91 (2H, m, ArH), 7.01–7.05 (2H, m, ArH), 7.12–7.21 (5H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 24.8 (CH₂), 26.6 (CH₂), 30.4 (CH₂), 32.3 (CH₂), 52.1 (d, ²J_{C,P} = 5.6 Hz, OCH₃), 110.4 (d, ¹J_{C,P} = 234.6 Hz, C-sp²), 115.2 (d, J_{C,P} = 22.6 Hz, ArC), 126.1 (ArC), 128.2 (ArC), 128.5 (ArC), 129.6 (d, ³J_{C,P} = 14.2 Hz, C-sp²), 130.5 (d, ³J_{C,F} = 8.7 Hz, ArC), 131.7 (d, ⁴J_{C,P} = 8.4 Hz, C-sp²), 134.7 (d, ⁴J_{C,F} = 3.1 Hz, ArC), 138.4 (ArC), 144.5 (d, ²J_{C,P} = 17.3 Hz, C-sp²), 162.2 (d, ¹J_{C,F} = 246.6 Hz, ArH) ppm. HRMS (ESI): MH⁺, found 400.1473. C₂₂H₂₄FNO₃P requires 400.1472.

Dimethyl 3-Benzyl-2-(4-chlorophenyl)-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (10e). Yellowish oil. Yield 0.3 g, 73%. ¹H NMR (400 MHz, CDCl₃): δ 2.25–2.32 (2H, m, CH₂CH₂CH₂), 2.37–2.40 (2H, m, CH₂CH₂CH₂), 2.82–2.86 (2H, m, CH₂CH₂CH₂), 3.52 (6H, d, ³J_{H,P} = 11.2 Hz, 2 × OCH₃), 3.64 (2H, br. s, CH₂), 6.90–6.92 (2H, m, ArH), 7. Eleven (2H, d, ³J = 8.8 Hz, ArH), 7.15–7.22 (3H, m, ArH), 7.32 (2H, d, ³J = 8.8 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 24.8 (CH₂), 26.6 (CH₂), 30.4 (CH₂), 32.3 (CH₂), 52.1 (d, ²J_{C,P} = 5.6 Hz, OCH₃), 110.3 (d, ¹J_{C,P} = 234.2 Hz, C-sp²), 126.2 (ArC), 128.3 (ArC), 128.5 (ArC), 128.6 (ArC), 129.8 (d, ³J_{C,P} = 14.1 Hz, C-sp²), 130.1 (ArC), 131.5 (d, ⁴J_{C,P} = 8.4 Hz, C-sp²), 134.2 (ArC), 137.3 (ArC), 138.3 (ArC), 144.7 (d, ²J_{C,P} = 17.5 Hz, C-sp²) ppm. HRMS (ESI): MH⁺, found 416.1185. C₂₂H₄₄ClNO₃P requires 416.1182.

Dimethyl 3-(4-Methylbenzyl)-2-phenyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (10f). Yellowish oil. Yield 0.23 g, 58%. ¹H NMR (400 MHz, CDCl₃): δ 2.26–2.31 (5H, m, CH₂CH₂CH₂ and CH₃), 2.33–2.37 (2H, m, CH₂CH₂CH₂), 2.83–2.87 (2H, m, CH₂CH₂CH₂), 3.49 (6H, d, ³J_{H,P} = 11.2 Hz, 2 × OCH₃), 3.60 (2H, br. s, CH₂), 6.82 (2H, d, ³J = 8.0 Hz, ArH), 7.00 (2H, d, ³J = 7.6 Hz, ArH), 7.20–7.22 (2H, m, ArH), 7.37–7.39 (3H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 20.9 (CH₃), 24.8 (CH₂), 26.5 (CH₂), 30.3 (CH₂), 31.8 (CH₂), 52.0 (d, ²J_{C,P} = 5.5 Hz, OCH₃), 109.9 (d, ¹J_{C,P} = 234.7 Hz, C-sp²), 128.3 (ArC), 128.3 (ArC), 128.4 (ArC), 128.7 (ArC), 128.8 (ArC), 129.2 (d, ³J_{C,P} = 14.2 Hz, C-sp²), 131.8 (d, ⁴J_{C,P} = 8.5 Hz, C-sp²), 135.4 (ArC), 135.4 (ArC), 138.7 (ArC), 144.5 (d, ²J_{C,P} = 17.5 Hz, C-sp²) ppm. HRMS (ESI): MNa⁺, found 418.1541. C₂₃H₂₆NNaO₃P requires 418.1543.

Dimethyl 2-(4-Methoxyphenyl)-3-(4-methylbenzyl)-2,4,5,6tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (10 g). Yellowish oil. Yield 0.32 g, 76%. ¹H NMR (400 MHz, CDCl₃): δ 2.25–2.30 (5H, m, CH₂CH₂CH₂ and CH₃), 2.33–2.37 (2H, m, CH₂CH₂CH₂), 2.81–2.85 (2H, m, CH₂CH₂CH₂), 3.51 (6H, d, ³J_{H,P} = 11.2 Hz, 2 × OCH₃), 3.58 (2H, br. s, CH₂), 3.83 (3H, s, OCH₃), 6.83 (2H, d, ³J = 8.0 Hz, ArH), 6.87 (2H, d, ³J = 8.8 Hz, ArH), 7.01 (2H, d, ³J = 8.0 Hz, ArH), 7.12 (2H, d, ³J = 8.8 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 20.9 (CH₃), 24.9 (CH₂), 26.6 (CH₂), 30.3 (CH₂), 31.8 (CH₂), 52.1 (d, ²J_{C,P} = 5.5 Hz, OCH₃), 55.3 (OCH₃), 110.0 (d, ¹J_{C,P} = 234.3 Hz, C-sp²), 113.4 (ArC), 128.5 (ArC), 128.8 (ArC), 128.9 (ArC), 129.1 (ArC), 129.8 (ArC), 131.5 (ArC), 132.1 (d, ⁴J_{C,P} = 8.5 Hz, C-sp²), 135.5 (ArC), 144.3 (d, ²J_{C,P} = 17.6 Hz, C-sp²), 159.2 (ArC) ppm. HRMS (ESI): MNa⁺, found 448.1643. C₂₄H₂₈NNaO₄P requires 448.1648.

Dimethyl 3-(4-Ethylbenzyl)-2-(4-methoxyphenyl)-2,4,5,6tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (10h). Yellowish oil. Yield 0.42 g, 96%. ¹H NMR (400 MHz, CDCl₃): δ 1.19 (3H, t, ³J = 7.6 Hz, CH₃), 2.23–2.30 (2H, m, CH₂CH₂CH₂), 2.35–2.38 (2H, m, <u>CH₂CH₂CH₂)</u>, 2.58 (2H, q, ³J = 7.6 Hz, <u>CH₂CH₃)</u>, 2.81–2.85 (2H, m, CH₂CH₂CH₂), 3.50 (6H, d, ³J_{H,P} = 11.2 Hz, 2 × OCH₃), 3.59 (2H, br. s, CH₂), 3.83 (3H, s, OCH₃), 6.84–6.87 (4H, m, ArH), 7.03 (2H, d, ³J = 8.4 Hz, ArH), 7.11 (2H, d, ³J = 9.2 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 15.6 (CH₃), 24.8 (CH₂), 26.6 (CH₂), 28.3 (CH₂), 30.3 (CH₂), 31.8 (CH₂), 52.1 (d, ²J_{C,P} = 5.5 Hz, OCH₃), 55.3 (OCH₃), 109.8 (d, ¹J_{C,P} = 235.1 Hz, C-sp²), 113.4 (ArC), 127.6 (ArC), 128.5 (ArC), 129.0 (d, ³J_{C,P} = 14.2 Hz, C-sp²), 129.8 (ArC), 131.5 (ArC), 132.3 (d, ⁴J_{C,P} = 8.6 Hz, C-sp²), 135.8 (ArC), 141.9 (ArC), 144.4 (d, ²J_{C,P} = 17.5 Hz, C-sp²), 159.2 (ArC) ppm. HRMS (ESI): MNa⁺, found 462.1808. C₂₅H₃₀NNaO₄P requires 462.1805.

Dimethyl 3-Pentyl-2-phenyl-2,4,5,6-tetrahydrocyclopenta-[c]pyrrol-1-ylphosphonate (10i). Yellowish oil. Yield 0.31 g, 86%. ¹H NMR (400 MHz, CDCl₃): δ 0.79 (3H, t, ³J = 7.2 Hz, CH₂(CH₂)₃<u>CH₃</u>), 1.09–1.21 (4H, m, CH₂CH₂(<u>CH₂</u>)₂CH₃), 1.42 (2H, quint, ³J = 7.6 Hz, CH₂<u>CH₂(CH₂</u>)₂CH₃), 2.27 (2H, t, ³J = 7.6 Hz, CH₂CH₂(CH₂)₂CH₃), 2.36 (2H, quint, ³J = 7.2 Hz, CH₂CH₂CH₂), 2.65 (2H, t, ³J = 7.2 Hz, CH₂CH₂CH₂CH₂), 2.684 (2H, td, ³J_{HH} = 6.8 Hz, ⁴J_{HP} = 1.2 Hz, CH₂CH₂CH₂<u>CH₂</u>), 3.48 (6H, d, ³J_{HP} = 11.2 Hz, 2 × OCH₃), 7.26–7.28 (2H, m, ArH), 7.39–7.44 (3H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 13.8 (CH₃), 22.1 (CH₂), 25.1 (CH₂), 26.0 (CH₂), 26.5 (CH₂), 27.8 (CH₂), 30.4 (CH₂), 31.3 (CH₂), 51.9 (d, ³J_{C,P} = 5.5 Hz, OCH₃), 109.3 (d, ¹J_{C,P} = 234.8 Hz, Csp²), 128.0 (d, ³J_{C,P} = 14.4 Hz, C-sp²), 128.2 (ArC), 128.3 (ArC), 128.6 (ArC), 133.6 (d, ⁴J_{C,P} = 8.4 Hz, C-sp²), 138.9 (ArC), 144.6 (d, ²J_{C,P} = 17.5 Hz, C-sp²) ppm. HRMS (ESI): MNa⁺, found 384.1697. C₂₀H₂₈NNaO₃P requires 384.1699.

Dimethyl 2-(4-Methoxyphenyl)-3-pentyl-2,4,5,6tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (10j). Yellowish oil. Yield 0.3 g, 78%. ¹H NMR (400 MHz, CDCl₃): δ 0.80 (3H, t, ³J = 6.8 Hz, CH₂(CH₂)₃CH₃), 1.13–1.22 (4H, m, CH₂CH₂(CH₂)₂CH₃), 1.42 (2H, quint, ³J = 7.6 Hz, CH₂CH₂(CH₂)₂CH₃), 2.26 (2H, t, ³J = 8.0 Hz, CH₂CH₂(CH₂)₂CH₃), 2.32 (2H, quint, ³J = 7.2 Hz, CH₂CH₂CH₂), 2.63 (2H, t, ³J = 7.2 Hz, CH₂CH₂CH₂), 2.82–2.86 (2H, m, CH₂CH₂CH₂), 3.50 (6H, d, ³J_{H,P} = 11.2 Hz, 2 × OCH₃), 3.83 (3H, s, OCH₃), 6.91 (2H, d, ³J = 8.8 Hz, ArH), 7.18 (2H, d, ³J = 8.8 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 13.8 (CH₃), 22.2 (CH₂), 25.2 (CH₂), 26.0 (CH₂), 26.5 (CH₂), 27.9 (CH₂), 30.4 (CH₂), 31.3 (CH₂), 52.0 (d, ²J_{C,P} = 5.5 Hz, OCH₃), 55.3 (OCH₃), 109.4 (d, ¹J_{C,P} = 235.0 Hz, C-sp²), 113.4 (ArC), 127.8 (d, ³J_{C,P} = 14.3 Hz, C-sp²), 129.7 (ArC), 131.8 (ArC), 134.0 (d, ⁴J_{C,P} = 8.4 Hz, C-sp²), 144.3 (d, ²J_{C,P} = 17.6 Hz, C-sp²), 159.1 (ArC) ppm. HRMS (ESI): MNa⁺, found 414.1806. C₂₁H₃₀NNaO₄P requires 414.1805.

Dimethyl 2-(4-Fluorophenyl)-3-pentyl-2,4,5,6tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (10k). Yellowish oil. Yield 0.3 g, 80%. ¹H NMR (400 MHz, CDCl₃): δ 0.81 (3H, t, ³J = 6.8 Hz, CH₂(CH₂)₃CH₃), 1.10–1.22 (4H, m, CH₂CH₂(CH₂)₂CH₃), 1.42 (2H, quint, ³J = 7.6 Hz, CH₂CH₂(CH₂)₂CH₃), 2.26 (2H, t, ³J = 7.6 Hz, CH₂CH₂(CH₂)₂CH₃), 2.33 (2H, quint, ³J = 6.8 Hz, CH₂CH₂CH₂), 2.63 (2H, t, ³J = 6.8 Hz, <u>CH₂CH₂CH₂), 2.83 (2H, td, ${}^{3}J_{HH} = 7.0$ Hz, ${}^{4}J_{HP} = 1.6$ Hz, CH₂CH₂CH₂), 3.52 (6H, d, ${}^{3}J_{H,P} = 11.2$ Hz, 2 × OCH₃), 7.07–7.12 (2H, m, ArH), 7.23–7.26 (2H, m, ArH) ppm. 13 C NMR (100 MHz, CDCl₃): δ 13.8 (CH₃), 22.2 (CH₂), 25.1 (CH₂), 26.0 (CH₂), 26.5 (CH₂), 27.9 (CH₂), 30.4 (CH₂), 31.4 (CH₂), 52.1 (d, ${}^{2}J_{C,P} = 5.5$ Hz, OCH₃), 109.4 (d, ${}^{1}J_{C,P} = 235.8$ Hz, C-sp²), 115.3 (d, ${}^{2}J_{C,F} = 22.6$ Hz, ArC), 128.3 (d, ${}^{3}J_{C,P} = 14.3$ Hz, C-sp²), 130.4 (d, ${}^{3}J_{C,F} = 8.7$ Hz, ArC), 133.9 (d, ${}^{4}J_{C,P} = 8.2$ Hz, C-sp²), 134.9 (d, ${}^{4}J_{C,F} = 3.1$ Hz, ArC), 144.8 (d, ${}^{2}J_{C,P} = 17.5$ Hz, C-sp²), 162.1 (d, ${}^{1}J_{C,F} = 246.5$ Hz, ArC) ppm. HRMS (ESI): MH⁺, found 380.1791. C₂₀H₂₈FNO₃P requires 380.1785.</u>

Dimethyl 2-(4-Chlorophenyl)-3-pentyl-2,4,5,6tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (10l). Yellowish oil. Yield 0.3 g, 76%. ¹H NMR (400 MHz, $CDCl_3$): δ 0.81 (3H, t, ${}^{3}J = 6.8$ Hz, $CH_{2}(CH_{2})_{3}CH_{3}$, 1.12-1.21 (4H, m, $CH_2CH_2(CH_2)_2CH_3$, 1.42 (2H, quint, ³J = 7.6 Hz, $CH_2CH_2(CH_2)_2CH_3$, 2.26 (2H, t, ³J = 7.6 Hz, $CH_2CH_2(CH_2)_2CH_3$), 2.33 (2 \overline{H} , quint, ³J = 7.2 Hz, CH₂CH₂CH₂), 2.64 (2H, t, ³J = 7.2 Hz, <u>CH</u>₂CH₂CH₂), 2.83 (2H, td, ${}^{3}J_{HH} = 7.0$ Hz, ${}^{4}J_{HP} = 1.6$ Hz, $CH_2CH_2CH_2$), 3.52 (6H, d, ${}^{3}J_{H,P}$ = 11.2 Hz, 2 × OCH₃), 7.21 (2H, d, ${}^{3}J$ = 8.8 Hz, ArH), 7.39 (2H, d, ${}^{3}J$ = 8.8 Hz, ArH) ppm. ${}^{13}C$ NMR (100 MHz, CDCl₃): δ 13.8 (CH₃), 22.2 (CH₂), 25.1 (CH₂), 26.0 (CH₂), 26.5 (CH₂), 27.9 (CH₂), 30.4 (CH₂), 31.4 (CH₂), 52.1 (d, ${}^{2}J_{C,P}$ = 5.6 Hz, OCH₃), 109.4 (d, ${}^{1}J_{C,P}$ = 235.0 Hz, C-sp²), 128.5 (d, ${}^{3}J_{C,P}$ = 14.2 Hz, C-sp²), 128.6 (ArC), 130.0 (ArC), 133.7 (d, ${}^{4}J_{C,P}$ = 8.2 Hz, C-sp²),134.1 (ArC), 137.5 (ArC), 144.9 (d, ${}^{2}J_{C,P} = 17.4$ Hz, C-sp²) ppm. HRMS (ESI): MH⁺, found 396.1500. C₂₀H₂₈ClNO₃P requires 396.1490.

Dimethyl 3-Hexyl-2-phenyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (10m). Yellowish oil. Yield 0.3 g, 80%. ¹H NMR (400 MHz, CDCl₃): δ 0.82 (3H, t, ³J = 6.8 Hz, CH₂(CH₂)₄<u>CH₃</u>), 1.14–1.21 (6H, m, CH₂CH₂(<u>CH₂</u>)₃CH₃), 1.34– 1.46 (2H, m, CH₂<u>CH₂</u>(CH₂)₃CH₃), 2.28 (2H, t, ³J = 8.0 Hz, <u>CH₂</u>(CH₂)₄CH₃), 2.34 (2H, quint, ³J = 7.2 Hz, CH₂<u>CH₂CH₂</u>CH₂), 2.65 (2H, t, ³J = 7.2 Hz, <u>CH₂CH₂CH₂CH₂), 2.83–2.87</u> (2H, m, CH₂C<u>H₂CH₂), 2.65</u> (2H, t, ³J = 7.2 Hz, <u>CH₂CH₂CH₂CH₂), 2.83–2.87</u> (2H, m, CH₂C<u>H₂CH₂), 2.65</u> (2H, t, ³J = 7.2 Hz, <u>CH₂CH₂CH₂), 2.83–2.87</u> (2H, m, CH₂C<u>H₂CH₂), 2.65</u> (2H, t, ³J = 7.2 Hz, <u>CH₂CH₂CH₂), 2.83–2.87</u> (2H, m, CH₂C<u>H₂CH₂), 2.65</u> (2H, t, ³J = 7.2 Hz, <u>CH₂CH₂CH₂), 2.83–2.87</u> (2H, m, CH₂C<u>H₂CH₂), 2.65</u> (2H, t, ³J = 7.2 Hz, <u>CH₂CH₂CH₂), 2.83–2.87</u> (2H, m, CH₂C<u>H₂CH₂), 2.65</u> (2H, t, ³J = 7.2 Hz, <u>CH₂CH₂CH₂CH₂), 2.83–2.87 (2H, m, CH₂C<u>H₂CH₂), 2.65</u> (2H, t, ³J_{CP} = 11.2 Hz, 2 × OCH₃), 7.26–7.28 (2H, m, ArH), 7.39–7.43 (3H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 14.0 (CH₃), 22.4 (CH₂), 25.2 (CH₂), 26.1 (CH₂), 26.5 (CH₂), 28.2 (CH₂), 28.9 (CH₂), 30.5 (CH₂), 31.3 (CH₂), 52.1 (d, ³J_{CP} = 5.6 Hz, OCH₃), 109.2 (d, ¹J_{CP} = 235.2 Hz, C-sp²), 128.1 (d, ³J_{CP} = 14.3 Hz, C-sp²), 128.2 (ArC), 128.4 (ArC), 128.7 (ArC), 133.8 (d, ⁴J_{CP} = 8.4 Hz, Csp²), 139.0 (ArC), 144.8 (d, ²J_{CP} = 17.5 Hz, C-sp²) ppm. HRMS (ESI): MNa⁺, found 398.1862. C₂₁H₃₀NNaO₃P requires 398.1856.</u>

Dimethyl 3-Hexyl-2-(4-methoxyphenyl)-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (10n). Yellowish oil. Yield 0.26 g, 63%. ¹H NMR (400 MHz, CDCl₃): δ 0.82 (3H, t, ³J = 6.8 Hz, CH₂(CH₂)₄CH₃), 1.14–1.24 (6H, m, CH₂CH₂(<u>CH₂</u>)₃CH₃), 1.37–1.45 (2H, m, CH₂CH₂(CH₂)₃CH₃), 2.26 (2H, t, ³J = 7.6 Hz, <u>CH₂(CH₂</u>)₄CH₃), 2.32 (2H, quint, ³J = 6.8 Hz, CH₂CH₂(CH₂), 2.63 (2H, t, ³J = 7.2 Hz, <u>CH₂CH₂CH₂CH₂), 2.81–2.85 (2H, m, CH₂CH₂CH₂), 3.50 (6H, d, ³J_{H,P} = 11.2 Hz, 2 × OCH₃), 3.83 (3H, s, OCH₃), 6.91 (2H, d, ³J = 8.8 Hz, ArH), 7.18 (2H, d, ³J = 8.8 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 13.9 (CH₃), 22.4 (CH₂), 25.1 (CH₂), 26.0 (CH₂), 26.5 (CH₂), 28.2 (CH₂), 28.9 (CH₂), 30.4 (CH₂), 31.3 (CH₂), 52.0 (d, ²J_{C,P} = 5.4 Hz, OCH₃), 55.3 (OCH₃), 109.3 (d, ¹J_{C,P} = 235.0 Hz, C-sp²), 113.4 (ArC), 127.8 (d, ³J_{C,P} = 14.4 Hz, C-sp²), 129.7 (ArC), 131.7 (ArC), 134.0 (d, ⁴J_{C,P} = 8.4 Hz, C-sp²), 144.4 (d, ²J_{C,P} = 17.5 Hz, C-sp²) ppm. HRMS (ESI): MNa⁺, found 428.1963. C₂₂H₃₂NNaO₄P requires 428.1961.</u>

Dimethyl 3-(Cyclopropylmethyl)-2-phenyl-2,4,5,6tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (100). Yellowish oil. Yield 0.26 g, 76%. ¹H NMR (300 MHz, CDCl₃): δ -0.04-0.00 (2H, m, CH(<u>CH₂)₂</u>), 0.38-0.43 (2H, m, CH(<u>CH₂)₂</u>), 0.76-0.89 (1H, m, <u>CH</u>(CH₂)₂), 2.18 (2H, d, ³J = 6.8 Hz, CH₂), 2.31-2.38 (2H, m, CH₂<u>CH₂</u>CH₂), 2.73 (2H, t, ³J = 7.2 Hz, <u>CH₂</u>CH₂CH₂), 2.87 (2H, t, ³J = 7.2 Hz, CH₂CH₂<u>CH₂</u>), 3.48 (6H, d, ³J_{H,P} = 11.2 Hz, 2 × OCH₃), 7.26-7.28 (2H, m, ArH), 7.38-7.42 (2H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 5.0 (CH₂), 9.6 (CH), 25.5 (CH₂), 26.5 (CH₂), 30.4 (CH₂), 31.4 (CH₂), 52.0 (d, ²J_{C,P} = 5.5 Hz, OCH₃), 109.5 (d, ¹J_{C,P} = 234.3 Hz, C-sp²), 128.2 (ArC), 128.4 (ArC), 128.5 (C-sp²), 128.7 (ArC), 133.2 (d, ${}^{4}J_{C,P}$ = 8.4 Hz, C-sp²), 138.9 (ArC), 144.7 (d, ${}^{2}J_{C,P}$ = 17.5 Hz, C-sp²). HRMS (ESI): MNa⁺, found 368.1387. C₁₉H₂₄NNaO₃P requires 368.1386.

Dimethyl 3-(**Č**yclopropylmethyl)-2-(4-methoxyphenyl)-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (10p). Yellowish oil. Yield 0.26 g, 76%. ¹H NMR (300 MHz, CDCl₃): δ -0.03-0.00 (2H, m, CH(<u>CH</u>₂)₂), 0.39-0.43 (2H, m, CH(<u>CH</u>₂)₂), 0.76-0.86 (1H, m, <u>CH</u>(CH₂)₂), 2.17 (2H, d, ³J = 7.2 Hz, CH₂), 2.33 (2H, quint, ³J = 7.2 Hz, CH₂<u>CH</u>₂CH₂), 2.71 (2H, t, ³J = 7.2 Hz, <u>CH</u>₂CH₂CH₂), 2.85 (2H, t, ³J = 7.2 Hz, CH₂CH₂), 3.50 (6H, d, ³J_{H,P} = 11.2 Hz, 2 × OCH₃), 3.82 (3H, s, OCH₃), 6.90 (2H, d, ³J = 8.4 Hz, ArH), 7.18 (2H, d, ³J = 8.8 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 5.0 (CH₂), 9.7 (CH), 25.5 (CH₂), 26.5 (CH₂), 30.3 (CH₂), 31.3 (CH₂), 52.0 (d, ²J_{C,P} = 5.5 Hz, OCH₃), 55.2 (OCH₃), 109.6 (d, ¹J_{C,P} = 234.3 Hz, C-sp²), 113.4 (ArC), 128.0 (d, ³J_{C,P} = 14.2 Hz, Csp²), 129.7 (ArC), 131.7 (ArC), 133.5 (d, ⁴J_{C,P} = 8.3 Hz, C-sp²), 144.4 (d, ²J_{C,P} = 17.7 Hz, C-sp²), 159.1 (ArC). HRMS (ESI): MNa⁺, found 398.1494. C₂₀H₂₆NNaO₄P requires 398.1492.

Dimethyl 3-(Cyclopropylmethyl)-2-(4-ethoxyphenyl)-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (10r). Yellowish oil. Yield 0.23 g, 59%. ¹H NMR (300 MHz, CDCl₃): δ -0.03-0.00 (2H, m, CH(CH₂)₂), 0.38-0.43 (2H, m, CH(CH₂)₂), 0.76-0.86 (1H, m, <u>CH</u>(CH₂)₂), 1.42 (3H, t, ³J = 7.2 Hz, OCH₂CH₃), 2.17 (2H, d, ³J = 7.2 Hz, CH₂), 2.38 (2H, quint, ³J = 7.2 Hz, CH₂CH₂CH₂), 2.71 (2H, t, ³J = 7.2 Hz, CH₂CH₂CH₂), 2.85 (2H, t, ³J = 7.2 Hz, CH₂CH₂CH₃), 6.88 (2H, d, ³J = 8.8 Hz, ArH), 7.16 (2H, d, ³J = 8.8 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 5.0 (CH₂), 9.7 (CH), 14.7 (CH₃), 25.5 (CH₂), 26.5 (CH₂), 30.3 (CH₂), 31.4 (CH₂), 52.0 (d, ²J_{C,P} = 5.5 Hz, OCH₃), 63.5 (OCH₃), 109.6 (d, ¹J_{C,P} = 234.6 Hz, C-sp²), 113.9, 128.0 (d, ³J_{C,P} = 14.3 Hz, C-sp²), 129.7 (ArC), 131.6 (ArC), 133.5 (d, ⁴J_{C,P} = 8.5 Hz, C-sp²), 144.4 (d, ²J_{C,P} = 17.5 Hz, C-sp²), 158.6 (ArC). HRMS (ESI): MNa⁺, found 412.1646. C₂₁H₂₈NNaO₄P requires 412.1648.

Dimethyl 3-Methyl-2-phenyl-2,4,5,6-tetrahydrocyclopenta-[**c**]**pyrrol-1-ylphosphonate (10s).** Yellowish oil. Yield 0.2 g, 66%. ¹H NMR (400 MHz, CDCl₃): δ 1.93 (3H, s, CH₃), 2.34 (2H, quint, ³J = 6.8 Hz, CH₂CH₂CH₂), 2.60 (2H, t, ³J = 7.2 Hz, <u>CH₂CH₂CH₂CH₂)</u>, 2.86 (2H, td, ³J_{H,H} = 7.2 Hz, ⁴J_{H,P} = 1.2 Hz, <u>CH₂CH₂CH₂CH₂)</u>, 3.49 (6H, d, ³J_{H,P} = 11.6 Hz, 2 × OCH₃), 7.26–7.28 (2H, m, ArH), 7.37–7.45 (3H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 11.6 (CH₃), 24.4 (CH₂), 26.8 (CH₂), 30.4 (CH₂), 52.1 (d, ²J_{C,P} = 5.5 Hz, OCH₃), 109.4 (d, ¹J_{C,P} = 235.1 Hz, C-sp²), 128.2 (ArC), 128.4 (ArC), 128.5 (ArC), 128.8 (d, ³J_{C,P} = 14.3 Hz, C-sp²), 129.0 (d, ⁴J_{C,P} = 8.8 Hz, C-sp²), 139.0 (ArC), 144.6 (d, ²J_{C,P} = 17.5 Hz, C-sp²) ppm. HRMS (ESI): MH⁺, found 306.1263. C₁₆H₂₁NO₃P requires 306.1254.

Dimethyl 3-Benzyl-2phenyl-2H-isoindol-1-ylphosphonate (11a). Light orange solid, mp 82–83 °C. Yield 0.28 g, 72%. ¹H NMR (400 MHz, CDCl₃): δ 3.53 (6H, d, ³J_{H,P} = 11.6 Hz, 2 × OCH₃), 4.14 (2H, s, CH₂), 6.82–6.85 (2H, m, ArH), 7.09–7.15 (5H, m, ArH), 7.22-7.24 (1H, m, ArH), 7.37–7.49 (4H, m, ArH), 7.57–7.64 (4H, m, ArH), 7.56–7.61 (1H, m, ArH), 8.11 (1H, dt, J = 8.8; 0.8 Hz, ArH) pm. ¹³C NMR (100 MHz, CDCl₃): δ 31.1 (d, ⁴J_{C,P} = 1.1 Hz, CH₂), 52.2 (d, ²J_{C,P} = 5.4 Hz, 2 × OCH₃), 106.5 (d, ¹J_{C,P} = 235.4 Hz, ArC), 119.7 (ArC), 120.3 (ArC), 121.7 (ArC), 123.3 (d, ³J_{C,P} = 13.6 Hz, ArC), 125.0 (d, ⁴J_{C,P} = 0.4 Hz, ArC), 126.3 (ArC), 128.1 (ArC), 128.2 (ArC), 128.3 (2 × ArC), 129.2 (ArC), 131.9 (d, ²J_{C,P} = 8.6 Hz, ArC), 132.1 (d, ²J_{C,P} = 18.2 Hz, ArC), 138.0 (ArC), 138.4 (d, ⁵J_{C,P} = 0.7 Hz, ArC) ppm. HRMS (ESI): MH⁺, found 392.1410. C₂₃H₂₃NO₃P requires 392.1410.

Dimethyl 2,3-Diphenyl-1,2-dihydroisoquinolin-1-ylphosphonate (12a). Light orange solid, mp 128−129 °C. Yield 0.34 g, 86%. ¹H NMR (400 MHz, CDCl₃): δ 3.69 (3H, d, ³J_{H,P} = 10.4 Hz, OCH₃), 3.76 (3H, d, ³J_{H,P} = 10.4 Hz, OCH₃), 5.57 (1H, d, ¹J_{H,P} = 18.8 Hz, CH), 6.62 (1H, s, C_{sp}²H), 6.91−6.95 (1H, m, ArH), 7.16−7.17 (3H, m, ArH), 7.21−7.28 (4H, m, ArH), 7.30−7.34 (4H, m, ArH), 7.65− 7.67 (2H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 53.1 (d, ²J_{C,P} = 6.4 Hz, OCH₃), 53.2 (d, ²J_{C,P} = 6.2 Hz, OCH₃), 63.8 (d, ¹J_{C,P} = 162.2 Hz, CH), 111.9 (C_{sp}³H), 122.4 (ArC), 122.6 (d, J_{C,P} = 2.0 Hz, ArC), 124.3 (d, ²J_{C,P} = 2.6 Hz, ArC), 125.2 (d, J_{C,P} = 3.1 Hz, ArC), 126.6 (d, $J_{C,P} = 1.9$ Hz, ArC), 127.1 (d, $J_{C,P} = 5.9$ Hz, ArC), 127.5 (ArC), 128.0 (ArC), 128.3 (ArC), 128.3 (d, ${}^{2}J_{C,P} = 3.1$ Hz, ArC), 128.5 (ArC), 132.8 (d, ${}^{3}J_{C,P} = 3.2$ Hz, ArC), 137.0 (ArC), 142.0 (d, $J_{C,P} = 1.6$ Hz, ArC), 147.4 (d, ${}^{3}J_{C,P} = 7.0$ Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 414.1222. C₂₃H₂₂NNaO₃P requires 414.1230.

Dimethyl 3-Benzyl-2-phenyl-4,5,6,7-tetrahydro-2H-isoindol-1-ylphosphonate (14a). Yellowish oil. Yield 0.32 g, 82%. ¹H NMR (400 MHz, CDCl₃): δ 1.77–1.79 (4H, m, 2 × CH₂), 2.46 (2H, t, *J* = 5.6 Hz, CH₂), 2.88 (2H, t, *J* = 5.6 Hz, CH₂), 3.46 (6H, d, ³*J*_{H,P} = 11.2 Hz, 2 × OCH₃), 3.67 (2H, s, CH₂), 6.79–6.81 (2H, m, ArH), 7.07 (2H, dd, *J* = 8.2; 1.6 Hz, ArH), 7.10–7.16 (3H, m, ArH), 7.27–7.34 (3H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 21.8 (d, ³*J*_{C,P} = 1.1 Hz, CH₂), 23.1 (CH₂), 23.3 (CH₂), 23.5 (CH₂), 30.6 (d, ⁴*J*_{C,P} = 230.2 Hz, ArC), 118.7 (d, ³*J*_{C,P} = 14.7 Hz, ArC), 125.8 (ArC), 128.0 (ArC), 128.1 (2 × ArC), 128.2 (ArC), 128.8 (ArC), 133.9 (d, ²*J*_{C,P} = 19.1 Hz, ArC), 134.8 (d, ³*J*_{C,P} = 9.8 Hz, ArC), 138.6 (ArC), 138.7 (ArC) ppm. HRMS (ESI): MNa⁺, found 418.1548. C₂₃H₂₆NNaO₃P requires 418.1543.

Dimethyl 3-Benzyl-2-(4-methoxyphenyl)-4,5,6,7-tetrahydro-2*H*-isoindol-1-ylphosphonate (14b). Brownish solid, mp 108–109 °C. Yield 0.4 g, 95%. ¹H NMR (400 MHz, CDCl₃): δ 1.76–1.78 (4H, m, 2 × CH₂), 2.45 (2H, t, *J* = 5.6 Hz, CH₂), 2.86 (2H, t, *J* = 5.6 Hz, CH₂), 3.48 (6H, d, ³*J*_{H,P} = 11.2 Hz, 2 × OCH₃), 3.66 (2H, s, CH₂), 3.80 (3H, s, OCH₃), 6.79 (2H, d, *J* = 8.8 Hz, ArH), 6.81–6.83 (2H, m, ArH), 6.97 (3H, d, *J* = 8.8 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 21.8 (d, ³*J*_{C,P} = 1.0 Hz, CH₂), 23.2 (CH₂), 23.4 (CH₂), 23.6 (CH₂), 30.7 (d, ⁴*J*_{C,P} = 1.0 Hz, CH₂), 51.8 (d, ²*J*_{C,P} = 5.4 Hz, 2 × OCH₃), 55.3 (OCH₃), 113.0 (d, ^{1*J*}_{*J*,C,P} = 230.3 Hz, ArC), 113.2 (ArC), 118.6 (d, ³*J*_{C,P} = 14.8 Hz, ArC), 125.8 (ArC), 128.1 (2 × ArC), 129.8 (ArC), 131.3 (ArC), 133.7 (d, ²*J*_{C,P} = 19.2 Hz, ArC), 135.2 (d, ³*J*_{C,P} = 9.9 Hz, ArC), 138.9 (ArC), 159.2 (ArC) ppm. HRMS (ESI): MNa⁺, found 448.1645. C₂₄H₂₈NNaO₄P requires 448.1648.

Dimethyl 3-Benzyl-2-(4-fluorophenyl)-4,5,6,7-tetrahydro-2H-isoindol-1-ylphosphonate (14c). Yellowish solid, mp 95–96 °C. Yield 0.23 g, 56%. ¹H NMR (400 MHz, CDCl₃): δ 1.77–1.79 (4H, m, 2 × CH₂), 2.48–2.49 (2H, m, CH₂), 2.85–2.86 (2H, m, CH₂), 3.49 (6H, d, ³J_{H,P} = 11.2 Hz, 2 × OCH₃), 3.66 (2H, s, CH₂), 6.78–6.80 (2H, m, ArH), 6.93–7.01 (4H, m, ArH), 7.11–7.17 (3H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 21.8 (d, ³J_{C,P} = 1.0 Hz, CH₂), 23.1 (CH₂), 23.3 (CH₂), 23.5 (CH₂), 30.6 (d, ⁴J_{C,P} = 1.1 Hz, CH₂), 51.8 (d, ²J_{C,P} = 5.5 Hz, 2 × OCH₃), 113.2 (d, ¹J_{C,P} = 230.2 Hz, ArC), 115.0 (d, ²J_{C,P} = 22.5 Hz, ArC), 119.0 (d, ³J_{C,P} = 14.7 Hz, ArC), 126.0 (ArC), 128.0 (ArC), 128.2 (ArC), 130.5 (d, ³J_{C,P} = 8.7 Hz, ArC), 133.9 (d, ²J_{C,P} = 19.0 Hz, ArC), 134.6 (d, ⁴J_{C,P} = 3.0 Hz, ArC), 135.0 (d, ³J_{C,P} = 9.8 Hz, ArC), 138.6 (ArC), 162.1 (d, ¹J_{C,F} = 246.5 Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 436.1452. C₂₃H₂₅FNNaO₃P requires 436.1448.

Dimethyl 3-Benzyl-2-(4-chlorophenyl)-4,5,6,7-tetrahydro-2H-isoindol-1-ylphosphonate (14d). Yellowish oil. Yield 0.29 g, 68%. ¹H NMR (400 MHz, CDCl₃): δ 1.77–1.78 (4H, m, 2 × CH₂), 2.46–2.48 (2H, m, CH₂), 2.84–2.86 (2H, m, CH₂), 3.49 (6H, d, ³*J*_{H,P} = 11.6 Hz, 2 × OCH₃), 3.66 (2H, s, CH₂), 6.78–6.80 (2H, m, ArH), 6.97 (2H, d, *J* = 8.4 Hz, ArH), 7.10–7.18 (3H, m, ArH), 7.25 (2H, d, *J* = 8.8 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 21.7 (d, ³*J*_{C,P} = 1.1 Hz, CH₂), 23.1 (CH₂), 23.3 (CH₂), 23.4 (CH₂), 30.6 (d, ⁴*J*_{C,P} = 1.0 Hz, CH₂), 51.9 (d, ²*J*_{C,P} = 5.5 Hz, 2 × OCH₃), 113.1 (d, ¹*J*_{C,P} = 229.9 Hz, ArC), 119.1 (d, ³*J*_{C,P} = 14.6 Hz, ArC), 126.0 (ArC), 127.9 (ArC), 128.2 (ArC), 128.3 (ArC), 130.1 (ArC), 134.1 (d, ²*J*_{C,P} = 18.9 Hz, ArC), 134.1 (ArC), 134.9 (d, ³*J*_{C,P} = 9.7 Hz, ArC), 137.2 (ArC), 138.5 (ArC) ppm. HRMS (ESI): MNa⁺, found 452.1157. C₂₃H₂₅ClNNaO₃P requires 452.1153.

Dimethyl 3-(4-Methylbenzyl)-2-phenyl-4,5,6,7-tetrahydro-2*H*-isoindol-1-ylphosphonate (14e). Yellowish oil. Yield 0.38 g, 92%. ¹H NMR (400 MHz, CDCl₃): δ 1.76–1.78 (4H, m, 2 × CH₂), 2.27 (3H, s, CH₃), 2.43–2.47 (2H, m, CH₂), 2.87–2.89 (2H, m, CH₂), 3.47 (6H, d, ³J_{H,P} = 11.2 Hz, 2 × OCH₃), 3.63 (2H, s, CH₂), 6.70 (2H, d, *J* = 8.0 Hz, ArH), 6.96 (2H, d, *J* = 8.0 Hz, ArH), 7.08– 7.10 (2H, m, ArH), 7.28–7.35 (3H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 20.9 (CH₃), 21.8 (d, ³J_{C,P} = 1.0 Hz, CH₂), 23.2 (CH₂), 23.4 (CH₂), 23.5 (CH₂), 30.2 (d_n ${}^{4}J_{C,P} = 1.1$ Hz, CH₂), 51.8 (d, ${}^{2}J_{C,P} = 5.5$ Hz, 2 × OCH₃), 112.7 (d, ${}^{1}J_{C,P} = 230.7$ Hz, ArC), 118.7 (d, ${}^{3}J_{C,P} = 14.9$ Hz, ArC), 127.9 (ArC), 128.1 (ArC), 128.2 (ArC), 128.8 (2 × ArC), 134.0 (d, ${}^{2}J_{C,P} = 19.2$ Hz, ArC), 135.2 (d, ${}^{3}J_{C,P} = 9.9$ Hz, ArC), 135.3 (ArC), 135.7 (ArC), 138.7 (ArC) ppm. HRMS (ESI): MNa⁺, found 432.1706. C₂₄H₂₈NNaO₃P requires 432.1699.

Dimethyl 2-(4-Methoxyphenyl)-3-(4-methylbenzyl)-4,5,6,7tetrahydro-2*H*-isoindol-1-ylphosphonate (14e). Yellowish oil. Yield 0.35 g, 79%. ¹H NMR (400 MHz, CDCl₃): δ 1.75–1.77 (4H, m, 2 × CH₂), 2.27 (3H, s, CH₃), 2.42–2.45 (2H, m, CH₂), 2.85–2.87 (2H, m, CH₂), 3.49 (6H, d, ${}^{3}J_{H,P}$ = 11.6 Hz, 2 × OCH₃), 3.62 (2H, s, CH₂), 3.81 (3H, s, OCH₃), 6.72 (2H, d, *J* = 7.6 Hz, ArH), 6.80 (2H, d, *J* = 8.8 Hz, ArH), 6.96–7.00 (4H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 20.9 (CH₃), 21.8 (d, ${}^{3}J_{C,P}$ = 1.1 Hz, CH₂), 23.2 (CH₂), 23.4 (CH₂), 23.6 (CH₂), 30.2 (d,, ${}^{4}J_{C,P}$ = 1.0 Hz, CH₂), 51.9 (d, ${}^{2}J_{C,P}$ = 5.4 Hz, 2 × OCH₃), 55.3 (OCH₃), 112.6 (d, ${}^{1}J_{C,P}$ = 230.5 Hz, ArC), 113.2 (ArC), 118.5 (d, ${}^{3}J_{C,P}$ = 14.8 Hz, ArC), 127.9 (ArC), 128.8 (ArC), 129.8 (ArC), 131.3 (ArC), 133.9 (d, ${}^{2}J_{C,P}$ = 19.2 Hz, ArC), 135.3 (ArC), 135.5 (d, ${}^{3}J_{C,P}$ = 10.0 Hz, ArC), 135.8 (ArC), 159.2 (ArC) ppm. HRMS (ESI): MNa⁺, found 462.1795. C₂₅H₃₀NNaO₄P requires 462.1805.

Dimethyl 3-Butyl-2-phenyl-4,5,6,7-tetrahydro-2H-isoindol-1-ylphosphonate (14g). Yellowish oil. Yield 0.32 g, 89%. ¹H NMR (400 MHz, CDCl₃): δ 0.72 (3H, t, J = 7.2 Hz, CH₃), 1.11 (2H, sexst., J = 7.2 Hz, CH₂), 1.22–1.26 (2H, m, CH₂), 1.74–1.77 (4H, m, 2 × CH_{2chex}), 2.27 (2H, t, J = 7.6 Hz, CH₂), 2.48 (2H, br. s, CH_{2chex}), 2.83 (2H, br. s, CH_{2chex}), 3.45 (6H, d, ³ $J_{H,P}$ = 11.2 Hz, 2 × OCH₃), 7.22–7.25 (2H, m, ArH), 7.39–7.41 (3H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 13.5 (CH₃), 21.7 (d, ³ $J_{C,P}$ = 1.2 Hz, CH₂), 22.3 (CH₂), 23.1 (CH₂), 23.4 (CH₂), 23.5 (CH₂), 24.3 (d, ⁴ $J_{C,P}$ = 1.1 Hz, CH₂), 31.0 (CH₂), 51.8 (d, ³ $J_{C,P}$ = 5.4 Hz, 2 × OCH₃), 112.0 (d, ¹ $J_{C,P}$ = 230.8 Hz, ArC), 117.6 (d, ³ $J_{C,P}$ = 14.8 Hz, ArC), 128.2 (2 × ArC), 128.8 (ArC), 134.0 (d, ² $J_{C,P}$ = 19.2 Hz, ArC), 137.4 (d, ³ $J_{C,P}$ = 9.7 Hz, ArC), 138.9 (ArC) ppm. HRMS (ESI): MNa⁺, found 384.1695. C₂₀H₂₈NNaO₃P requires 384.1699.

Dimethyl 3-Butyl-2-(4-methoxyphenyl)-4,5,6,7-tetrahydro-2*H*-isoindol-1-ylphosphonate (14h). Yellowish oil. Yield 0.39 g, 99%. ¹H NMR (400 MHz, CDCl₃): δ 0.74 (3H, t, *J* = 7.2 Hz, CH₃), 1.13 (2H, sexst., *J* = 7.2 Hz, CH₂), 1.20–1.29 (2H, m, CH₂), 1.74–1.76 (4H, m, 2 × CH_{2chex}), 2.26 (2H, t, *J* = 7.6 Hz, CH₂), 2.47 (2H, br. s, CH_{2chex}), 2.82 (2H, br. s, CH_{2chex}), 3.48 (6H, d, ³*J*_{H,P} = 11.2 Hz, 2 × OCH₃), 3.83 (3H, s, OCH₃), 6.90 (2H, d, *J* = 8.8 Hz, ArH), 7.14 (2H, d, *J* = 8.8 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 13.6 (CH₃), 21.7 (CH₂), 22.3 (CH₂), 23.1 (CH₂), 23.4 (CH₂), 23.5 (CH₂), 24.3 (CH₂), 31.1 (CH₂), 51.8 (d, ²*J*_{C,P} = 5.3 Hz, 2 × OCH₃), 55.3 (OCH₃), 111.8 (d, ¹*J*_{C,P} = 231.3 Hz, ArC), 113.3 (ArC), 117.4 (d, ³*J*_{C,P} = 14.9 Hz, ArC), 129.7 (ArC), 131.6 (ArC), 133.8 (d, ²*J*_{C,P} = 19.4 Hz, ArC), 137.7 (d, ³*J*_{C,P} = 9.7 Hz, ArC), 159.1 (ArC) ppm. HRMS (ESI): MNa⁺, found 414.1801. C₂₁H₃₀NNaO₄P requires 414.1805.

Dimethyl 3-Butyl-2-(4-fluorophenyl)-4,5,6,7-tetrahydro-2*H***isoindol-1-ylphosphonate (14i). Yellowish oil. Yield 0.31 g, 81%. ¹H NMR (400 MHz, CDCl₃): \delta 0.73 (3H, t,** *J* **= 7.2 Hz, CH₃), 1.12 (2H, sexst.,** *J* **= 7.2 Hz, CH₂), 1.21–1.25 (2H, m, CH₂), 1.72–1.76 (4H, m, 2 × CH_{2chex}), 2.25 (2H, t,** *J* **= 8.0 Hz, CH₂), 2.46 (2H, br. s, CH_{2chex}), 2.80 (2H, br. s, CH_{2chex}), 3.48 (6H, d, ³***J***_{H,P} = 11.2 Hz, 2 × OCH₃), 7.06–7.10 (2H, m, ArH), 7.19–7.22 (2H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): \delta 13.6 (CH₃), 21.7 (d, ³***J***_{C,P} = 1.2 Hz, CH₂), 22.4 (CH₂), 23.1 (CH₂), 23.4 (CH₂), 23.5 (CH₂), 24.4 (CH₂), 31.1 (CH₂), 51.9 (d, ²***J***_{C,P} = 5.4 Hz, 2 × OCH₃), 112.2 (d, ¹***J***_{C,P} = 230.8 Hz, ArC), 115.2 (d, ³***J***_{C,F} = 8.6 Hz, ArC), 134.1 (d, ²***J***_{C,P} = 19.2 Hz, ArC), 134.0 (d, ⁴***J***_{C,P} = 3.2 Hz, ArC), 137.6 (d, ³***J***_{C,P} = 9.5 Hz, ArC), 162.2 (d, ¹***J***_{C,F} = 246.4 Hz, ArC) ppm. HRMS (ESI): MNa⁺, found 402.1610. C₂₀H₂₇FNNaO₃P requires 402.1605.**

Dimethyl 3-Pentyl-2-phenyl-4,5,6,7-tetrahydro-2H-isoindol-1-ylphosphonate (14j). Brownish oil. Yield 0.33 g, 88%. ¹H NMR (400 MHz, CDCl₃): δ 0.75 (3H, t, J = 7.2 Hz, CH₃), 1.05–1.15 (4H, m, 2 × CH₂), 1.22–1.29 (2H, m, CH₂), 1.74–1.77 (4H, m, 2 × CH_{2chex}), 2.26 (2H, t, J = 7.6 Hz, CH₂), 2.48 (2H, br. s, CH_{2chex}), 2.83 (2H, br. s, CH_{2chex}), 3.45 (6H, d, ³ $J_{\rm H,P}$ = 11.2 Hz, 2 × OCH₃), 7.22–

7.24 (2H, m, ArH), 7.39–7.41 (3H, m, ArH) ppm. 13 C NMR (100 MHz, CDCl₃): δ 13.7 (CH₃), 21.7 (d, $^{3}J_{\rm C,P}$ = 1.2 Hz, CH₂), 22.0 (CH₂), 23.1 (CH₂), 23.4 (CH₂), 23.5 (CH₂), 24.6 (d, $J_{\rm C,P}$ = 0.9 Hz, CH₂), 28.4 (CH₂), 31.3 (CH₂), 51.7 (d, $^{2}J_{\rm C,P}$ = 5.5 Hz, 2 × OCH₃), 112.0 (d, $^{1}J_{\rm C,P}$ = 231.0 Hz, ArC), 117.6 (d, $^{3}J_{\rm C,P}$ = 14.9 Hz, ArC), 128.2 (2 × ArC), 128.8 (ArC), 134.0 (d, $^{2}J_{\rm C,P}$ = 19.3 Hz, ArC), 137.4 (d, $^{3}J_{\rm C,P}$ = 9.7 Hz, ArC), 138.9 (ArC) ppm. HRMS (ESI): MNa⁺, found 398.1845. C₂₁H₃₀NNaO₃P requires 398.1856.

Dimethyl 2-(4-Methoxyphenyl)-3-pentyl-4,5,6,7-tetrahydro-2H-isoindol-1-ylphosphonate (14k). Light brown oil. Yield 0.33 g, 82%. ¹H NMR (400 MHz, CDCl₃): δ 0.77 (3H, t, J = 7.2 Hz, CH₃), 1.08–1.15 (4H, m, 2 × CH₂), 1.22–1.30 (2H, m, CH₂), 1.75 (4H, br. s, 2 × CH_{2chex}), 2.25 (2H, t, J = 7.6 Hz, CH₂), 2.46 (2H, br. s, CH_{2chex}), 2.82 (2H, br. s, CH_{2chex}), 3.47 (6H, d, ³J_{H,P} = 11.2 Hz, 2 × OCH₃), 3.83 (3H, s, OCH₃), 6.90 (2H, d, J = 8.8 Hz, ArH), 7.14 (2H, d, J = 8.8 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 13.7 (CH₃), 21.7 (d, ³J_{C,P} = 0.9 Hz, CH₂), 22.1 (CH₂), 23.1 (CH₂), 23.4 (CH₂), 23.5 (CH₂), 24.6 (d, ⁴J_{C,P} = 0.7 Hz, CH₂), 28.5 (CH₂), 31.4 (CH₂), 51.8 (d, ²J_{C,P} = 5.4 Hz, 2 × OCH₃), 55.3 (OCH₃), 112.0 (d, ¹J_{C,P} = 231.1 Hz, ArC), 113.3 (ArC), 117.4 (d, ³J_{C,P} = 14.8 Hz, ArC), 129.7 (ArC), 131.6 (ArC), 133.8 (d, ²J_{C,P} = 19.3 Hz, ArC), 137.6 (d, ³J_{C,P} = 9.7 Hz, ArC), 159.1 (ArC) ppm. HRMS (ESI): MNa⁺, found 428.1969. C₂₂H₃₂NNaO₄P requires 428.1961.

Dimethyl 3-(Cyclopropylmethyl)-2-phenyl-4,5,6,7-tetrahydro-2*H***-isoindol-1-ylphosphonate (14l). Yellowish oil. Yield 0.3 g, 83%. ¹H NMR (400 MHz, CDCl₃): \delta –0.16 (2H, q,** *J* **= 4.8 Hz, CH(CH₂)₂), 0.26–0.30 (2H, m, CH(CH₂)₂), 0.57–0.67 (1H, m, CH(CH₂)₂), 1.76 (4H, t,** *J* **= 3.2 Hz, 2 × CH₂), 2.21 (2H, d,** *J* **= 6.8 Hz, CH₂), 2.52 (2H, br. s, CH₂), 2.85 (2H, br. s, CH₂), 3.45 (6H, d, ³***J***_{H,P} = 11.2 Hz, 2 × OCH₃), 7.24–7.25 (2H, m, ArH), 7.37–7.41 (3H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): \delta 4.8 (<u>C</u>H(CH₂)₂), 10.2 (CH(<u>CH₂)₂), 21.9 (d, ³***J***_{C,P} = 1.1 Hz, CH_{2chex}), 23.1 (CH_{2chex}), 23.4 (2 × CH_{2chex}), 29.4 (d, ⁴***J***_{C,P} = 230.4 Hz, ArC), 117.7 (d, ³***J***_{C,P} = 14.8 Hz, ArC), 128.1 (ArC), 128.2 (ArC), 128.9 (ArC), 133.9 (d, ²***J***_{C,P} = 19.3 Hz, ArC), 136.9 (d, ³***J***_{C,P} = 9.5 Hz, ArC), 139.0 (ArC) ppm. HRMS (ESI): MNa⁺, found 382.1541. C₂₀H₂₆NNaO₃P requires 382.1543.**</u>

Dimethyl 3-(Cyclopropylmethyl)-2-(4-methoxyphenyl)-4,5,6,7-tetrahydro-2H-isoindol-1-ylphosphonate (14m). Yellowish oil. Yield 0.36 g, 92%. ¹H NMR (400 MHz, CDCl₃): δ –0.15 to -0.11 (2H, m, CH(CH₂)₂), 0.27–0.31 (2H, m, CH(CH₂)₂), 0.61– 0.65 (1H, m, CH(CH₂)₂), 1.75 (4H, br. s, 2 × CH₂), 2.19 (2H, d, *J* = 6.8 Hz, CH₂), 2.51 (2H, br. s, CH₂), 2.83 (2H, br. s, CH₂), 3.47 (6H, d, ³*J*_{H,P} = 11.2 Hz, 2 × OCH₃), 3.82 (3H, s, OCH₃), 6.89 (2H, d, *J* = 8.8 Hz, ArH), 7.15 (2H, d, *J* = 8.8 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 4.8 (<u>C</u>H(CH₂)₂), 10.3 (CH(<u>CH₂)₂</u>), 21.9 (d, ³*J*_{C,P} = 1.0 Hz, CH_{2chex}), 23.1 (CH_{2chex}), 23.4 (CH_{2chex}), 23.5 (CH_{2chex}), 29.5 (d, ⁴*J*_{C,P} = 0.7 Hz, CH₂), 51.7 (d, ²*J*_{C,P} = 5.4 Hz, 2 × OCH₃), 55.2 (OCH₃), 112.2 (d, ¹*J*_{C,P} = 230.8 Hz, ArC), 113.2 (ArC), 117.5 (d, ³*J*_{C,P} = 14.8 Hz, ArC), 129.9 (ArC), 131.6 (ArC), 133.8 (d, ²*J*_{C,P} = 19.4 Hz, ArC), 137.3 (d, ³*J*_{C,P} = 9.6 Hz, ArC), 159.2 (ArC) ppm. HRMS (ESI): MNa⁺, found 412.1650. C₂₁H₂₈NNaO₄P requires 412.1648.

Dimethyl 2-(4-Chlorophenyl)-3-(cyclopropylmethyl)-4,5,6,7tetrahydro-2*H*-isoindol-1-ylphosphonate (14n). Yellowish oil. Yield 0.36 g, 92%. ¹H NMR (400 MHz, CDCl₃): δ –0.15 to –0.11 (2H, m, CH(C<u>H</u>₂)₂), 0.28–0.33 (2H, m, CH(C<u>H</u>₂)₂), 0.55–0.65 (1H, m, C<u>H</u>(CH₂)₂), 1.74–1.76 (4H, m, 2 × CH₂), 2.20 (2H, d, *J* = 6.8 Hz, CH₂), 2.51 (2H, br. s, CH₂), 2.82 (2H, br. s, CH₂), 3.49 (6H, d, ³*J*_{H,P} = 11.6 Hz, 2 × OCH₃), 7.19 (2H, d, *J* = 8.8 Hz, ArH), 7.37 (2H, d, *J* = 8.4 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 4.9 (<u>C</u>H(CH₂)₂), 10.3 (CH(<u>C</u>H₂)₂), 21.9 (d, ³*J*_{C,P} = 1.2 Hz, CH_{2chex}), 23.1 (CH_{2chex}), 23.3 (CH_{2chex}), 23.4 (CH_{2chex}), 29.4 (d, ⁴*J*_{C,P} = 1.0 Hz, CH₂), 51.8 (d, ²*J*_{C,P} = 5.4 Hz, 2 × OCH₃), 112.5 (d, ¹*J*_{C,P} = 230.3 Hz, ArC), 118.1 (d, ³*J*_{C,P} = 14.8 Hz, ArC), 128.4 (ArC), 130.3 (ArC), 134.2 (d, ²*J*_{C,P} = 20.0 Hz, ArC), 134.2 (ArC), 137.0 (d, ³*J*_{C,P} = 9.4 Hz, ArC), 137.6 (ArC) ppm. HRMS (ESI): MNa⁺, found 416.1161. C₂₀H₂₅ClNNaO₃P requires 416.1153.

General Procedure for the Preparation of Compounds 13 and 15–18. To a cooled solution of the corresponding acetylenic α anilinomethylphosphonate 7–9 (1 mmol) in dry chloroform (5 mL) was added molecular iodine (0.254 g, 1 mmol) at 0 °C, together with phenyliodine diacetate (0.644 g, 2 mmol). The resulting stirring solution was allowed to warm to room temperature. When the completion of the reaction was observed by TLC (after 0.5–1 h), the solution was quenched with aqueous sodium thiosulfate. The organic layer was separated, washed with aqueous sodium thiosulfate (2 × 20 mL) and then with water (2 × 20 mL), and dried over anhydrous Na₂SO₄. After the evaporation of solvent under reduced pressure, the residue was purified by flash column chromatography eluting with hexane–ethyl acetate mixtures.

Dimethyl 3-Benzoyl-2-phenyl-2,4,5,6-tetrahydrocyclopenta-[c]pyrrol-1-ylphosphonate (13a). Yellowish oil. Yield 0.35 g, 89%. IR (KBr): v_{max} 1644 (C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 2.21–2.31 (2H, m, CH₂CH₂CH₂), 2.42 (2H, t, ³J = 6.9 Hz, CH₂CH₂CH₂), 2.89 (2H, td, ³J_{H,H} = 7.3 Hz, ⁴J_{H,P} = 1.5 Hz, CH₂CH₂CH₂), 3.53 (6H, d, ³J_{H,P} = 11.4 Hz, 2 × OCH₃), 7.35–7.38 (5H, m, ArH), 7.40–7.44 (2H, m, ArH), 7.49–7.54 (1H, m, ArH), 7.71–7.74 (2H, m, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 26.7 (CH₂), 27.7 (CH₂), 30.1 (CH₂), 52.4 (d, ²J_{C,P} = 5.7 Hz, OCH₃), 119.7 (d, ¹J_{C,P} = 225.4 Hz, C-sp²), 127.9 (ArC), 128.2 (ArC), 128.2 (2 × ArC), 129.0 (ArC), 130.2 (d, ⁴J_{C,P} = 9.0 Hz, C-sp²), 132.2 (ArC), 138.7 (ArC), 139.2 (d, ³J_{C,P} = 13.8 Hz, C-sp²), 139.6 (ArC), 143.4 (d, ²J_{C,P} = 17.1 Hz, C-sp²), 186.3 (C=O) ppm. HRMS (ESI): MNa⁺, found 418.1176. C₂₂H₂₂NNaO₄P requires 418.1179.

Dimethyl 3-Benzoyl-2-(4-methoxyphenyl)-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (13b). Yellowish oil. Yield 0.28 g, 67%. IR (KBr): v_{max} 1645 (C=O) cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 2.25 (2H, quint, ³J = 7.2 Hz, CH₂CH₂CH₂), 2.40 (2H, t, ³J = 7.6 Hz, CH₂CH₂CH₂), 2.87 (2H, td, ³J_{H,H} = 7.2 Hz, ⁴J_{H,P} = 1.2 Hz, CH₂CH₂CH₂), 3.56 (6H, d, ³J_{H,P} = 11.2 Hz, 2 × OCH₃), 3.80 (3H, s, OCH₃), 6.87 (2H, d, ³J = 9.2 Hz, ArH), 7.28 (2H, d, ³J = 8.8 Hz, ArH), 7.38–7.42 (2H, m, ArH), 7.49–7.53 (1H, m, ArH), 7.71–7.73 (2H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 26.6 (CH₂), 27.7 (CH₂), 30.1 (CH₂), 52.4 (d, ²J_{C,P} = 5.7 Hz, OCH₃), 55.2 (OCH₃), 113.3 (ArC), 119.8 (d, ¹J_{C,P} = 225.9 Hz, C-sp²), 126.8 (ArC), 128.1 (ArC), 129.0 (ArC), 129.0 (ArC), 130.3 (d, ⁴J_{C,P} = 8.8 Hz, C-sp²), 132.2 (ArC), 138.8 (ArC), 138.9 (d, ³J_{C,P} = 14.0 Hz, C-sp²), 143.0 (d, ²J_{C,P} = 17.0 Hz, C-sp²), 159.1 (ArC), 186.3 (C=O) ppm. HRMS (ESI): MNa⁺, found 448.1287. C₁₂H₂ANNaO₃P requires 448.1284.

Dimethyl 3-Benzoyl-2-(4-ethoxyphenyl)-2,4,5,6tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (13c). Yellowish oil. Yield 0.31 g, 70%. IR (KBr): v_{max} 1643 (C=O) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.39 (3H, t, ³J = 6.8 Hz, OCH₂CH₃), 2.25 (2H, quint, ${}^{3}J$ = 6.8 Hz, CH₂CH₂CH₂), 2.40 (2H, t, ${}^{3}J$ = 7.2 Hz, <u>CH</u>₂CH₂CH₂), 2.87 (2H, td, ${}^{3}J_{H,H}$ = 7.6 Hz, ${}^{4}J_{H,P}$ = 1.2 Hz, $CH_2CH_2CH_2$), 3.55 (6H, d, ${}^{3}J_{H,P}$ = 11.2 Hz, 2 × OCH₃), 4.02 (2H, q, ${}^{3}J$ = 7.2 Hz, $OCH_{2}CH_{3}$), 6.86 (2H, d, ${}^{3}J$ = 8.8 Hz, ArH), 7.26 (2H, d, ³*J* = 9.2 Hz, ArH), 7.38–7.42 (2H, m, ArH), 7.49–7.53 (1H, m, ArH), 7.71–7.77 (2H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 14.7 (OCH_2CH_3) , 26.7 (CH_2) , 27.7 (CH_2) , 30.1 (CH_2) , 52.4 $(d, {}^2J_{C,P} = 5.7)$ Hz, OCH₃), 63.4 (O<u>CH₂</u>CH₃), 113.8 (ArC), 119.8 (d, ${}^{1}J_{C,P}$ = 226.1 Hz, C-sp²), 128.1 (ArC), 129.0 (ArC), 129.0 (ArC), 130.3 (d, ${}^{4}J_{C_{2}P}$ = 8.8 Hz, C-sp²), 132.2 (ArC), 136.3 (ArC), 138.8 (ArC), 139.0 (d, ³J_{CP}) = 13.2 Hz, C-sp²), 143.0 (d, ${}^{2}J_{C,P}$ = 17.0 Hz, C-sp²), 158.6 (ArC), 186.3 (C=O) ppm. HRMS (ESI): MNa⁺, found 462.1439. C₂₄H₂₆NNaO₅P requires 462.1441.

Dimethyl 3-Benzoyl-2-(4-fluorophenyl)-2,4,5,6tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (13d). Yellowish oil. Yield 0.24 g, 58%. IR (KBr): v_{max} 1640 (C=O) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.26 (2H, quint, ³J = 6.8 Hz, CH₂CH₂CH₂), 2.41 (2H, t, ³J = 7.2 Hz, <u>CH</u>₂CH₂CH₂), 2.87 (2H, td, ³J_{H,H} = 7.2 Hz, ⁴J_{H,P} = 1.2 Hz, CH₂CH₂CH₂), 3.57 (6H, d, ³J_{H,P} = 11.2 Hz, 2 × OCH₃), 7.06 (2H, t, ³J = 8.4 Hz, ArH), 7.33-7.36 (2H, m, ArH), 7.42 (2H, t, ³J = 7.6 Hz, ArH), 7.53 (1H, t, ³J = 8.8 Hz, ArH), 7.71-7.73 (2H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 26.8 (CH₂), 27.9 (CH₂), 30.3 (CH₂), 52.6 (d, ²J_{C,P} = 6 Hz, OCH₃), 115.3 (d, ²J_{C,F} = 23 Hz, ArC), 120.0 (d, ¹J_{C,P} = 226 Hz, C-sp²), 128.4 (ArC), 129.2 (ArC), 129.9 (d, ³J_{C,F} = 8 Hz, ArC), 130.4 (d, ⁴J_{C,P} = 9 Hz, C-sp²), 132.5 (ArC), 135.7 (d, ⁴J_{C,F} = 4 Hz, ArC), 138.8 (ArC), 139.5 (d, ${}^{3}J_{C,P}$ = 14 Hz, C-sp²), 143.5 (d, ${}^{2}J_{C,P}$ = 17 Hz, C-sp²), 162.3 (d, ${}^{1}J_{C,F}$ = 246 Hz, ArH), 186.4 (C=O) ppm. HRMS (ESI): MNa⁺, found 436.1077. C₂₂H₂₁FNNaO₄P requires 436.1084.

Dimethyl 3-Benzoyl-2-(4-chlorophenyl)-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (13e). Yellow solid, mp 108–109 °C. Yield 0.22 g, 51%. IR (KBr): v_{max} 1641 (C= O) cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 2.26 (2H, quint, ³J = 7.2 Hz, CH₂CH₂CH₂), 2.41 (2H, t, ³J = 7.2 Hz, CH₂CH₂CH₂), 2.87 (2H, td, ³J_{H,H} = 7.4 Hz, ⁴J_{H,P} = 1.6 Hz, CH₂CH₂CH₂), 3.58 (6H, d, ³J_{H,P} = 11.2 Hz, 2 × OCH₃), 7.29–7.36 (4H, m, ArH), 7.42 (2H, t, ³J = 7.6 Hz, ArH), 7.53 (2H, t, ³J = 7.2 Hz, ArH), 7.71–7.73 (2H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 26.7 (CH₂), 27.9 (CH₂), 30.2 (CH₂), 52.7 (d, ²J_{C,P} = 5.7 Hz, OCH₃), 119.9 (d, ¹J_{C,P} = 225.4 Hz, C-sp²), 128.4 (ArC), 128.6 (ArC), 129.1 (ArC), 129.4 (ArC), 130.3 (d, ⁴J_{C,P} = 8.5 Hz, C-sp²), 132.6 (ArC), 134.2 (ArC), 138.2 (ArC), 138.7 (ArC), 139.7 (d, ³J_{C,P} = 13.9 Hz, C-sp²), 143.8 (d, ²J_{C,P} = 16.8 Hz, C-sp²), 186.3 (C=O) ppm. HRMS (ESI): MNa⁺, found 452.0786. C₂₂H₂₁CINNaO₄P requires 452.0789.

Dimethyl 2-(4-Methoxyphenyl)-3-(4-methylbenzoyl)-2,4,5,6tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (13g). Yellowish oil. Yield 0.25 g, 56%. IR (KBr): v_{max} 1639 (C=O) cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 2.26 (2H, quint, ³J = 7.2 Hz, CH₂CH₂CH₂), 2.39 (3H, s, CH₃), 2.43 (2H, t, ³J = 7.2 Hz, CH₂CH₂CH₂), 2.85–2.89 (2H, m, CH₂CH₂CH₂), 3.55 (6H, d, ³J_{HP} = 11.6 Hz, 2 × OCH₃), 6.87 (2H, d, ³J = 8.8 Hz, ArH), 7.21 (2H, d, ³J = 8.0 Hz, ArH), 7.28 (2H, d, ³J = 9.2 Hz, ArH), 7.65 (2H, d, ³J = 8.0 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 21.6 (CH₃), 26.7 (CH₂), 27.7 (CH₂), 30.1 (CH₂), 52.4 (d, ²J_{C,P} = 5.7 Hz, OCH₃), 55.2 (OCH₃), 113.2 (ArH), 119.4 (d, ¹J_{C,P} = 226.1 Hz, C-sp²), 128.9 (ArC), 129.0 (ArC), 129.3 (ArC), 130.6 (d, ⁴J_{C,P} = 8.8 Hz, C-sp²), 132.4 (ArC), 136.1 (ArC), 138.3 (d, ³J_{C,P} = 14.0 Hz, C-sp²), 143.0 (ArC), 143.0 (d, ²J_{C,P} = 17.0 Hz, C-sp²), 159.1 (ArC), 186.1 (C=O) ppm. HRMS (ESI): MNa⁺, found 462.1436. C₂₄H₂₆NNaO₃P requires 462.1441.

Dimethyl 3-(4-Ethylbenzoyl)-2-(4-methoxyphenyl)-2,4,5,6tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (13h). Yellowish oil. Yield 0.24 g, 54%. IR (KBr): v_{max} 1639 (C=O) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.24 (3H, t, ³J = 7.6 Hz, CH₂CH₃), 2.25 (2H, quint, ³J = 7.2 Hz, CH₂CH₂CH₂), 2.46 (2H, t, ³J = 7.2 Hz, CH₂CH₂CH₂), 2.68 (2H, q, ³J = 7.6 Hz, CH₂CH₃), 2.87 (2H, t, ³J = 7.2 Hz, CH₂CH₂CH₂), 3.55 (6H, d, ³J_{H,P} = 11.2 Hz, 2 × OCH₃), 6.86 (2H, d, ³J = 8.8 Hz, ArH), 7.23 (2H, d, ³J = 8.0 Hz, ArH), 7.27 (2H, d, ³J = 8.8 Hz, ArH), 7.67 (2H, d, ³J = 8.4 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 15.1 (CH₃), 26.6 (CH₂), 27.7 (CH₂), 28.8 (CH₂), 30.1 (CH₂), 52.4 (d, ²J_{C,P} = 5.7 Hz, OCH₃), 55.2 (OCH₃), 113.2 (ArC), 119.2 (d, ¹J_{C,P} = 226.4 Hz, C-sp²), 127.6 (ArC), 128.9 (ArC), 129.4 (ArC), 130.6 (d, ⁴J_{C,P} = 8.7 Hz, C-sp²), 132.3 (ArC), 136.2 (ArC), 138.3 (d, ³J_{C,P} = 14.0 Hz, C-sp²), 143.0 (d, ²J_{C,P} = 17.0 Hz, Csp²), 149.3 (ArC), 159.0 (ArC), 186.0 (C=O) ppm. HRMS (ESI): MNa⁺, found 476.1592. C₂₅H₂₈NNaO₅P requires 476.1597.

Dimethyl 2-(4-Chlorophenyl)-3-(4-ethylbenzoyl)-2,4,5,6tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (13j). Yellowish oil. Yield 0.2 g, 44%. IR (KBr): v_{max} 1637 (C=O) cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 1.25 (3H, t, ³J = 7.6 Hz, CH₂CH₃), 2.27 (2H, quint, ³J = 7.2 Hz, CH₂CH₂CH₂), 2.46 (2H, t, ³J = 7.6 Hz, CH₂CH₂CH₂), 2.69 (2H, q, ³J = 7.6 Hz, CH₂CH₃), 2.88 (2H, td, ³J_{H,H} = 7.0 Hz, ⁴J_{H,P} = 1.2 Hz, CH₂CH₂CH₂), 3.57 (6H, d, ³J_{H,P} = 11.6 Hz, 2 × OCH₃), 7.24 (2H, d, ³J = 8.4 Hz, ArH), 7.28–7.34 (4H, m, ArH), 7.67 (2H, d, ³J = 8.0 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 15.5 (CH₂), 26.8 (CH₂), 27.9 (CH₂), 29.0 (CH₂), 30.3 (CH₂), 52.6 (d, ²J_{C,P} = 5.8 Hz, OCH₃), 119.4 (d, ¹J_{C,P} = 225.7 Hz, C-sp²), 127.9 (ArC), 128.5 (ArC), 129.4 (ArC), 129.5 (ArC), 130.6 (d, ⁴J_{C,P} = 8.5 Hz, C-sp²), 134.1 (ArC), 136.1 (ArC), 138.3 (ArC), 139.1 (d, ³J_{C,P} = 13.9 Hz, C-sp²), 143.8 (d, ²J_{C,P} = 16.0 Hz, C-sp²), 149.7 (ArC), 186.1 (C=O) ppm. HRMS (ESI): MNa⁺, found 480.1100. C₂₄H₂₅CINNaO₄P requires 480.1102.

Dimethyl 3-Fornyl-2-phenyl-2,4,5,6-tetrahydrocyclopenta-[c]pyrrol-1-ylphosphonate (13s). Yellowish oil. Yield 0.13 g, 42%. IR (KBr): v_{max} 1666 (C=O) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.41 (2H, quint, ³J = 7.2 Hz, CH₂CH₂CH₂), 2.85 (2H, td, ³J_{HH} = 7.4 Hz, ${}^{4}J_{\text{H,P}} = 1.2$ Hz, <u>CH₂CH₂CH₂(2)</u>, 2.94 (2H, t, ${}^{3}J = 7.2$ Hz, <u>CH₂CH₂CH₂(2)</u>, 3.52 (6H, d, ${}^{3}J_{\text{H,P}} = 11.6$ Hz, 2 × OCH₃), 7.38–7.40 (2H, m, ArH), 7.45–7.47 (3H, m, ArH), 9.34 (1H, s, CHO) ppm. ${}^{13}\text{C}$ NMR (100 MHz, CDCl₃): δ 26.2 (CH₂), 26.4 (CH₂), 30.3 (CH₂), 52.6 (d, ${}^{2}J_{\text{C,P}} = 5.7$ Hz, OCH₃), 119.7 (d, ${}^{1}J_{\text{C,P}} = 224.4$ Hz, C-sp²), 128.6 (ArC), 128.8 (ArC), 129.3 (ArC), 130.6 (d, ${}^{4}J_{\text{C,P}} = 8.4$ Hz, Csp²), 137.5 (ArC), 140.3 (d, ${}^{3}J_{\text{C,P}} = 13.7$ Hz, C-sp²), 143.7 (d, ${}^{2}J_{\text{C,P}} =$ 16.5 Hz, C-sp²), 180.6 (d, ${}^{4}J_{\text{C,P}} = 1.4$ Hz, C=O) ppm. HRMS (ESI): MNa⁺, found 342.0872. C₁₆H₁₈NNaO₄P requires 342.0866.

Dimethyl 3-Benzoyl-2-phenyl-2,4,5,6-tetrahydrocyclopenta-[**c**]pyrrol-1-ylphosphonate (13a-¹⁸O). Yellowish oil. Yield 0.34 g, 86%. IR (KBr): v_{max} 1640 (C=O¹⁸) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.29 (2H, pent, J = 7.1 Hz,, CH₂CH₂CH₂), 2.45 (2H, t, ³J = 7.2 Hz, CH₂CH₂CH₂CH₂), 2.92 (2H, td, ³ $J_{H,H} = 7.4$ Hz, ⁴ $J_{H,P} = 1.5$ Hz, CH₂CH₂CH₂), 3.56 (6H, d, ³ $J_{H,P} = 11.4$ Hz, 2 × OCH₃), 7.37–7.42 (SH, m, ArH), 7.43–7.47 (2H, m, ArH), 7.52–7.57 (1H, m, ArH), 7.76 (2H, dd, J = 8.3, 1.3 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 26.7 (CH₂), 27.7 (CH₂), 30.1 (CH₂), 52.4 (d, ² $J_{C,P} = 5.7$ Hz, OCH₃), 119.7 (d, ¹ $J_{C,P} = 225.4$ Hz, C-sp²), 127.9 (ArC), 128.2 (ArC), 138.7 (ArC), 139.2 (d, ³ $J_{C,P} = 13.8$ Hz, C-sp²), 139.6 (ArC), 143.4 (d, ² $J_{C,P} = 17.1$ Hz, C-sp²), 186.26 (C=O¹⁸)ppm. HRMS (ESI): MNa⁺, found 420.1230. C₂₂H₂₂NNaO₃¹⁸OP requires 420.1227.

Dimethyl 3-(1-lodopent-1-enyl)-2-phenyl-2,4,5,6tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (15i) (mixture of E and Z isomers). Yellowish oil. Yield 0.28 g, 58%. ¹H NMR (400 MHz, CDCl₃): δ 0.72, 0.82 (3H, 2t, ³J = 7.2 Hz, ³J = 7.2 Hz, CH₃), 1.18 (2H, sext, ${}^{3}J$ = 7.2 Hz, <u>CH₂CH₃</u>), 1.99 (2H, q, ${}^{3}J$ = 7.2 Hz, <u>CH</u>₂CH₂CH₃), 2.31–2.38 (2H, 2m (overlapped), CH₂), 2.64 (2H, t, $^{3}J = 7.2$ Hz, <u>CH₂CH₂CH₂CH₂), 2.84–2.87</u> (2H, m, CH₂CH₂CH₂), 3.50 $(6H, d, {}^{3}J_{HP} = 11.6 \text{ Hz}, 2 \times \text{OCH}_{3}), 5.49, 6.32 (1H, 2t, {}^{3}J = 6.8 \text{ Hz}, {}^{3}J$ = 7.2 Hz, CH), 7.29–7.40 (5H, m ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 13.4, 13.5 (CH₃), 21.0 (CH₂), 25.5 (CH₂), 26.8 (CH₂), 30.0 (CH₂), 35.0, 38.5 (CH₂), 52.2 (d, ${}^{2}J_{HP} = 5.6$ Hz, 2 × OCH₃), 82.6, 90.3 (IC-sp²), 111.7 (d, ${}^{1}J_{CP} = 232.3$ Hz, C-sp²), 128.0 (ArC), 128.2 (ArC), 128.7 (ArC), 131.3 (d, ${}^{3}J_{CP} = 13.7$ Hz, C-sp²), 133.7 (d, ${}^{4}J_{CP} = 9.2 \text{ Hz}, \text{ C-sp}^{2}$), 138.9 (ArC), 143.8 (d, ${}^{2}J_{CP} = 16.7 \text{ Hz}, \text{ C-sp}^{2}$), 143.9, 148.8 (HC-sp²) ppm. HRMS (ESI): MNa⁺, found 508.0515. C₂₀H₂₅INNaO₃P requires 508.0509.

Dimethyl 3-(1,4-Diiodobut-1-enyl)-2-phenyl-2,4,5,6tetrahydrocyclopenta[c]pyrrol-1-ylphosphonate (150) (mixture of E and Z isomers). Yellowish oil. Yield 0.29 g, 49%. ¹H NMR (400 MHz, CDCl₃): δ 2.34–2.39 (2H, m, CH₂CH₂CH₂), 2.60– 2.68 (4H, 2m, CH₂ and <u>CH₂CH₂CH₂(CH₂)</u>, 2.84–2.90 (4H, m, CH₂CH₂<u>CH₂and</u>CH₂), 3.50 (6H, d, ³J_{HP} = 11.2 Hz, 2 × OCH₃), 5.59, 6.25 (1H, 2t, ³J = 6.8 Hz, ³J = 7.2 Hz, CH), 7.31–7.41 (5H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 1.5, 1.7 (CH₂), 25.6 (CH₂), 26.7 (CH₂), 30.0 (CH₂), 40.1 (CH₂), 52.2 (d, ²J_{C,P} = 5.6 Hz, 2 × OCH₃), 85.4, 92.6 (CIsp²), 112.4 (d, ¹J_{C,P} = 231.5 Hz, CH), 128.1 (ArC), 128.3 (ArC), 128.7 (ArC), 131.7 (d, ³J_{C,P} = 13.7 Hz, Csp²), 133.0 (d, ⁴J_{C,P} = 9.4 Hz, Csp²), 138.7 (ArC), 141.6, 146.0 (CHsp²), 143.8 (d, ²J_{C,P} = 16.9 Hz, Csp²) ppm. HRMS (ESI): MNa⁺, found 619.9309. C₁₉H₂₂I₂NNaO₃P requires 619.9319.

Dimethyl 3-2-Benzoyl-2-phenyl-4,5,6,7-tetrahydro-2*H*-isoindol-1-ylphosphonate (16a). Yellowish oil. Yield 0.25 g, 61%. IR (KBr): v_{max} 1646 (C=O) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.60–1.66 (2H, m, CH₂), 1.74–1.80 (2H, m, CH₂), 2.31 (2H, t, *J* = 6.4 Hz, CH₂), 2.89 (2H, t, *J* = 6.4 Hz, CH₂), 3.51 (6H, d, ³*J*_{H,P} = 11.2 Hz, 2 × OCH₃), 7.27 (4H, br. s, ArH), 7.34–7.38 (3H, m, ArH), 7.46–7.50 (1H, m, ArH), 7.66 (2H, dd, *J* = 8.2; 1.6 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 22.9 (CH₂), 23.0 (CH₂), 23.1 (CH₂), 23.5 (CH₂), 52.2 (d, ²*J*_{C,P} = 5.6 Hz, 2 × OCH₃), 120.7 (d, ¹*J*_{C,P} = 222.7 Hz, ArC), 127.1 (d, ³*J*_{C,P} = 14.5 Hz, ArC), 128.0 (ArC), 128.2 (ArC), 128.3 (ArC), 128.9 (ArC), 129.2 (ArC), 132.5 (ArC), 133.3 (d, ²*J*_{C,P} = 18.8 Hz, ArC), 134.7 (d, ³*J*_{C,P} = 9.6 Hz, ArC), 139.0 (ArC), 139.1 (ArC), 188.4 (d, ⁴*J*_{C,P} = 1.4 Hz, CO) ppm. HRMS (ESI): MNa⁺, found 432.1333. C₂₃H₂₄NNaO₄P requires 432.1335.

Dimethyl 3-Benzoyl-2-(4-methoxyphenyl)-4,5,6,7-tetrahydro-2H-isoindol-1-ylphosphonate (16b). Brownish oil. Yield 0.26 g, 60%. IR (KBr): v_{max} 1644 (C=O) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.59–1.64 (2H, m, CH₂), 1.72–1.78 (2H, m, CH₂), 2.28 (2H, t, *J* = 6.0 Hz, CH₂), 2.87 (2H, t, *J* = 6.0 Hz, CH₂), 3.53 (6H, d, ³J_{H,P} = 11.2 Hz, 2 × OCH₃), 3.75 (3H, s, OCH₃), 6.77 (2H, d, *J* = 8.8 Hz, ArH), 7.18 (2H, d, *J* = 8.8 Hz, ArH), 7.36 (3H, t, *J* = 7.6 Hz, ArH), 7.48 (1H, t, *J* = 7.6 Hz, ArH), 7.65–7.67 (2H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 22.8 (CH₂), 23.0 (2 × CH₂), 23.4 (CH₂), 52.2 (d, ²*J*_{C,P} = 5.5 Hz, 2 × OCH₃), 55.2 (OCH₃), 113.1 (ArC), 120.7 (d, ¹*J*_{C,P} = 222.8 Hz, ArC), 126.7 (d, ³*J*_{C,P} = 14.6 Hz, ArC), 128.2 (ArC), 129.2 (2 × ArC), 131.7 (ArC), 132.5 (ArC), 132.9 (d, ²*J*_{C,P} = 1.3 Hz CO) ppm. HRMS (ESI): MH⁺, found 440.1627. C₂₄H₂₆NO₅P requires 440.1621.

Dimethyl 2-(4-Chlorophenyl)-3-(4-methylbenzoyl)-4,5,6,7-tetrahydro-2*H***-isoindol-1-ylphosphonate (160).** Yellowish solid, mp 99–100 °C. Yield 0.32 g, 69%. IR (KBr): v_{max} 1652 (C=O) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.60–1.63 (2H, m, CH₂), 1.73–1.77 (2H, m, CH₂), 2.27 (2H, t, *J* = 6.4 Hz, CH₂), 2.39 (3H, s, CH₃), 2.87 (2H, t, *J* = 6.0 Hz, CH₂), 3.55 (6H, d, ³*J*_{H,P} = 11.2 Hz, 2 × OCH₃), 7.19–7.27 (6H, m, ArH), 7.60 (2H, d, *J* = 8.4 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 21.7 (CH₃), 22.8 (CH₂), 22.9 (CH₂), 23.0 (CH₂), 23.6 (CH₂), 52.2 (d, ²*J*_{C,P} = 5.5 Hz, 2 × OCH₃), 120.5 (d, ¹*J*_{C,P} = 222.6 Hz, ArC), 126.8 (d, ³*J*_{C,P} = 14.5 Hz, ArC), 128.2 (ArC), 129.1 (ArC), 129.4 (ArC), 129.5 (ArC), 133.4 (d, ²*J*_{C,P} = 18.7 Hz, ArC), 143.8 (ArC), 187.9 (d, ⁴*J*_{C,P} = 1.1 Hz, CO) ppm. HRMS (ESI): MNa⁺, found 480.1096. C₂₄H₂₅CINNaO₄P requires 480.1102.

Dimethyl 3-(1-lodopent-1-enyl)-2-(4-methoxyphenyl)-4,5,6,7-tetrahydro-2H-isoindol-1-ylphosphonate (17k). Yellowish oil. Yield 0.12 g, 22%. Compound exists as the geometrical isomers, which were not isolated due to the same R_f . ¹H NMR (400 MHz, CDCl₃): δ 0.79; 0.84 (3H, 2t, J = 7.2 Hz, J = 7.2 Hz, CH₃), 1.25–1.33 (2H, m, C=CHCH₂C<u>H₂</u>), 1.73–1.76 (4H, 2m (overlap.), 2 × CH_{2chex}), 2.03 (2H, q, J = 7.2 Hz, C=CHC<u>H</u>₂CH₂), 2.42 (2H, t, J = 5.6 Hz, CH_{2chex}), 2.81 (2H, br. s, CH_{2chex}), 3.49–3.55 (6H, 2m (overlap.), 2 × OCH₃), 3.82; 3.83 (3H, 2s, OCH₃), 5.58; 6.37 (1H, 2t, *J* = 6.8 Hz, *J* = 7.2 Hz, CH), 6.86 (2H, d, *J* = 8.8 Hz, ArH), 7.18 (2H, d, J = 8.8 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 13.4; 13.6 (CH₃), 21.1; 21.6 (CH₂), 22.1 (CH₂), 22.9; 23.0 (CH₂), 23.1 (CH₂), 23.4 (CH₂), 35.1; 38.5 (CH₂), 52.0 (d, ${}^{2}J_{C,P}$ = 5.4 Hz, 2 × OCH₃), 55.3; 55.3 (OCH₃), 82.8; 90.5 (2d, ${}^{4}J_{C,P} = 1.6$ Hz, ${}^{4}J_{C,P} = 1.6$ Hz, IC $_{\rm sp}2$), 113.0 (ArC), 114.4 (d, $^{1}J_{\rm C,P}$ = 197.7 Hz, ArC), 119.8 (d, $^{3}J_{\rm C,P}$ = 14.3 Hz, ArC), 129.9 (ArC), 131.4 (ArC), 133.0 (d, ${}^{2}J_{C,P}$ = 18.8 Hz, ArC), 137.4 (d, ${}^{3}J_{C,P} = 10.7$ Hz, ArC), 145.1; 149.5 (C_{sp}2H), 159.1; 159.2 (ArC) ppm. HRMS (ESI): MH⁺, found 530.0959. C₂₂H₃₀INO₄P requires 530.0952.

Dimethyl 3-(1,4-Diiodobut-1-enyl)-2-phenyl-4,5,6,7-tetrahydro-2H-isoindol-1-ylphosphonate (17l). Yellowish oil. Yield 0.51 g, 83%. Compound exists as the geometrical isomers, which were not isolated due to the same R_{f} ¹H NMR (400 MHz, CDCl₃): δ 1.76 (4H, 2br. s (overlap.), $2 \times CH_{2chex}$), 2.46 (2H, br. s, CH_{2chex}), 2.65 (2H, q, J = 6.8 Hz, C=CHC<u>H</u>₂CH₂), 2.83 (2H, br. s, CH_{2chex}), 2.93 (2H, t, J = 6.8 Hz, C=CHCH₂CH₂), 3.46-3.52 (6H, 2m (overlap.), 2 × OCH_3), 5.69; 6.31 (1H, 2t, J = 6.8 Hz, J = 6.8 Hz, CH), 7.28–7.30 (2H, m, ArH), 7.37-7.38 (3H, m, ArH) ppm. ¹³C NMR (100 MHz, CDCl₂): δ 22.0; 22.2 (CH₂), 22.8; 22.9 (CH₂), 23.0 (CH₂), 23.2; 23.3 (CH₂), 36.6 (CH₂), 40.0 (CH₂), 52.0 (d, ${}^{2}J_{C,P}$ = 5.5 Hz, 2 × OCH₃), 85.5; 92.7 (2d, ${}^{4}J_{C,P} = 1.6$ Hz, ${}^{\overline{4}}J_{C,P} = 1.5$ Hz, IC ${}_{sp}2$), 114.8 (d, ${}^{1}J_{C,P} =$ 227.4 Hz, ArC), 120.3 (d, ${}^{3}J_{C,P}$ = 14.2 Hz, ArC), 128.0; 128.1 (ArC), 128.2; 128.4 (ArC), 128.9 (ArC), 133.3 (d, ${}^{2}J_{C,P}$ = 18.7 Hz, ArC), 136.4 (d, ${}^{3}J_{C,P}$ = 10.7 Hz, ArC), 138.4; 138.5 (ArC), 143.2; 147.1 (C_{sp}2H) ppm. HRMS (ESI): MNa⁺, found 633.9469. C₂₀H₂₄ I₂NNaO₃P requires 633.9475.

Dimethyl 3-Benzoyl-2-(4-chlorophenyl)-2H-isoindol-1-yl-phosphonate (18b). Yellowish solid, mp 57–58 °C. Yield 0.19 g, 44%. IR (KBr): v_{max} 1649 (C=O) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.64 (6H, d, ³J_{H,P} = 11.6 Hz, 2 × OCH₃), 7.09 (2H, m, ArH), 7.23–7.27 (1H, m, ArH), 7.33–7.41 (4H, m, ArH), 7.45 (2H, t, J = 7.6 Hz, ArH), 7.58 (1H, t, J = 7.6 Hz, ArH), 7.77–7.79 (2H, m, ArH), 8.23 (1H, d, J = 8.8 Hz, ArH) ppm. ¹³C NMR (100 MHz,

CDCl₃): δ 52.7 (d, ²*J*_{C,P} = 5.5 Hz, 2 × OCH₃), 117.3 (d, ¹*J*_{C,P} = 223.8 Hz, ArC), 120.3 (ArC), 121.1 (ArC), 125.1 (ArC), 125.3 (ArC), 127.6 (d, ³*J*_{C,P} = 13.1 Hz, ArC), 128.4 (ArC), 128.5 (ArC), 129.0 (d, ³*J*_{C,P} = 8.3 Hz, ArC), 129.0 (ArC), 129.7 (ArC), 131.8 (d, ²*J*_{C,P} = 17.4 Hz, ArC), 132.9 (ArC), 135.1 (ArC), 137.4 (d, ³*J*_{C,P} = 1.1 Hz, ArC), 139.1 (ArC), 186.0 (d, ⁴*J*_{C,P} = 1.0 Hz, CO) ppm. HRMS (ESI): MNa⁺, found 462.0640. C₂₃H₁₉CINNaO₄P requires 462.0632.

Dimethyl 3-Formyl-2-(4-methoxyphenyl)-2H-isoindol-1-yl-phosphonate (18c). Brownish solid, mp 117–118 °C. Yield 0.2 g, 56%. IR (KBr): v_{max} 1655 (CHO) cm^{-1.} ¹H NMR (400 MHz, CDCl₃): δ 3.63 (6H, d, ${}^{3}J_{H,P}$ = 11.6 Hz, 2 × OCH₃), 3.89 (3H, s, OCH₃), 7.02 (2H, d, *J* = 8.8 Hz, ArH), 7.34–7.45 (4H, m, ArH), 8.18 (1H, d, *J* = 8.4 Hz, ArH), 8.41 (1H, dt, *J* = 8.4 Hz; 0.8 Hz, ArH), 9.55 (1H, s, CHO) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 52.8 (d, ${}^{2}J_{C,P}$ = 5.6 Hz, 2 × OCH₃), 55.5 (OCH₃), 113.8 (ArC), 118.5 (d, ${}^{1}J_{C,P}$ = 221.7 Hz, ArC), 120.7 (ArC), 120.9 (ArC), 126.0 (ArC), 127.3 (ArC), 127.4 (ArC), 128.9 (2 × ArC), 129.2 (ArC), 131.3 (d, ${}^{2}J_{C,P}$ = 17.0 Hz, ArC), 160.6 (ArC), 180.0 (d, ${}^{4}J_{C,P}$ = 1.7 Hz, CHO) ppm. HRMS (ESI): MNa⁺, found 382.0810. C₁₈H₁₈NNaO₅P requires 382.0815.

General Procedure for the Preparation of Compounds 20 and 21. A solution of starting corresponding acetylenic aldehyde 5, 6 (1 mmol), aniline (1 mmol), and dimethylphosphite (0.121 g, 1.1 mmol) in dry dichloromethane (5 mL) was stirred at room temperature. When the consumption of starting aldehyde was observed by TLC, 10 mol % copper(I) iodide (19.05 mg, 0.1 mmol) was added. When the full completion of the reaction was observed by TLC (after 1–4 h), the solvent was evaporated under reduced pressure, and the residue was purified by flash column chromatography eluting with hexane—ethyl acetate mixtures.

Dimethyl 6,7-Diphenyl-5,6-dihydro-1,6-naphthyridin-5-ylphosphonate (20a). Brownish solid, mp 146–147 °C. Yield 0.23 g, 58%. ¹H NMR (400 MHz, DMSO- d_6): δ 3.56 (3H, d, ${}^{3}J_{H,P}$ = 10.4 Hz, OCH₃), 3.69 (3H, d, ${}^{3}J_{H,P}$ = 10.8 Hz, OCH₃), 5.94 (1H, d, ${}^{1}J_{H,P}$ = 18.8 Hz, CH), 6.67 (1H, br. s, C_{sp}²H), 6.91 (1H, t, *J* = 7.2 Hz, ArH), 7.05 (2H, d, *J* = 7.6 Hz, ArH), 7.15 (2H, t, *J* = 7.6 Hz, ArH), 7.24–7.33 (4H, m, ArH), 7.57 (2H, d, *J* = 6.8 Hz, ArH), 7.63 (1H, d, *J* = 6.0 Hz, ArH), 8.73 (1H, br. s, ArH) ppm. ¹³C NMR (100 MHz, DMSO- d_6): δ 52.9 (d, ${}^{2}J_{C,P}$ = 4.1 Hz, OCH₃), 53.0 (d, ${}^{2}J_{C,P}$ = 4.2 Hz, OCH₃), 62.0 (d, ${}^{1}J_{C,P}$ = 158.9 Hz, CH), 103.6 (${}^{4}C_{sp}{}^{2}H$), 112.7 (ArC), 122.8 (3 × ArC), 127.5 (ArC), 128.4 (ArC), 128.6 (2 × ArC), 129.0 (ArC), 134.5 (ArC), 136.5 (ArC), 146.0 (ArC), 146.6 (d, ${}^{3}J_{C,P}$ = 6.7 Hz, ArC), 148.0 (ArC), 151.5 (${}^{3}C_{sp}{}^{2}$) ppm. HRMS (ESI): MNa⁺, found 415.1178. C₂₂H₂₁N₂NaO₃P requires 415.1182.

Dimethyl 6-(4-Methoxyphenyl)-7-phenyl-5,6-dihydro-1,6naphthyridin-5-ylphosphonate (20b). Yellow oil. Yield 0.26 g, 61%. ¹H NMR (400 MHz, DMSO- d_6): δ 3.56 (3H, d, ³ $J_{H,P}$ = 10.4 Hz, OCH₃), 3.61 (3H, s, OCH₃), 3.68 (3H, d, ³ $J_{H,P}$ = 10.4 Hz, OCH₃), 5.73 (1H, d, ¹ $J_{H,P}$ = 19.6 Hz, CH), 6.51 (1H, br. s, C_{sp}²H), 6.73 (2H, d, J = 8.8 Hz, ArH), 7.01 (2H, d, J = 8.4 Hz, ArH), 7.23–7.32 (4H, m, ArH), 7.55 (3H, d, J = 6.4 Hz, ArH), 8.45 (1H, br. s, ArH) ppm. ¹³C NMR (100 MHz, DMSO- d_6): δ 52.9 (d, ² $J_{C,P}$ = 2.0 Hz, OCH₃), 53.0 (d, ² $J_{C,P}$ = 2.1 Hz, OCH₃), 55.0 (OCH₃), 62.7 (d, ¹ $J_{C,P}$ = 161.8 Hz, CH), 111.5 (⁴C_{sp}²H), 113.9 (ArC), 121.6 (ArC), 124.6 (d, ⁴ $J_{C,P}$ = 1.2 Hz, ArC), 127.6 (ArC), 128.4 (ArC), 128.6 (ArC), 129.1 (ArC), 134.5 (d, ³ $J_{C,P}$ = 4.4 Hz, ArC), 136.6 (ArC), 140.3 (d, ³ $J_{C,P}$ = 7.3 Hz, ArC), 146.4 (ArC), 148.7 (ArC), 151.5 (³C_{sp}²), 155.3 (ArC) ppm. HRMS (ESI): MNa⁺, found 445.1282. C₂₃H₂₃N₂NaO₄P requires 445.1288.

Dimethyl 6-Phenyl-7-propyl-5,6-dihydro-1,6-naphthyridin-5-ylphosphonate (20c). Brownish oil. Yield 0.17 g, 52%. ¹H NMR (400 MHz, DMSO- d_6): δ 0.83 (3H, t, J = 7.2 Hz, CH₃), 1.46 (2H, sexst., J = 7.2 Hz, CH₂), 2.11–2.19 (1H, m, C<u>H</u>H), 2.23–2.31 (1H, m, CH<u>H</u>), 3.56 (3H, d, ³ $J_{H,P} = 10.4$ Hz, OCH₃), 3.66 (3H, d, ³ $J_{H,P} = 10.4$ Hz, OCH₃), 5.56 (1H, d, ² $J_{H,P} = 18.4$ Hz, CH), 6.13 (1H, br. s, C_{sp}³H), 7.13 (1H, t, J = 7.2 Hz, ArH), 7.24 (2H, d, J = 8.0 Hz, ArH), 7.32–7.36 (2H, m, ArH), 7.43–7.50 (2H, m, ArH), 8.45 (1H, br. s, ArH) ppm. ¹³C NMR (100 MHz, DMSO- d_6): δ 13.6 (CH₃), 20.7 (CH₂), 35.0 (CH₂), 52.7 (d, ² $J_{C,P} = 7.2$ Hz, OCH₃), 53.0 (d, ² $J_{C,P} = 6.9$ Hz, OCH₃), 63.6 (d, ¹ $J_{C,P} = 161.0$ Hz, CH), 109.7 (⁴C_{sp}²H), 120.6 (ArC), 124.2 (ArC), 124.2 (ArC), 128.9 (ArC), 129.4 (ArC), 134.2 (d, ³ $J_{C,P} = 5.0$ Hz, ArC), 145.9 (d, ³ $J_{C,P} = 5.7$ Hz, ArC), 148.4 (2 × ArC), 151.7 $(^{3}C_{sp}{}^{_{2}})$ ppm. HRMS (ESI): MH+, found 359.1526. $C_{19}H_{23}N_{2}O_{3}P$ requires 359.1519.

Dimethyl 7-Cyclopropyl-6-phenyl-5,6-dihydro-1,6-naphthyridin-5-ylphosphonate (20d). Brownish solid, mp 144–145 °C. Yield 0.22 g, 63%. ¹H NMR (400 MHz, DMSO- d_6): δ 0.71–0.75 (2H, m, CH(CH₂)₂), 0.80–0.84 (2H, m, CH(CH₂)₂), 1.33 (1H, p, *J* = 6.4 Hz, C<u>H</u>(CH₂)₂), 3.60 (3H, d, ³*J*_{H,P} = 10.4 Hz, OCH₃), 3.65 (3H, d, ³*J*_{H,P} = 10.4 Hz, OCH₃), 5.64 (1H, d, ²*J*_{H,P} = 18.8 Hz, CH), 5.90 (1H, br. s, C_{sp}²H), 7.06 (1H, br. s, ArH), 7.12–7.14 (1H, m, ArH), 7.32–7.37 (4H, m, ArH), 7.45 (1H, d, *J* = 6.0 Hz, ArH), 8.35 (1H, br. s, ArH) ppm. ¹³C NMR (100 MHz, DMSO- d_6): δ 8.4 (<u>C</u>H(CH₂)₂), 10.9 (CH(<u>C</u>H₂)₂), 14.2 (CH(<u>C</u>H₂)₂), 53.0 (d, ²*J*_{C,P} = 6.9 Hz, 2 × OCH₃), 62.5 (d, ¹*J*_{C,P} = 159.3 Hz, CH), 104.2 (⁴C_{sp}²H), 120.3 (ArC), 123.8 (ArC), 123.8 (ArC), 128.8 (ArC), 129.1 (ArC), 134.1 (d, ³*J*_{C,P} = 4.3 Hz, ArC), 146.0 (d, ³*J*_{C,P} = 5.5 Hz, ArC), 148.4 (ArC), 150.9 (ArC), 151.8 (³C_{sp}²) ppm. HRMS (ESI): MH⁺, found 357.1369. C₁₉H₂₂N₂O₃P requires 357.1363.

Dimethyl 7-Cyclopropyl-6-(4-methoxyphenyl)-5,6-dihydro-1,6-naphthyridin-5-ylphosphonate (20e). Brownish solid, mp 111–112 °C. Yield 0.27 g, 59%. ¹H NMR (400 MHz, DMSO-*d*₆): δ 0.62–0.82 (4H, m, CH(CH₂)₂), 1.22–1.24 (1H, m, CH(CH₂)₂), 3.59 (3H, d, ³*J*_{H,P} = 10.4 Hz, OCH₃), 3.63 (3H, d, ³*J*_{H,P} = 10.4 Hz, OCH₃), 3.73 (3H, s, OCH₃), 5.49 (1H, d, ²*J*_{H,P} = 17.6 Hz, CH), 5.78 (1H, br. s, C_{sp}²H), 6.91 (2H, d, *J* = 8.4 Hz, ArH), 7.04 (1H, d, *J* = 8.4 Hz, ArH), 7.29 (2H, d, *J* = 8.0 Hz, ArH), 7.39–7.52 (1H, m, ArH), 8.36 (1H, br. s, ArH) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 7.7 (<u>C</u>H(CH₂)₂), 10.7 (CH(<u>CH₂)₂), 14.2 (CH(<u>CH₂)₂</u>), 53.0 (d, ²*J*_{C,P} = 4.5 Hz, OCH₃), 53.0 (d, ²*J*_{C,P} = 4.7 Hz, OCH₃), 55.2 (OCH₃), 63.2 (d, ¹*J*_{C,P} = 159.4 Hz, CH), 102.0 (⁴C_{sp}²H), 114.1 (ArC), 120.2 (ArC), 126.4 (ArC), 128.7 (ArC), 134.1 (d, ³*J*_{C,P} = 4.8 Hz, ArC), 139.2 (d, ³*J*_{C,P} = 5.1 Hz, ArC), 148.3 (ArC), 151.7 (ArC), 152.3 (³C_{sp}²), 156.4 (ArC) ppm. HRMS (ESI): MH⁺, found 387.1462. C₂₀H₂₄N₂O₄P requires 387.1468.</u>

Dimethyl 6-Phenyl-5,6-dihydro-1,6-naphthyridin-5-yl-phosphonate (20f). Brownish oil. Yield 0.16 g, 50%. ¹H NMR (400 MHz, DMSO- d_6): δ 3.52 (3H, d, ${}^3J_{H,P}$ = 10.4 Hz, OCH₃), 3.56 (3H, d, ${}^3J_{H,P}$ = 10.4 Hz, OCH₃), 5.90 (1H, d, J = 6.4 Hz, $C_{sp}{}^{2}$ H), 6.08 (1H, d, ${}^2J_{H,P}$ = 13.6 Hz, CH), 7.04 (1H, t, J = 7.2 Hz, ArH), 7.08–7.10 (2H, m, ArH, $C_{sp}{}^{2}$ H), 7.26 (2H, d, J = 8.0 Hz, ArH), 7.36 (2H, t, J = 7.6 Hz, ArH), 7.53 (1H, d, J = 7.2 Hz, ArH), 8.33 (1H, br. s, ArH) ppm. ¹³C NMR (100 MHz, DMSO- d_6): δ 52.8 (d, ${}^2J_{C,P}$ = 7.3 Hz, OCH₃), 52.9 (d, ${}^2J_{C,P}$ = 7.2 Hz, OCH₃), 57.6 (d, ${}^1J_{C,P}$ = 152.6 Hz, CH), 106.4 (d, ${}^3J_{C,P}$ = 1.4 Hz, ${}^4C_{sp}{}^2$ H), 117.2 (d, ${}^4J_{C,P}$ = 1.4 Hz, ArC), 119.6 (ArC), 120.7 (ArC), 121.8 (ArC), 129.0 (ArC), 134.3 (d, ${}^3J_{C,P}$ = 2.2 Hz, ArC), 134.6 (d, ${}^3J_{C,P}$ = 6.0 Hz, ArC), 144.2 (${}^3C_{sp}{}^2$), 148.6 (ArC), 151.4 (ArC) ppm. HRMS (ESI): MH⁺, found 317.1046. C₁₆H₁₈N₂O₃P requires 317.1050.

Dimethyl 6-Phenyl-7-((tetrahydro-2H-pyran-2-yloxy)methyl)-5,6-dihydro-1,6-naphthyridin-5-ylphosphonate (20g). Brownish oil. Yield 0.22 g, 51%. Compound exists as the diastereomers, which were not isolated due to the same R_{f} . ¹H NMR (400 MHz, DMSO- d_6): δ 1.34–1.52 (4H, 2m (overlap.), 2 × CH₂), 1.53–1.68 (2H, m, CH₂), 3.23–3.36 (2H, m, CH₂), 3.60; 3.63 $(3H, 2d, {}^{3}J_{H,P} = 8.8 \text{ Hz}, {}^{3}J_{H,P} = 8.8 \text{ Hz}, \text{ OCH}_{3}), 3.66; 3.67 (3H, 2d, 2d, 2d, 2d)$ ${}^{3}J_{\text{H,P}} = 10.4 \text{ Hz}, {}^{3}J_{\text{H,P}} = 10.4 \text{ Hz}, \text{ OCH}_{3}$, 4.02; 4.06 (1H, 2d, J = 8.4Hz, *J* = 8.4 Hz, =CC<u>H</u>HO), 4.21; 4.27 (1H, 2d, *J* = 13.6 Hz, *J* = 14.0 Hz, =CCHHO), 4.43; 4.71 (1H, 2br. s, O-CH-O), 5.57; 5.62 (1H, 2d, ${}^{2}J_{H,P}$ = 10.8 Hz, ${}^{2}J_{H,P}$ = 11.2 Hz, PCH), 6.29 (1H, br. s, $C_{sp}{}^{2}H$), 7.13-7.16 (2H, 2m (overlap.), 2 × ArH), 7.27-7.30 (2H, m, ArH), 7.33–7.37 (2H, m, ArH), 7.48 (1H, d, J = 6.8 Hz, ArH), 8.40 (1H, br. s, ArH) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 18.6; 18.7 (CH₂), 24.8; 24.9 (CH₂), 29.8; 29.9 (CH₂), 52.9; 53.1 (2d, ${}^{2}J_{C,P}$ = 7.1 Hz, ${}^{2}J_{C,P}$ = 7.0 Hz, OCH₃), 53.2; 53.2 (2d, ${}^{2}J_{C,P}$ = 3.0 Hz, ${}^{2}J_{C,P}$ = 3.1 Hz, OCH₃), 60.6; 61.0 (CH₂), 62.6 (d, ${}^{1}J_{C,P}$ = 160.9 Hz, PCH), 64.1; 65.0 (=C<u>C</u>H₂O), 96.0; 97.7 (O-CH-O), 110.3; 110.5 (⁴C_{sp}²H), 119.8 (ArC), 121.3 (ArC), 123.7; 124.2 (ArC), 124.4; 124.6 (ArC), 129.0; 129.0 (ArC), 134.5 (d, ${}^{3}J_{C,P}$ = 3.8 Hz, ArC), 144.6; 145.0 (2d, ${}^{3}J_{C,P}$ = 1.7 Hz, ${}^{3}J_{C,P}$ = 1.9 Hz, ArC), 145.5; 145.7 (2d, ${}^{3}J_{C,P}$ = 5.6 Hz, ${}^{3}C_{sp}^{-2}$), 148.7 (ArC), 151.0 (ArC) ppm. HRMS (ESI): MH⁺, found 431.1728. C₂₂H₂₈N₂O₅P requires 431.1730.

Dimethyl 6-(4-Methoxyphenyl)-7-((tetrahydro-2H-pyran-2yloxy)methyl)-5,6-dihydro-1,6-naphthyridin-5-ylphosphonate (20h). Yellowish oil. Yield 0.22 g, 48%. Compound exists as the diastereomers, which were not isolated due to the same R_f. ¹H NMR (400 MHz, DMSO- d_6): δ 1.38–1.47 (4H, 2m (overlap.), $2 \times CH_2$), 1.52-1.69 (2H, m, CH₂), 3.42-3.48 (2H, m, CH₂), 3.59; 3.62 (3H, 2d, ${}^{3}J_{H,P}$ = 10.8 Hz, ${}^{3}J_{H,P}$ = 10.8 Hz, OCH₃), 3.65; 3.65 (3H, 2d, ${}^{3}J_{H,P}$ = 10.4 Hz, ³*J*_{H,P} = 10.4 Hz, OCH₃), 3.73 (3H, s, OCH₃), 3.93; 3.97 (1H, 2d, J = 6.8 Hz, J = 6.8 Hz, =CC<u>H</u>HO), 4.12; 4.18 (1H, 2d, J = 13.6 Hz, J = 13.6 Hz, =CCH<u>H</u>O), 4.40; 4.69 (1H, 2t, J = 3.2 Hz, J = 3.2 Hz, O-CH-O), 5.42; 5.46 (1H, 2d, ${}^{2}J_{H,P}$ = 6.8 Hz, ${}^{2}J_{H,P}$ = 6.8 Hz, PCH), 6.09; 6.15 (1H, 2br. s, $C_{sp}^{2}H$), 6.91; 6.91 (2H, 2d, J = 9.2 Hz, J= 8.8 Hz, ArH), 7.09 (1H, J = 5.6 Hz, ArH), 7.24; 7.25 (2H, 2d, J = 8.8 Hz, J = 8.8 Hz, ArH), 7.42 (1H, d, J = 7.6 Hz, ArH), 8.31 (1H, br. s, ArH) ppm. ¹³C NMR (100 MHz, DMSO-d₆): δ 18.6; 18.6 (CH₂), 24.8; 24.9 (CH₂), 29.8 (CH₂), 52.8; 53.0 (2d, ${}^{2}J_{C,P}$ = 7.0 Hz, ${}^{2}J_{C,P}$ = 6.8 Hz, POCH₃), 53.0; 53.1 (2d, ${}^{2}J_{C,P} = 6.5$ Hz, ${}^{2}J_{C,P} = 6.7$ Hz, POCH₃), 55.2 (OCH₃), 60.6; 60.9 (CH₂), 63.0 (d, ${}^{1}J_{C,P}$ = 160.0 Hz, CH), 64.3; 65.1 (=C<u>C</u>H₂O), 96.0; 97.6 (O-CH-O), 107.9; 108.2 (${}^{4}C_{sp}{}^{2}H$), 114.1; 114.2 (ArC), 118.8 (ArC), 120.9 (ArC), 126.3 (ArC), 126.7 (ArC), 134.3; 134.4 (2d, ${}^{3}J_{C,P} = 2.7$ Hz, ${}^{3}J_{C,P} = 2.9$ Hz ArC), 138.6; 138.7 (2d, ${}^{3}J_{C,P} = 5.3$ Hz, ${}^{3}J_{C,P} = 5.3$ Hz, ArC), 145.2; 145.6 (2d, ${}^{3}J_{C,P} = 2.2$ Hz, ${}^{3}J_{C,P} = 2.0$ Hz, ${}^{3}C_{sp}^{2}$), 148.6 (ArC), 151.2; 151.3 (2d, ${}^{3}J_{C,P} = 3.1$ Hz, ${}^{3}J_{C,P} = 3.2$ Hz, ArC), 156.7; 156.8 (ArC) ppm. HRMS (ESI): MH⁺, found 461.1837. C₂₃H₃₀N₂O₆P requires 461.1836.

Dimethyl 2-(4-Methoxyphenyl)-3-phenyl-1,2-dihydrobenzo-[b][1,6]naphthyridin-1-ylphosphonate (21a). Yellow solid, mp 188–190 °C. Yield 0.27 g, 48%. ¹H NMR (300 MHz, CDCl₃): δ 3.63 $(3H, d, {}^{3}J_{HP} = 10,5 \text{ Hz}, OCH_{3}), 3.65 (3H, s, OCH_{3}), 3.76 (3H, d, {}^{3}J_{HP})$ = 10,8 Hz, OCH₃), 5.50 (1H, d, ${}^{1}J_{HP}$ = 20.1 Hz, C₁H), 6.66 (2H, d, ${}^{3}J$ = 9.0 Hz, ArH), 6.80 (1H, s, C₄H), 7.49 (2H, d, ${}^{3}I$ = 9.0 Hz, ArH), 7.25–7.29 (3H, m, ArH), 7.41 (1H, td, ${}^{3}J$ = 7.3 Hz, ${}^{4}J$ = 0.9 Hz, ArH), 7.63–7.67 (3H, m, ArH), 7.71 (1H, d, ³J = 8.1 Hz, ArH), 7.81 (1H, d, ${}^{4}J_{HP}$ = 3.3 Hz, ArH), 8.06 (1H, d, ${}^{3}J$ = 8.4 Hz, ArH) ppm. ${}^{13}C$ NMR (75 MHz, CDCl₃): δ 53.3 (d, ²*J*_{CP} = 7.3 Hz, OCH₃), 53.6 (d, ²*J*_{CP} = 6.5 Hz, OCH₃), 55.2 (OCH₃), 65.0 (¹*J*_{CP} = 163.5 Hz, CH), 110.2 (C₄sp²), 114.0 (ArC), 120.7 (ArC), 125.4 (ArC), 125.4 (ArC), 127.2 (⁴J_{CP}) = 2.4 Hz, ArH), 127.6 (ArC), 127.8 (ArC), 128.3 (ArC), 128.4 (ArC), 128.9 (ArC), 129.1 (ArC), 130.0 (ArC), 134.2 (d, ${}^{3}J_{CP} = 9.0$ Hz, ArC), 136.5 (ArC), 140.7 (d, ${}^{3}J_{CP}$ = 5.7 Hz, ArC), 147.8 (ArC), 151.8 (ArC), 156.2 (C₃-sp²) ppm. HRMS (ESI): MH⁺, found 473.1626. C₂₇H₂₆N₂O₄P requires 473.1625.

Dimethyl 3-Butyl-2-phenyl-1,2-dihydrobenzo[b][1,6]naphthyridin-1-ylphosphonate (21b). Yellow solid, mp 149-151 °C. Yield 0.2 g, 48%. ¹H NMR (300 MHz, CDCl₃): δ 0.82 (3H, t, ³J = 7.2 Hz, CH₃), 1.24–1.35 (2H, m, CH₂), 1.50–1.60 (2H, m, CH₂), 2.18–2.39 (2H, m, CH₂), 3.60 (3H, d, ${}^{3}J_{HP}$ = 10,5 Hz, OCH₃), 3.72 $(3H, d, {}^{3}J_{HP} = 10,5 Hz, OCH_{3}), 5.30 (1H, dd, {}^{1}J_{HP} = 19.2 Hz, {}^{4}J_{HH} =$ 0.6 Hz, C1H), 6.34 (1H, s, C4H), 7.13-7.19 (1H, m, ArH), 7.30-7.37 (5H, m, ArH), 7.57–7.66 (2H, m, ArH), 7.70 (1H, d, $^4J_{\rm HP}$ = 3.0 Hz, ArH), 7.97 (1H, d, 3J = 8.4 Hz, ArH) ppm. $^{13}{\rm C}$ NMR (75 MHz, $CDCl_3$): δ 13.7 (CH₃), 22.2 (CH₂), 30.0 (CH₂), 33.5 (CH₂), 53.2 (d, ${}^{2}J_{CP}$ = 7.2 Hz, OCH₃), 53.5 (d, ${}^{2}J_{CP}$ = 7.2 Hz, OCH₃), 65.7 (${}^{1}J_{CP}$ = 161.4 Hz, CH), 108.3 (C4-sp²), 119.3 (ArC), 124.9 (ArC), 125.3 (ArC), 125.4 (ArC), 127.0 (${}^{4}\bar{J}_{CP}$ = 2.1 Hz, ArC), 127.5 (ArC), 127.8 (ArC), 129.1 (ArC), 129.8 (ArC), 133.6 (d, ${}^{3}J_{CP}$ = 8.4 Hz, ArC), 146.2 (d, ${}^{3}J_{CP} = 4.8$ Hz, ArC), 147.8 (ArC), 152.1 (ArC), 153.1 (C₃-sp²) ppm. HRMS (ESI): MH+, found 423.1835. C24H28N2O3P requires 423.1838

Dimethyl 3-Butyl-2-(4-methoxyphenyl)-1,2-dihydrobenzo-[*b*][1,6]naphthyridin-1-ylphosphonate (21c). Yellow solid, mp 48–50 °C. Yield 0.18 g, 40%. ¹H NMR (300 MHz, CDCl₃): δ 0.81 (3H, t, ³*J* = 7.2 Hz, CH₃), 1.20–1.35 (2H, m, CH₂), 1.47–1.57 (2H, m, CH₂), 2.09–2.30 (2H, m, CH₂), 3.58 (3H, d, ³*J*_{HP} = 10,5 Hz, OCH₃), 3.70 (3H, d, ³*J*_{HP} = 10,8 Hz, OCH₃), 3.77 (3H, s, OCH₃), 5.19 (1H, dd, ¹*J*_{HP} = 19.0 Hz, ⁴*J*_{HH} = 0.6 Hz, C₁H), 6.20 (1H, s, C₄H), 6.83 (2H, d, ³*J* = 9.3 Hz, ArH), 7.25–7.35 (3H, m, ArH), 7.55–7.67 (3H, m, ArH), 7.97 (1H, d, ³*J* = 8.4 Hz, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 13.7 (CH₃), 22.1 (CH₂), 29.9 (CH₂), 33.5 (CH₂), 53.2 (d, ²*J*_{CP} = 6.6 Hz, OCH₃), 53.2 (d, ²*J*_{CP} = 7.2 Hz, OCH₃), 55.4 (OCH₃), 64.9 (${}^{1}J_{CP}$ = 160.6 Hz, CH), 106.1 (C₄-sp²), 114.2 (ArC), 119.2 (ArC), 124.6 (ArC), 126.9 (${}^{4}J_{CP}$ = 2.1 Hz, ArC), 127.5 (ArC), 127.6 (2 × ArC), 129.7 (ArC), 133.5 (d, ${}^{3}J_{CP}$ = 8.4 Hz, ArC), 139.2 (d, ${}^{3}J_{CP}$ = 4.3 Hz, ArC), 147.7 (ArC), 152.3 (ArC), 153.8 (C₃-sp²), 157.6 (ArC) ppm. HRMS (ESI): MH⁺, found 453.1941. C₂₅H₃₀N₂O₄P requires 453.1938.

Dimethyl 3-Butyl-2-(4-fluorophenyl)-1,2-dihydrobenzo[b]-[1,6]naphthyridin-1-ylphosphonate (21d). Yellow oil. Yield 0.24 g, 52%. ¹H NMR (300 MHz, CDCl₃): δ 0.82 (3H, t, ³J = 7.5 Hz, CH₃), 1.19–1.39 (2H, m, CH₂), 1.54 (2H, quint, ${}^{3}J$ = 7.8 Hz, CH₂), 2.12–2.31 (2H, m, CH₂), 3.60 (3H, d, ${}^{3}J_{HP}$ = 10,5 Hz, OCH₃), 3.71 $(3H, d, {}^{3}J_{HP} = 10.8 \text{ Hz}, \text{ OCH}_{3}), 5.21 (1H, d, {}^{1}J_{HP} = 19.2 \text{ Hz}, C_{1}\text{H}),$ 6.27 (1H, s, C₄H), 6.97-7.03 (2H, m, ArH), 7.29-7.37 (3H, m, ArH), 7.57–7.66 (2H, m, ArH), 7.70 (1H, d, ${}^{4}J_{HP}$ = 3.6 Hz, ArH), 7.95 (1H, d, ${}^{3}J$ = 8.7 Hz, ArH) ppm. ${}^{13}C$ NMR (75 MHz, CDCl₃): δ 13.6 (CH₃), 22.2 (CH₂), 29.9 (CH₂), 33.5 (CH₂), 53.3 (d, ²J_{CP} = 7.3 Hz, OCH₃), 53.4 (d, ${}^{2}J_{CP}$ = 7.4 Hz, OCH₃), 64.8 (${}^{1}J_{CP}$ = 161.6 Hz, CH), 107.6 (C₄sp²), 115.9 (d ²J_{CF} = 22.5 Hz, ArC), 119.2 (ArC), 124.9 (ArC), 127.0 (ArC), 127.5 (ArC), 127.6 (d, ${}^{3}J_{CF}$ = 8.5 Hz, ArC), 127.8 (ArC), 129.8 (ArC), 133.6 (d, ${}^{3}J_{CP}$ = 8.1 Hz, ArC), 142.2 (ArC), 147.7 (ArC), 152.0 (ArC), 153.0 (C_3 -sp²), 160.4 (d ${}^{1}J_{CF}$ = 244.7 Hz, ArC) ppm. HRMS (ESI): MH⁺, found 457.1441 C₂₄H₂₇ClN₂O₃P requires 457.1442.

Dimethyl 2-(4-Methoxyphenyl)-3-propyl-1,2-dihydrobenzo-[b][1,6]naphthyridin-1-ylphosphonate (21e). Yellow solid, mp 47-49 °C. Yield 0.3 g, 68%. ¹H NMR (400 MHz, CDCl₃): δ 0.87 $(3H, t, {}^{3}J = 7.6 \text{ Hz}, \text{ CH}_{3}), 1.54-1.56 (2H, m, \text{ CH}_{2}), 2.11-2.15 \text{ and}$ 2.20–2.23 (2H, 2m, CH₂), 3.58 (3H, d, ${}^{3}J_{HP}$ = 10,4 Hz, OCH₃), 3.70 $(3H, d, {}^{3}J_{HP} = 10,4 \text{ Hz}, \text{ OCH}_{3}), 3.76 (3H, s, \text{ OCH}_{3}), 5.18 (1H, d, {}^{1}J_{HP})$ = 19.2 Hz, C_1H), 6.19 (1H, s, C_4H), 6.82 (2H, d, ³J = 9.0 Hz, ArH), 7.25 (2H, d, ${}^{3}J$ = 8,4 Hz, ArH), 7.31 (1H, t, ${}^{3}J$ = 8,4 Hz, ArH), 7.57 ${}^{4}J$ = 3.6 Hz, ArH), 7.92 (1H, d, ${}^{3}J$ = 8.4 Hz, ArH) ppm. ${}^{13}C$ NMR (100 MHz, CDCl₃): δ 13.8 (CH₃), 21.1 (CH₂), 36.01 (CH₂), 53.3 (d, ²J_{CP} = 7.3 Hz, OCH₃), 53.4 (d, ${}^{2}J_{CP}$ = 7.3 Hz, OCH₃), 55.4 (OCH₃), 64.5 $({}^{1}J_{CP} = 161.6 \text{ Hz}, \text{ CH}), 106.4 (C_{4}\text{-sp}^{2}), 114.3 (ArC), 124.6 (ArC),$ 126.9 (J_{CP} = 2.1 Hz, ArC), 127.5 (ArC), 127.6 (2 × ArC), 127.8 (ArC), 129.6 (ArC), 133.4 (J_{CP} = 8.5 Hz, ArC), 139.3 (${}^{4}J_{CP}$ = 4.6 Hz, ArC), 147.9 (ArC), 152.3 (ArC), 153.4 (C₃-sp²), 157.6 (ArC) ppm. HRMS (ESI): MH⁺, found 439.1791. C₂₄H₂₈N₂O₄P requires 439.1787.

Dimethyl 3-Cyclopropyl-2-(4-methoxyphenyl)-1,2dihydrobenzo[b][1,6]naphthyridin-1-ylphosphonate (21f). Yellow solid, mp 60-61 °C. Yield 0.29 g, 67%. ¹H NMR (300 MHz, CDCl₃): δ 0.72–0.83 (3H, m, CH(<u>CH₂</u>)₂), 1.00–1.06 (1H, m, $CH(\underline{CH}_2)_2$, 1.28–1.35 (1H, m, $\underline{CH}(CH_2)_2$), 3.60 (3H, d, ${}^{3}J_{HP}$ = 10.8 Hz, OCH₃), 3.74 (3H, d, ${}^{3}J_{HP}$ = 10.5 Hz, OCH₃), 3.78 (3H, s, OCH₃), 5.29 (1H, d, ${}^{1}J_{HP}$ = 18.6 Hz, C₁H), 5.91 (1H, s, C₄H), 6.85 (2H, d, ${}^{3}J$ = 9.0 Hz, ArH), 7.32 (1H, t, ${}^{3}J$ = 7.2 Hz, ArH), 7.38 (2H, d, ${}^{3}J$ = 9.0 Hz, ArH), 7.55–7.66 (3H, m, ArH), 7.92 (1H, d, ${}^{3}J$ = 8.1 Hz, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 8.4 (CH(<u>CH₂</u>)₂), 11.5 (CH(<u>CH₂</u>)₂), 14.7 (<u>CH</u>(CH₂)₂), 53.2 (d, ${}^{2}J_{CP}$ = 7.4 Hz, OCH₃), 53.7 (d, ${}^{2}J_{CP}$ = 6.3 Hz, OCH₃), 55.4 (OCH₃), 65.0 (d, ${}^{1}J_{CP}$ = 160.2 Hz, C₁H), 99.7 (C₄sp²), 114.1 (ArC), 119.5 (ArC), 124.6 (ArC), 126.7 (ArC), 127.4 (ArC), 127.4 (2 × ArC), 129.8 (ArC), 133.4 (d, ${}^{3}J_{CP} = 8.3$ Hz, ArC), 139.3 (d, ${}^{3}J_{CP}$ = 4.5 Hz, ArC), 147.5 (ArC), 152.4 (ArC), 156.0 (C₃sp²), 157.4 (ArC) ppm. HRMS (ESI): MH⁺, found 437.1633. C₂₄H₂₆N₂O₄P requires 437.1625.

Dimethyl 3-Cyclopropyl-2-(4-fluorophenyl)-1,2dihydrobenzo[*b*][1,6]naphthyridin-1-ylphosphonate (21g). Yellow solid, mp 60–61 °C. Yield 0.28 g, 67%. ¹H NMR (300 MHz, CDCl₃): δ 0.77–0.89 (3H, m, CH(<u>CH₂)₂</u>), 1.03–1.10 (1H, m, CH(<u>CH₂)₂</u>), 1.27–1.36 (1H, m, <u>CH</u>(CH₂)₂), 3.63 (3H, d, ³J_{HP} = 10.8 Hz, OCH₃), 3.76 (3H, d, ³J_{HP} = 10.5 Hz, OCH₃), 5.30 (1H, dd, ¹J_{HP} = 18.3 Hz, ⁴J = 0.6 Hz, C₁H), 6.04 (1H, s, C₄H), 7.00–7.06 (2H, m, ArH), 7.34–7.39 (1H, m, ArH), 7.46–7.48 (2H, m, ArH), 7.59–7.67 (2H, m, ArH), 7.71 (1H, d, ⁴J_{HP} = 3.6 Hz, ArH), 8.00 (1H, d, ³J = 8.4 Hz, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 8.7 (CH(<u>CH₂)₂</u>), 11.8 (CH(<u>CH₂)₂</u>), 14.8 (<u>CH</u>(CH₂)₂), 53.3 (d, ²J_{CP} = 7.4 Hz, OCH₃), 53.8 (d, ²J_{CP} = 6.7 Hz, OCH₃), 64.8 (d, ¹J_{CP} = 161.0 Hz, C₁H), 100.4 (C₄sp²), 115.8 (d ²J_{CF} = 22.5 Hz, ArC), 119.6 (ArC), 125.0 (ArC), 126.6 (ArC), 127.1 (ArC), 127.4 (ArC), 127.5 (ArC), 127.5 (ArC), 130.1 (ArC), 133.8 (d, ${}^{3}J_{CP} = 7.1$ Hz, ArC), 142.1 (ArC), 151.8 (C_{3} -sp²), 160.3 (d ${}^{2}J_{CF} = 244.8$ Hz, ArC) ppm. HRMS (ESI): MH⁺, found 425.1424. $C_{23}H_{23}FN_{2}O_{3}P$ requires 425.1425.

Dimethyl 2-(4-Chlorophenyl)-3-cyclopropyl-1,2dihydrobenzo[b][1,6]naphthyridin-1-ylphosphonate (21h). Yellow solid, mp 78-80 °C. Yield 0.22 g, 50%.¹H NMR (300 MHz, $CDCl_3$): δ 0.79–0.92 (3H, m, $CH(\underline{CH}_2)_2$), 0.99–1.05 (1H, m, $CH(\underline{CH}_2)_2$, 1.29–1.38 (1H, m, $\underline{CH}(CH_2)_2$), 3.61 (3H, d, ${}^{3}J_{HP} = 10.5$ Hz, OCH₃), 3.74 (3H, d, ${}^{3}J_{HP}$ = 10.8 Hz, OCH₃), 5.31 (1H, d, ${}^{1}J_{HP}$ = 18.3 Hz, C₁H), 6.04 (1H, s, C₄H), 7.26-7.39 (5H, m, ArH), 7.57-7.66 (2H, m, ArH), 7.69 (1H, d, ${}^{4}J_{HP}$ = 3.3 Hz, ArH), 7.81 (1H, d, ${}^{3}J$ = 8.4 Hz, ArH) ppm. ^{13}C NMR (75 MHz, CDCl₃): δ 9.0 (CH(<u>CH₂</u>)₂), 11.9 (CH(<u>CH</u>₂)₂), 14.7 (<u>CH</u>(CH₂)₂), 53.3 (d, ${}^{2}J_{CP}$ = 7.4 Hz, OCH₃), 53.8 (d, ${}^{2}J_{CP}$ = 6.9 Hz, OCH₃), 64.5 (d, ${}^{1}J_{CP}$ = 161.3 Hz, C₁H), 102.2 (C₄-sp²), 119.7 (ArC), 125.0 (ArC), 126.3 (ArC), 126.7 (ArC), 127.5 (d, J_{CP} = 3.3 Hz, ArC), 129.1 (ArC), 129.9 (ArC), 130.4 (ArC), 133.6 $(d_{1}^{3}J_{CP} = 8.1 \text{ Hz}, \text{ArC}), 144.6 (d_{1}^{3}J_{CP} = 4.2 \text{ Hz}, \text{ArC}), 147.5 (ArC),$ 151.8 (ArC), 154.8 (C3-sp2) ppm. HRMS (ESI): MH+, found 441.1147. C23H23ClN2O3P requires 441.1129

Synthesis of (E)-4-Methoxy-N-{[2-(phenylethynyl)quinolin-3yl]methylene}aniline (22). A mixture of 2-phenylethynylquinoline-3-carbaldehyde 6a (100 mg, 0.389 mmol), 4-methoxyaniline (47.84 mg, 0.389 mmol), and 3 Å MS (100 mg) was stirred in dry chloroform (5 mL). When completion of the reaction was observed by TLC, the solvent was evaporated under reduced pressure, and the residue was purified by flash column chromatography eluting with hexane-ethyl acetate mixtures to afford 0.16 g (88%) of yellow solid. Mp 175-176 °C. IR (KBr): v_{max} 2219 (C=C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.89 (3H, s, OCH₃), 7.02 (2H, d, ³J = 8.9 Hz, ArH), 7.40 (2H, d, ³J = 8.9 Hz, ArH), 7.42–7.47 (3H, m, ArH), 7.61 (1H, ddd, ${}^{3}J$ = 8.1 and 6.9 Hz, ${}^{4}J$ = 1.1 Hz, ArH), 7.70–7.72 (2H, m, ArH), 7.80 (1H, ddd, ${}^{3}J$ = 8.4 and 6.9 Hz, ⁴J = 1.4 Hz, ArH), 7.96 (1H, d, ³J = 7.9 Hz, ArH), 8.18 (1H, d, ${}^{3}J$ = 8.5 Hz, ArH), 9.06 (1H, s, ArH), 9.28, s, CH=N) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 55.5 (OCH₃), 86.68 (C_{sp}), 94.55 (C_{sp}), 114.2 (ArC), 121.8 (ArC), 122.6 (ArC), 127.2 (ArC), 127.7 (ArC), 128.6 (ArC), 128.8 (ArC), 129.2 (ArC), 129.5 (ArC), 130.2 (ArC), 131.3 (ArC), 132.2 (ArC), 134.3 (ArC), 143.6 (ArC), 144.6 (ArC), 149.0 (ArC), 154.8 (ArC), 158.9 (ArC) ppm. HRMS (ESI): MH⁺, found 363.1500. C₂₅H₁₉N₂O requires 363.1497.

Synthesis of Dimethyl (4-Methoxyphenylamino)[2-(pent-1ynyl)quinolin-3-yl]methylphosphonate (23). To a solution of 2-(pent-1-ynyl)quinoline-3-carbaldehyde 6c (100 mg, 0.448 mmol), 4methoxyaniline (55.15 mg, 0.448 mmol), and dimethylphoshite (54.21 mg, 0.493 mmol) was added gold(III) bromide (19.58 mg, 0.0448 mmol). When the completion of the reaction was observed by TLC, the solvent was evaporated under reduced pressure, and the residue was purified by flash column chromatography eluting with hexaneethyl acetate mixtures to afford 0.16 g (83%) of yellow solid. Mp 118-119 °C. IR (KBr): v_{max} 3298 (NH), 2211 (C=C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.12 (3H, t, ³J = 7.2 Hz, CH₃), 1.76 (2H, sext, ${}^{3}J$ = 7.2 Hz, CH₂), 2.59 (2H, t, ${}^{3}J$ = 7.2 Hz, CH₂), 3.44 (3H, d, ${}^{3}J_{\rm HP}$ = 10.8 Hz, OCH₃), 3.65 (3H, s, OCH₃), 3.88 (3H, d, ${}^{3}J_{HP}$ = 10.8 Hz, OCH₃), 4.81 (1H, br. s, NH), 5.57 (1H, d, ${}^{1}J_{HP}$ = 24.4 Hz, CH), 6.60 $(2H, d, {}^{3}J = 8.8 \text{ Hz}, \text{ArH}), 6.67 (2H, d, {}^{3}J = 8.8 \text{ Hz}, \text{ArH}), 7.47 (1H, t,)$ ³J = 7.2 Hz, ArH), 7.66 (1H, t, ³J = 7.2 Hz, ArH), 7.73 (1H, d, ³J = 8.0 Hz, ArH), 8.05 (1H, d, ${}^{3}J$ = 8.4 Hz, ArH), 8.33 (1H, d, ${}^{3}J_{HP}$ = 2.8 Hz, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 13.6 (CH₃), 21.6 (CH₂), 21.8 (CH₂), 52.6 (d, ${}^{1}J_{CP}$ = 152.6 Hz, CH), 53.7 (d, ${}^{2}J_{CP}$ = 7.3 Hz, OCH₃), 54.1 (d, ${}^{2}J_{CP}$ = 6.8 Hz, OCH₃), 55.6 (OCH₃), 78.6 (Csp³), 97.0 (Csp³), 114.8 (ArC), 114.9 (ArC), 127.0 (d, ${}^{4}J_{CP}$ = 2.9 Hz, ArC), 127.1 (ArC), 127.7 (ArC), 128.6 (ArC), 130.2 (ArC), 130.9 (ArC), 134.9 (ArC), 139.3 (d, ${}^{3}J_{CP}$ = 15.3 Hz, ArC), 143.5 (ArC), 147.2 (ArC), 152.8 (ArC) ppm. HRMS (ESI): MH+, found 439.1789. C₂₄H₂₈N₂O₄P requires 439.1781.

ASSOCIATED CONTENT

Supporting Information

Copies of ¹H and ¹³C NMR spectra of the reported compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Phone: +370 5 219 31 95, +370 5 219 31 87. Fax: +370 5 233 09 87. E-mail: inga.cikotiene@chf.vu.lt.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The research was funded by the European Social Fund under the Global Grant measure (Grant No. VP1-3.1-ŠMM-07-K-01-002).

REFERENCES

(1) (a) Liu, K.; Lu, H.; Hou, L.; Qi, Z.; Teixeira, C.; Barbault, F.; Fan, B.-T.; Liu, S.; Jiang, S.; Xie, L. J. Med. Chem. 2008, 51, 7843. (b) More, U. A.; Joshi, S. D.; Aminabhavi, T. M.; Gadad, A. K.; Nadagouda, M. N.; Kulkarni, V. H. Eur. J. Med. Chem. 2014, 71, 199. (c) Ekmekcioglu, K.; Karabocek, S. Asian J. Chem. 2012, 24, 3797. (d) Hannigan, K.; Kulkarni, S. S.; Talele, T. T.; Bdzhola, V. G.; Golub, A. G.; Yarmoluk, S. M.; Golub, A. G.; Yarmoluk, S. M. Bioorg. Med. Chem. Lett. 2013, 23, 5790. (e) Abate, C.; Berardi, F.; Colabufo, N. A.; Contino, M.; Ferorelli, S.; Niso, M.; Perrone, R.; Azzariti, A. ChemMedChem. 2013, 8, 2026. (f) Tsukamoto, S.; Tane, K.; Ohta, T.; Matsunaga, S.; Fusetani, N.; van Soest, R. W. M. J. Nat. Prod. 2001, 64,, 1576. (g) Bellina, F.; Rossi, R. Tetrahedron 2006, 62, 7213. (h) Sato, A.; McNulty, L.; Cox, C.; Kim, S.; Scott, A.; Daniell, K.; Summerville, K.; Price, C.; Hudson, S.; Kiakos, K.; Hartley, J. A.; Asao, T.; Lee, M. J. Med. Chem. 2005, 48, 3903. (i) Furstner, A. Angew. Chem., Int. Ed. 2003, 42, 3582. (j) Jacobi, P. A.; Coutts, L. D.; Guo, J.; Hauck, S. I.; Leung, S. H. J. Org. Chem. 2000, 65, 205.

(2) (a) Cai, Z.; Cao, Y.; Yongbing, D.; Li, J.; Jiang, Y.; Jiang, Z.; Li, Y.; Ni, T.; Tian, S.; Wang, L.; Wei, C.; Zang, C.; Zhang, D.; Zhao, M.; Zhu, S.; Liu, H.; Liu, H.; An, M.; Chen, S.; Liu, W.; Liu, J.; Wu, C.; Yang, J. ChemMedChem. 2014, 9, 207. (b) Hayashi, K.; Hayashi, T.; Minoda, M.; Nagaoka, Y.; Uesato, S.; Nagaoka, Y.; Uesato, S. Bioorg. Med. Chem. Lett. 2007, 17, 1562. (c) Finlay, H.; Jiang, J.; Kim, S. H.; Parkhurst, B.; Qiao, J. X.; Wang, T. C.; Pi, Z.; Tora, G. O.; Lloyd, J.; Johnson, J. A. Bristol-Myers Squibb Company, Patent WO2014/15088 A1, 2014. (d) Asmelash, B.; Dorshow, R. B.; Karwa, A. S.; Poreddy, A. R.; Rajagopalan, R.; Lin, T. S. Med. Chem. Lett. 2012, 3, 284. (e) Chen, J. J.; Geng, C. A.; Guo, R. H.; Wang, L. J. Mini-Rev. Med. Chem. 2013, 13, 749. (f) Feng, G.; Zhang, J.; Feng, G.; Liu, Y. Q. Nat. Prod. Res. 2011, 25, 1082. (g) Alper, R. H.; Nelson, D. L. Eur. J. Pharmacol. 2000, 390, 67. (h) John Victor, N.; Sakthivel, R.; Manheri Muraleedharan, K.; Karunagaran, D. ChemMedChem. 2013, 8, 1623.

(3) (a) Kafarski, P.; Lejczak, B. In Aminophosphonic and Aminophosphinic Acids; Kukhar, V. P., Hudson, H. R., Eds.; John Wiley and Sons: New York, 2000; Chapter 12, p 407. (b) Bhagat, S.; Shah, P.; Garg, S. K.; Mishra, S.; Kamal Kaur, P.; Singhb, S.; Chakraborti, A. K. Med. Chem. Commun. 2014, S, 665. (c) Pratt, R. F. Science 1989, 246, 917. (d) Beers, S. A.; Schwender, C. F.; Loughney, D. A.; Malloy, E.; Demarest, K.; Jordan, J. Bioorg. Med. Chem. 1996, 4, 1693. (e) Vovk, A. I.; Mischenko, I. M.; Tanchuk, V. Y.; Kachkovskii, G. A.; Sheiko, S. Y.; Kolodyazhnyi, O. I.; Kukhar, V. P. Bioorg. Med. Chem. Lett. 2008, 18, 4620. (f) Reddy, C. B.; Kumar, K. S.; Kumar, M. A.; Narayana Reddy, M. V.; Krishna, B. S.; Naveen, M.; Arunasree, M. K.; Reddy, C. S.; Raju, C. N.; Reddy, C. D. Eur. J. Med. Chem. 2012, 47, 553.

(4) (a) Belyaev, A.; Zhang, X.; Augustyns, K.; Lambeir, A.; De Meester, I.; Vedernikova, I.; Scharpe, S. L.; Haemers, A. J. Med. Chem. **1999**, 42, 1041. (b) Ali, T. E. Eur. J. Med. Chem. **2009**, 44, 4539. (c) Ma, Y.; Wang, J.-G.; Wang, B.; Li, Z.-M. J. Mol. Model. 2011, 17, 1899. (d) Wang, B.; Miao, Z. W.; Wang, J.; Chen, R. Y.; Zhang, X. D. Amino Acids 2008, 35, 463.

(5) (a) Ding, Q.; Ye, Y.; Fan, R.; Wu, J. J. Org. Chem. 2007, 72, 5439. (b) Ding, Q.; Wang, B.; Wu, J. Tetrahedron 2007, 63, 12166. (c) Ding,

Q.; Wang, B.; Wu, J. Tetrahedron Lett. 2007, 49, 8599. (6) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron. Lett. 1975, 16, 4467.

(7) Delort, E.; Klotz, P.; Salem, B.; Suffert, J. Org. Lett. 2003, 5, 2307.

(8) Das, A.; Lin, M. Y.; Liu, R. S. J. Am. Chem. Soc. 2006, 128, 9340.

(9) (a) Kabachnik, M. I.; Medved, T. Y. Dokl. Akad. Nauk SSSR

1952, 83, 689. (b) Fields, E. K. J. Am. Chem. Soc. 1952, 74, 1528.

(10) (a) Kudzin, Z. H.; Kudzin, M. H.; Drabowicz, J.; Stevens, C. V. *Curr. Org. Chem.* **2011**, *15*, 2015. (b) Cherkasov, R. A.; Galkin, V. I. *Russ. Chem. Rev.* **1998**, *67*, 857.

(11) Some other bases (K_3PO_4 , K_2CO_3 , NaOCH₃, and DABCO) were tested, but potassium *tert*-butanoate proved to be the most effective. Gold(III) bromide gave excellent results, so other sources of gold(III) were not investigated.

(12) (a) Huang, Q.; Hunter, J. A.; Larock, R. C. Org. Lett. 2001, 3, 2973. (b) Waldo, J. P.; Larock, R. C. Org. Lett. 2005, 7, 5203. (c) Yue, D.; Yao, T.; Larock, R. C. J. Org. Chem. 2005, 70, 10292. (d) Yao, T.; Larock, R. C. J. Org. Chem. 2005, 70, 1432. (e) Zhou, C.; Dubrovsky, A. V.; Larock, R. C. J. Org. Chem. 2006, 71, 1626. (f) Verma, A. K.; Aggarwal, T.; Rustagi, V.; Larock, R. C. Chem. Commun. 2010, 46, 4064. (g) Chen, D.; Song, G.; Jia, A.; Li, X. J. Org. Chem. 2011, 76, 8488. (h) Ding, Q.; Chen, Z.; Yu, X.; Peng, Y.; Wu, J. Tetrahedron Lett. 2009, 50, 340. (i) Barluenga, J.; Palomas, D.; Rubio, E.; González, J. M. Org. Lett. 2007, 9, 2823. (j) Barluenga, J.; Vázquez-Villa, H.; Ballesteros, A.; González, J. M. Org. Lett. 2003, 5, 4121. (k) Barluenga, J.; Vázquez-Villa, H.; Ballesteros, A.; González, J. M. J. Am. Chem. Soc. 2003, 125, 9028. (1) Xiao, J.; Li, X. Angew. Chem., Int. Ed. 2011, 50, 7226. (m) Hummel, S.; Kirsch, S. F. Beilstein J. Org. Chem. 2011, 7, 847. (n) Parvatkar, P. T.; Parameswaran, P. S.; Tilve, S. G. Chem.-Eur. J. 2012, 18, 5460. (o) Huber, F.; Kirsch, S. F. J. Org. Chem. 2013, 78, 2780.

(14) Gottam, H.; Vinod, T. K. J. Org. Chem. 2011, 76, 974.

(15) Vederas, J. C. J. Am. Chem. Soc. 1980, 102, 374.

(16) Waddell, M. K.; Bekele, T.; Lipton, M. A. J. Org. Chem. 2006, 71, 8372.

(17) Sabyasachi, B.; Kuo-Chang, W.; Rai-Shung, L. Angew. Chem. 2008, 47, 5063.

(18) Buksnaitiene, R.; Cikotiene, I. Synlett 2011, 17, 2529.

(19) Verma, A. K.; Rustagi, V.; Aggarwal, T.; Youn, S. W. J. Org. Chem. 2010, 75, 7691.

(20) Belmont, P.; Patin, A. Synthesis 2005, 2400.

⁽¹³⁾ Barluenga, J. Pure Appl. Chem. 1999, 71, 431.