93. Nucleotides

Part XLVIII1)

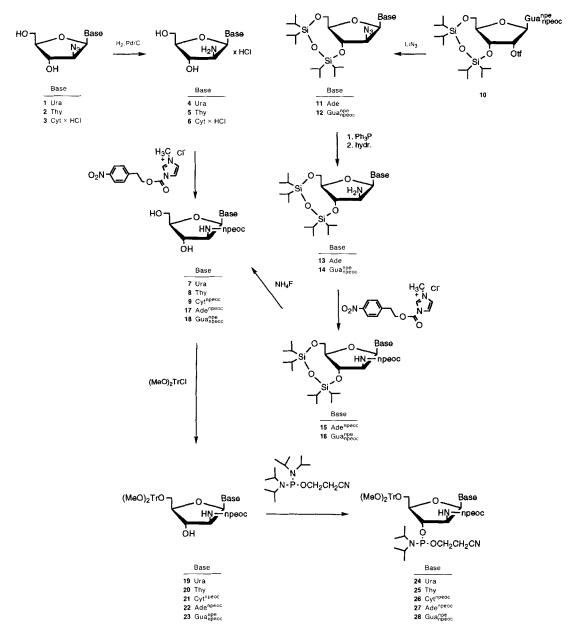
Synthesis of 2'-Amino-2'-deoxyarabinonucleoside Phosphoramidite Building Blocks

by Gunter Walcher and Wolfgang Pfleiderer*

Fakultät für Chemie, Universität Konstanz, Postfach 5560, D-78434 Konstanz

(11.XII.95)

Chemical syntheses of 2'-amino-2'-deoxyarabinonucleosides of uracil, thymine, cytosine, adenine, and guanine and their conversion into suitably protected 3'-phosphoramidite building blocks **24-28** for oligonucleotide synthesis are described. The 2-(4-nitrophenyl)ethoxycarbonyl (npeoc) group was used for protection of the aglycon and the 2'-amino functions.


1. Introduction. – Various arabinonucleosides, especially arabinosylcytosine (aC) and arabinosyladenine (aA) have interesting antiviral and antitumor activities [2]. Although aC is a potent drug against human acute myeloblastic leukemia [3–5], its usefulness is limited by its deficient stability against deamination by cytidine deaminase, forming inactive arabinosyluracil (aU). It has been found that 1-(2-azido-2-deoxy-β-D-arabinofuranosyl)cytosine and 1-(2-amino-2-deoxy-β-D-arabinofuranosyl)cytosine are stable against cytidine deaminase, showing similar biological activities as aC [6–8]. Due to the significance of these nucleosides, it may be of interest to introduce 2'-amino-2'-deoxyarabinonucleosides into oligonucleotides, especially because the introduction of 2'-amino-2'-deoxyribonucleosides of uracil and cytosine led to increased resistance against enzymatic degradation by snake-venom phosphodiesterase [9]. On the other hand, this structural modification is, however, also associated with a reduced hybridization of the oligonucleotide strands [10]. So 2'-amino-2'-deoxyarabinooligonucleotides may combine the higher stability against exonucleases with improved ability of hybridization.

For this reason, we would like to report the syntheses of suitably protected 2'-amino-2'-deoxyarabinonucleoside phosphoramidite building blocks. The synthesis of the starting 2'-amino-2'-deoxy- β -D-arabinonucleosides were performed according to literature. Protection of the aglycons and the 2'-amino function was achieved in the usual manner by the 2-(4-nitrophenyl)ethyl (npe) and the 2-(4-nitrophenyl)ethoxycarbonyl (npeoc) group which have already been proven to be very efficient for the synthesis of oligodeoxynucleotides [11] and oligoarabinonucleotides [12].

2. Syntheses. – The synthetic approach towards the two series of 2'-amino-2'-deoxy-arabinosylpyrimidines and -purines was based on two different strategies. The modified

¹⁾ Part XLVII: [1].

Scheme

 $(MeO)_2 Tr = dimethoxytrityl; npe = 2 - (4-nitrophenyl)ethyl; npeoc = 2 - (4-nitrophenyl)ethoxycarbonyl; tf = trifluoromethylsulfonyl = (4-nitrophenyl)ethoxycarbonyl = (4-nitrophenyl = (4-nitrophe$

$$Ura = 0$$

$$Vra = 0$$

pyrimidine nucleosides 4-6 were prepared from the corresponding ribonucleosides which were first converted by the procedure of Matsuda et al. [13] [14] into 1-(2-azido-2-deoxy- β -D-arabinofuranosyl)uracil (1), 1-(2-azido-2-deoxy- β -D-arabinofuranosyl)thymine (2), and 1-(2-azido-2-deoxy- β -D-arabinofuranosyl)cytosine (3), respectively. The azido group of the latter was then reduced by hydrogenation over Pd/C in HCl/MeOH to yield 4-6 as crystalline products [6] [13] [15]. The subsequent introduction of the 2-(4-nitrophenyl)ethoxycarbonyl (npeoc) group worked best with 3-methyl-1-[2-(4-nitrophenyl)ethoxycarbonyl]-1H-imidazol-3-ium chloride [16] as acylating agent. In DMF solution and under 4-(dimethylamino)pyridine catalysis, this reagent protected the 2'-amino group selectively leading to 7 and 8 in yields of 75 and 79%, respectively. In the case of 1-(2-amino-2-deoxy-β-D-arabinofuranosyl)cytosine (6), the amino group of the aglycon and the sugar moiety could be blocked simultaneously, if the 3'- and 5'-hydroxy functions were silylated first by refluxing in hexamethyldisilazane (HMDS) to achieve a transient protection [17]. After acylation of the amino groups, the OH functions were desilylated with NH₄F yielding 1-{2-deoxy-2-[2-(4-nitrophenyl)ethoxycarbonylamino]-β-D-arabinofuranosyl $\{-N^4-[2-(4-nitrophenyl)]$ ethoxycarbonyl $\}$ cytosine (9) in 65% yield.

The syntheses of the 2'-amino-2'-deoxy-β-D-arabinopurine nucleosides were performed from appropriately protected precursors. The N²-[2-(4-nitrophenyl)ethoxycarbonyl]- O^6 -[2-(4-nitrophenyl)ethyl]-2'-O-(trifluoromethylsulfonyl)-3',5'-O-(1,1,3,3tetraisopropyldisiloxane-1,3-diyl)guanosine (10) [18] and 9-[2-azido-2-deoxy-3,5-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)- β -D-arabinofuranosyl]adenine (11) [19] resulted from multistep procedures already described in literature. The trifluoromethylsulfonyl group of 10 was displaced by nucleophilic attack of LiN₃ in DMF yielding 9-[2-azido-2-deoxy-3,5-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-\(\beta\)-p-arabinofuranosyl]- N^2 -[2-(4-nitrophenyl)ethoxycarbonyl]- O^6 -[2-(4-nitrophenyl)ethyl]guanine (12) in 92% yield. Reduction of the azido group of 11 and 12 was performed by Staudinger reaction with Ph₃P in THF leading to the iminophosphorane. The following hydrolysis at elevated temperatures gave the 2'-amino compounds 13 and 14. However, 14 could not be isolated in pure form without contamination of triphenylphosphine oxid. The 2'-amino functions of 13 and 14 were blocked by treatment with 3-methyl-1-[2-(4-nitrophenyl)ethoxycarbonyl]-1H-imidazol-3-ium chloride in CH₂Cl, to form 15 and 16. Deprotection of the 3',5'-hydroxy groups with NH₄F in MeOH at 60° led to 17 and 18 in yields of 91 and 79%, respectively.

Reaction of 7–9, 17, and 18 with dimethoxytrityl chloride in pyridine gave selectively the 5'-tritylated compounds 19–23 in yields of 80–90%. Conversion into the corresponding 3'-(2-cyanoethyl N,N-diisopropylphosphoramidites) 24–28 was achieved by reaction with (2-cyanoethoxy)bis(diisopropylamino)phosphine [20] under 1H-tetrazole activation in high yields.

3. Physical Data. – All newly synthesized compounds were characterized in the usual manner by elemental analysis, and UV and ¹H-NMR spectra (see *Exper. Part*).

Experimental Part

General. Products were dried under high vacuum. TLC: precoated silica gel thin-layer sheets 60 F254 from Merck. Flash chromatography (FC): silica gel (Baker, 30–60 µm), 0.3–0.4 bar. M.p.: Gallenkamp melting-point apparatus; no corrections. UV/VIS: Perkin-Elmer, Lambda 15; λ_{max} in nm (log ε). H-NMR: Bruker AC 250; δ in ppm rel. to Me₄Si.

- 1. $1-(2-Amino-2-deoxy-\beta-D-arabinofuranosyl)uracil Hydrochloride (4) [15].$ A suspension of 1-(2-azido-2-deoxy- β -D-arabinofuranosyl)uracil (1; 2.69 g, 10 mmol) [14] [15] and 5% Pd/C (200 mg) in halfsat. methanolic HCl (50 ml) was hydrogenated in a shaking apparatus at 1 atm. After 16 h, the mixture was filtered through *Celite*. The catalyst was washed with H₂O/MeOH 1:1 (3 × 20 ml). The product precipitated from the combined filtrates as colorless needles. The needles were washed with EtOH and Et₂O: 2.40 g (86%) of 4. M.p. 200° (dec.). UV (H₂O): 260 (3.98). 1 H-NMR ((D₆)DMSO): 11.40 (s, H-N(3)); 8.55 (s, NH $_{3}^{+}$ -C(2')); 7.90 (d, H-C(6)); 6.12 (s, OH-C(3')); 6.01 (d, H-C(1')); 5.63 (d, H-C(5)); 4.23 (t, H-C(2')); 3.9-3.6 (m, H-C(3'), H-C(4'), 2 H-C(5')). Anal. calc. for C₉H₁₃N₃O₅·HCl·H₂O (297.7): C 36.31, H 5.42, N 14.12; found: C 36.26, H 5.44, N 14.10.
- 2. 1-(2-Amino-2-deoxy-β-D-arabinofuranosyl) thymine Hydrochloride (5). As described in Exper. I, with 1-(2-azido-2-deoxy-β-D-arabinofuranosyl)thymine (2; 850 mg, 3.0 mmol) [14], 5% Pd/C (40 mg) in MeOH/HCl (40 ml). After 16 h, H₂O (30 ml) was added. After removal of catalyst and solvent, the residue was crystallized from i-PrOH: 852 mg (86%) of 5. M.p. 225° (dec.). UV (H₂O): 266 (3.97). 1 H-NMR ((D₆)DMSO): 11.39 (s, H-N(3)); 8.50 (s, NH $_{3}^{+}$ -C(2')); 7.79 (s, H-C(6)); 6.10 (s, OH-C(3')); 6.05 (d, H-C(1')); 5.72 (s, OH-C(5')); 4.26 (t, H-C(2')); 3.9–3.6 (t, H-C(3'), H-C(4'), 2 H-C(5')); 1.80 (t, Me). Anal. calc. for C $_{10}$ H₁₅N $_{3}$ O $_{5}$ ·HCl (293.7): C 40.89, H 5.49, N 14.31; found: C 40.90, H 5.55, N 14.06.
- 3. 1-(2-Amino-2-deoxy-β-D-arabinofuranosyl) cytosine Dihydrochloride (6) [6] [13]. As described in Exper. 1, with 1-(2-azido-2-deoxy-β-D-arabinofuranosyl) cytosine hydrochloride (3; 1.60 g, 5.3 mmol) [14], 5% Pd/C (100 mg) in MeOH/HCl (50 ml) and H₂O (20 ml). After 20 h, H₂O (40 ml) was added. After removal of catalyst and solvent, the residue was crystallized from EtOH: 1.38 g (83%) of 6. M.p. 195° (dec.; [13]: m.p. 192°). UV (H₂O): 269 (3.96), 226 (3.93). 1 H-NMR ((D₆)DMSO): 9.86 (s, NH—C(4)); 8.79 (s, NH—C(4)); 8.63 (s, NH $_{3}^{+}$ —C(2')); 8.25 (d, H—C(6)); 6.20 (d, H—C(5)); 6.00 (d, H—C(1')); 4.23 (t, H—C(2')); 3.97–3.60 (m, H—C(3'), H—C(4'), 2 H—C(5')). Anal. calc. for C₉H₁₄N₄O₄·2 HCl (315.2): C 34.30, H 5.12, N 17.77; found: C 33.99, H 5.07, N 17.25.
- 4. $1-\{2-Deoxy-2-[2-(4-nitrophenyl)ethoxycarbonylamino]$ -β-D-arabinofuranosyl $\}$ uracil (7). A soln. of 4 (1.49 g, 5.0 mmol) and 4-(dimethylamino)pyridine (610 mg, 5.0 mmol) in dry DMF (20 ml) was treated with 4 Å molecular sieve by stirring for 20 min. Then 3-methyl-1-[2-(4-nitrophenyl)ethoxycarbonyl]-1H-imidazol-3-ium chloride (1.71 g, 6.0 mmol) [16] was added, and the mixture was stirred at r.t. for 20 h. The precipitate was filtered off and washed with dry DMF. The combined filtrates were evaporated and purified by FC (toluene/AcOEt 1:1 to toluene/AcOEt/MeOH 5:5:1). The product fractions were concentrated to 50 ml to yield a precipitate: 1.63 g (75%) of 7. UV (MeOH): 265 (4.31). 1 H-NMR ((D₆)DMSO): 11.30 (s, H-N(3)); 8.21 (d, 2 H o to NO₂); 7.72 (d, H-C(6)); 7.60, 7.22 (2d, NH-C(2')); 7.51 (d, 2 H m to NO₂); 6.06 (d, H-C(1')); 5.58 (m, H-C(5), OH-C(3')); 5.39 (t, OH-C(5')); 4.3-4.0 (m, OCH₂CH₂, H-C(2'), H-C(3')); 3.8-3.6 (m, H-C(4'), 2 H-C(5')); 2.98 (m, OCH₂CH₂). Anal. calc. for C₁₈H₂₀N₄O₉ (436.4): C 49.54, H 4.62, N 12.84; found: C 49.38, H 4.88, N 12.38.
- 5. $I-\{2-Deoxy-2-[2-(4-nitrophenyl)ethoxycarbonylamino]$ - β -D-arabinofuranosyl $\}$ thymine (8). As described in Exper. 4, with 5 (174 mg, 0.6 mmol), 4-(dimethylamino)pyridine (73 mg, 0.6 mmol) and 3-methyl-1-[2-(4-nitrophenyl)ethoxycarbonyl]-IH-imidazol-3-ium chloride (224 mg, 0.72 mmol). FC (toluene/AcOEt 1:1 to toluene/AcOEt/MeOH 5:5:1). The product fractions were concentrated to 20 ml to yield a precipitate: 213 mg (79 %) of 8. UV (MeOH): 269 (4.30). 1H -NMR ((D_6)DMSO): 11.24 (s, H-N(3)); 8.20 (d, 2 H o to NO₂); 7.62 (s, H-C(6)); 7.60-7.41 (m, 2 H m to NO₂, NH-C(2')); 6.02 (d, H-C(1')); 5.54 (d, OH-C(3')); 5.37 (t, OH-C(5')); 4.25-3.98 (m, H-C(2'), H-C(3'), OC H_2 CH₂); 3.79-3.54 (m, H-C(4'), 2 H-C(5')); 2.92 (m, OC H_2 CH₂); 1.71 (s, Me). Anal. calc. for $C_{19}H_{22}N_4O_9$ (450.4): C 50.67, H 4.92, N 12.44; found: C 50.52, H 5.04, N 12.27.
- 6. $I-\{2-Deoxy-2-[2-(4-nitrophenyl)ethoxycarbonylamino]-\beta-D-arabinofuranosyl\}-N^4-[2-(4-nitrophenyl)ethoxycarbonyl]cytosine (9). A suspension of 6 (315 mg, 1.0 mmol) in hexamethyldisilazane (10 ml) was refluxed for 6 h. After evaporation, the residue was co-evaporated with dry toluene and dissolved in dry <math>CH_2Cl_2$. After addition of 1.24 g (4.0 mmol) of 3-methyl-1-[2-(4-nitrophenyl)ethoxycarbonyl]-1H-imidazol-3-ium chloride, the mixture was stirred at r.t. for 15 h. The precipitate was filtered off and washed with dry CH_2Cl_2 . The combined filtrates were evaporated. The residue was dissolved in MeOH (10 ml), NH_4F (222 mg, 6.0 mmol) added, and after 1 h the solvent evaporated. The residue was purified by FC (toluene/AcOEt 1:1 to AcOEt/MeOH 1:2). The product

fractions were concentrated to 20 ml to yield a precipitate: 410 mg (65%) of 9. UV (MeOH): 271 (4.39), 250 (4.35). 1 H-NMR ((D₆)DMSO): 11.44 (s, H-N(4)); 8.1 (m, 2 H o to NO₂, H-C(6)); 7.59 (d, 2 H m to NO₂); 7.48 (d, 2 H m to NO₂); 7.01 (s, NH-C(2')); 6.88 (d, H-C(5)); 6.19 (d, H-C(1')); 5.43 (s, OH-C(3')); 5.21 (s, OH-C(5')); 4.39 (t, OCH₂CH₂); 4.24-4.01 (m, H-C(2'), H-C(3'), OCH₂CH₂); 3.82-3.60 (m, H-C(4'), 2 H-C(5')); 3.10 (t, OCH₂CH₂); 2.94 (t, OCH₂CH₂). Anal. calc. for C₂₇H₂₈N₆O₁₂ (628.6): C 51.59, H 4.49, N 13.37; found: C 51.76, H 4.61, N 13.74.

- 7. $9-\{2-Azido-2-deoxy-3,5-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-\beta-D-arabinofuranosyl\}-N^2-\{2-(4-nitrophenyl)ethoxycarbonyl\}-O^6-\{2-(4-nitrophenyl)ethyl\}guanine (12). A soln. of 10 [18] (13.8 g, 13.8 mmol) in dry DMF (200 ml) was treated with LiN<math>_3$ (2.66 g, 54.3 mmol) with stirring at r.t. for 48 h. The solvent was evaporated, the residue dissolved in AcOEt (250 ml), washed with sat. NaHCO $_3$ soln. (40 ml) and sat. NaCl soln. (40 ml), dried (Na $_2$ SO $_4$), and evaporated. Purification of the residue by FC (toluene to toluene/AcOEt 2:1) gave 11.3 g (92%) of 12. Amorphous solid. UV (MeOH): 269 (4.54). 1 H-NMR (CDCl $_3$): 8.21 (m, 4 H o to NO $_2$); 8.00 (s, H-C(8)); 7.48 (d, 2 H o to NO $_2$); 7.39 (d, 2 H o to NO $_2$); 7.27 (s, NH-C(2)); 6.39 (d, H-C(1')); 4.81 (t, OCH $_2$ CH $_2$); 4.39 (t) (t)
- 8. 9-[2-Amino-2-deoxy-3,5-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)- β -D-arabinofuranosyl]adenine (13). To a soln. of 11 [19] (4.06 g, 7.6 mmol) in THF (100 ml) was added with stirring Ph₃P (4.97 g, 19.0 mmol) which led to a spontaneous formation of N₂. After 2½ h, H₂O (5 ml) was added and stirring continued at 50° for 24 h. The mixture was diluted with AcOEt (150 ml), dried (Na₂SO₄), and evaporated. Hexane (15 ml) was added to the residue. Triphenylphosphine oxid crystallized as colorless needles. After 4 h, the needles were filtered off and washed with cold hexane. The combined filtrate was evaporated and the residue purified by FC (toluene/AcOEt 3:1 to AcOEt/MeOH 9:1): 3.18 g (82%) of 13. Amorphous solid. UV (MeOH): 259 (4.17). ¹H-NMR ((D₆)DMSO): 8.11, 8.05 (2s, H-C(2), H-C(8)); 7.29 (s, NH₂-C(6)); 6.11 (d, H-C(1')); 4.68 (d, H-C(3')); 4.06 (dd, H-C(2')); 3.83 (dd, H-C(5')); 3.75 (m, H-C(4'), H-C(5')); 1.56 (s, NH₂-C(2')); 1.2-1.0 (m, 4 Me₂CH). Anal. calc. for C₂₂H₄₀N₆O₄Si₂ (508.8): C 51.94, H 7.92, N 16.52; found: C 51.49, H 7.80, N 16.49.
- 9. $9-\{2-Deoxy-2-\{2-(4-nitrophenyl)ethoxycarbonylamino\}$ -3,5-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)- β -D-arabinofuranosyl $\}$ -N $^6-\{2-(4-nitrophenyl)ethoxycarbonyl\}$ adenine (15). A mixture of 13 (3.05 g, 6.0 mmol), 4-(dimethylamino)pyridine (732 mg, 6.0 mmol), and 3-methyl-1- $\{2-(4-nitrophenyl)ethoxycarbonyl\}$ -1H-imidazol-3-ium chloride (7.48 g, 24.0 mmol) was stirred in dry CH₂Cl₂ (150 ml) at r.t. for 24 h. The solid was filtered off, the filtrate washed with sat. NaHCO₃ soln. (30 ml) and sat. NaCl soln. (30 ml), dried (Na₂SO₄), and evaporated. Purification of the residue by FC (toluene/AcOEt 3:2 to 2:3) gave 3.93 g (73%) of 15. Amorphous solid. UV (MeOH): 267 (4.63). 1 H-NMR (CDCl₃): 8.68 (s, H-C(2) or H-C(8)); 8.18 (d, H-C(2) or H-C(8), 2 H o to NO₂); 8.06 (d, NH-C(6), 2 H o to NO₂); 7.46 (d, 2 H o to NO₂); 7.12 (d, 2 H o to NO₂); 6.22 (d, H-C(1')); 5.21 (d, NH-C(2')); 5.07 (t, H-C(2')); 4.83 (t, H-C(3')); 4.56 (t, OCH₂CH₂); 4.18 (t, OCH₂CH₂); 4.0-3.8 (t, H-C(4'), 2 H-C(5')); 3.19 (t, OCH₂CH₂); 2.86 (t, OCH₂CH₂); 1.2-1.0 (t, 4 Me₂CH). Anal. calc. for C₄₀H₅₄N₈O₁₂Si₂ (895.1): C 53.67, H 6.08, N 12.52; found: C 53.36, H 6.08, N 12.38.
- 10. 9- {2-Deoxy-2-[2-(4-nitrophenyl)ethoxycarbonylamino]-3,5-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-\$\beta\text{P-D-arabinofuranosyl}\text{-N}^2-[2-(4-nitrophenyl)ethoxycarbonyl]-O}^6-[2-(4-nitrophenyl)ethyl]guanine (16). A soln. of 12 (4.47 g, 5.0 mmol) and Ph₃P (3.28 g, 12.5 mmol) in THF (50 ml) reacted under spontaneous formation of N₂. After stirring for 2 h, H₂O (5 ml) was added and the mixture refluxed for 24 h. The mixture was diluted with AcOEt (70 ml), dried (Na₂SO₄), and evaporated. The residue was purified by FC (toluene/AcOEt) to give on evaporation crude 14, which was dried under high vacuum. To a soln. of crude 14 in dry CH₂Cl₂ (100 ml), 4-(dimethylamino)pyridine (610 mg, 5.0 mmol) and 3-methyl-1-[2-(4-nitrophenyl)ethoxycarbonyl]-1*H*-imidazol-3-ium chloride (2.5 g, 8.0 mmol) were added. The mixture was stirred at r.t. for 17 h, then washed with sat. NaHCO₃ soln. (20 ml) and sat. NaCl soln. (20 ml), dried (Na₂SO₄), and evaporated. Purification of the residue by FC (toluene to toluene/AcOEt 1:2) gave 4.2 g (79 %) of 16. Amorphous solid. UV (MeOH): 269 (4.63). H-NMR ((D₆)DMSO): 10.51 (s, NH-C(2)); 8.12 (m, 4 H o to NO₂, H-C(8)); 7.98 (d, 2 H o to NO₂); 7.58 (m, NH-C(2'), 4 H m to NO₂); 7.23 (d, 2 H m to NO₂); 6.22 (d, H-C(1')); 4.8–3.8 (m, 3 OCH₂CH₂); H-C(2'), H-C(3'), H-C(4'), 2 H-C(5')); 3.30 (t, OCH₂CH₂); 3.14 (t, OCH₂CH₂); 2.82 (t, OCH₂CH₂); 1.2–0.8 (m, 4 Me₂CH). Anal. calc. for C₄₈H₆₁N₉O₁₅Si₂ (1060.3): C 54.37, H 5.80, N 11.89; found: C 54.14, H 5.88, N 11.89.
- 11. 9-{2-Deoxy-2-[2-(4-nitrophenyl)ethoxycarbonylamino]-β-D-arabinofuranosyl}-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl adenine (17). To a soln. of 15 (895 mg, 1.0 mmol) in MeOH (40 ml), NH₄F (520 mg, 14 mmol) was

- added and the mixture stirred at 60° for 90 min. The solvent was evaporated, the residue treated with DMF (15 ml), the unsoluble material filtered off, and the filtrate dropped into ice-water (100 ml) to yield a fine, colorless solid. After filtration, the product was washed several times with H_2O and dried *in vacuo* over P_4O_{10} : 592 mg (91 %). UV (MeOH): 267 (4.59). 1 H-NMR ((D_6)DMSO): 10.56 (s, NH–C(6)); 8.54 (s, H–C(2), H–C(8)); 8.15 (d, 2 H o to NO₂); 8.03 (d, 2 H o to NO₂); 7.59 (d, 2 H o to NO₂); 7.50 (d, NH–C(2')); 7.21 (d, 2 H o to NO₂); 6.41 (d, H–C(1')); 5.56 (d, OH–C(3')); 5.27 (d, OH–C(5')); 4.40 (d, 2 OCd2CH₂); 4.16 (d0, H–C(2')); 4.00 (d0, H–C(3')); 3.8–3.6 (d0, H–C(4'), 2 H–C(5')); 3.13 (d1, OCH₂CH₂); 2.75 (d1, OCH₂CH₂). Anal. calc. for d28H₂₈N₈O₁₁ (652.6): C 51.53, H 4.32, N 17.17; found: C 51.22, H 4.44, N 17.18.
- 12. $9-\{2-Deoxy-2-[2-(4-nitrophenyl)ethoxycarbonylamino]-β-D-arabinofuranosyl\}-N^2-[2-(4-nitrophenyl)ethoxycarbonyl]-O^6-[2-(4-nitrophenyl)ethoxycarbonyl]-O^6-[2-(4-nitrophenyl)ethyl]guanine (18). A soln. of 4.2 g (3.69 mmol) of 16 in MeOH (50 ml) was treated with NH₄F (888 mg, 24 mmol) by stirring at 60° for 2 h. The solvent was evaporated and the residue purified by FC (toluene/AcOEt 1:1 to AcOEt/MeOH 10:1). The product fractions were concentrated to 50 ml to yield a light yellowish precipitate: 2.56 g (79%) of 18. UV (MeOH): 269 (4.60). ¹H-NMR ((D₆)DMSO): 10.42 (<math>s$, NH-C(2)); 8.28 (s, H-C(8)); 8.11 (m, 4 H σ to NO₂); 7.99 (d, 2 H σ to NO₂); 7.61 (m, 4 H σ NO₂); 7.40 (m, NH-C(2')); 7.23 (d, 2 H σ to NO₂); 6.21 (d, H-C(1')); 5.54 (d, OH-C(3')); 5.15 (t, OH-C(5')); 4.78 (t, OCH₂CH₂); 4.33 (m, 2 OCH₂CH₂); 4.09 (m, H-C(2')); 3.93 (m, H-C(3')); 3.7-3.5 (m, H-C(4'), 2 H-C(5')); 3.31 (t, OCH₂CH₂); 3.11 (t, OCH₂CH₂); 2.75 (t, OCH₂CH₂). Anal. calc. for C₃₆H₃₅N₉O₁₄ (817.7): C 52.88, H 4.31, N 15.42; found: C 52.62, H 4.36, N 14.96.
- 13. I-{2-Deoxy-5-O-(dimethoxytrityl)-2-[2-(4-nitrophenyl)ethoxycarbonylamino]-β-D-arabinofuranosyl}-uracil (19). In dry pyridine, 7 (873 mg, 2.0 mmol) was co-evaporated 3 times and then dissolved in dry pyridine (30 ml). After addition of (MeO)₂TrCl (709 mg, 2.1 mmol), the mixture was stirred at r.t. for 24 h. The solvent was evaporated, the residue diluted with AcOEt (70 ml), and the soln. washed with sat. NaHCO₃ soln. (20 ml) and sat. NaCl soln. (20 ml), dried (Na₂SO₄), and evaporated. Purification by FC (toluene to toluene/AcOEt/MeOH 5:5:1) and co-evaporation with CH₂Cl₂ gave 1.26 g (85%) of 19. Amorphous solid. UV (MeOH): 266 (4.35), 233 (4.46). ¹H-NMR (CDCl₃): 10.1, 9.6 (2s, H-N(3)); 8.1, 8.0 (2d, 2 H o to NO₂); 7.82 (d, H-C(6)); 7.4-7.1 (m, 9 H of Tr, 2 H m to NO₂); 6.81 (m, 4 H o to MeO); 6.31 (m, H-C(1')); 6.09 (m, NH-C(2')); 5.30 (m, H-C(5)); 4.4-4.1 (m, H-C(2'), H-C(3'), OCH₂CH₂); 3.91 (m, H-C(4')); 3.8-3.5 (m, 2 MeO, 2 H-C(5')); 3.03 (t, OH-C(3')); 2.86 (m, OCH₂CH₂). Anal. calc. for C₃₉H₃₈N₄O₁₁ (738.8): C 63.41, H 5.18, N 7.58; found: C 63.11, H 5.43, N 7.49.
- 14. I-{2-Deoxy-5-O-(dimethoxytrityl)-2-[2-(4-nitrophenyl)ethoxycarbonylamino]-β-D-arabinofuranosyl}-thymine (20). As described in Exper. 13, with 8 (950 mg, 2.11 mmol) and (MeO)₂TrCl (749 mg, 2.21 mmol) in dry pyridine (30 ml). FC (toluene to toluene/AcOEt 1:3) gave 1.41 g (89%) of 20. Amorphous solid. UV (MeOH): 271 (4.29), 232 (4.39). 1 H-NMR ((D₆)DMSO): 11.30 (s, H-N(3)); 8.19 (d, 2 H $^{\circ}$ 0 to NO₂); 7.68 (d, NH-C(2')); 7.51-7.24 (m, Tr, $^{\circ}$ n to NO₂, H-C(6)); 6.90 (d, 4 H $^{\circ}$ 0 to MeO); 6.18 (d, H-C(1')); 5.60 (d, OH-C(3')); 4.35-4.11 (m, H-C(2'), H-C(3'), OCH₂CH₂); 3.83 (m, H-C(4')); 3.75 (s, 2 MeO); 3.32 (m, 2 H-C(5')); 2.99 (m, OCH₂CH₂); 1.56 (s, Me). Anal. calc. for C₄₀H₄₀N₄O₁₁ (752.8): C 63.82, H 5.36, N 7.44; found: C 63.76, H 5.31, N 7.14.
- 15. I-{2-Deoxy-5-O-(dimethoxytrityl)-2-[2-(4-nitrophenyl)ethoxycarbonylamino]- β -D-arabinofuranosyl}- N^4 -[2-(4-nitrophenyl)ethoxycarbonyl]cytosine (21). As described in Exper. 13, with 9 (319 mg, 0.5 mmol) and (MeO)₂TrCl (177 mg, 0.525 mmol) in dry pyridine (10 ml). FC (toluene/AcOEt 1:1 to toluene/AcOEt/MeOH 10:10:1) gave 370 mg (80%) of 21. Amorphous solid. UV (MeOH): 273 (4.40), 237 (4.50). 1 H-NMR ((D₆)DMSO): 10.78 (s, NH-C(4)); 8.15 (m, 4 H o to NO₂, H-C(6)); 7.6-7.2 (m, 9 H of Tr, NH-C(2'), 2 H m to NO₂); 6.90 (d, 4 H o to MeO); 6.75 (d, H-C(5)); 6.21 (d, H-C(1')); 5.62 (s, OH-C(3')); 4.35 (m, H-C(2'), 2 OCH₂CH₂); 4.04 (m, H-C(3')); 3.82 (m, H-C(4')); 3.73 (s, 2 MeO); 3.32 (m, 2 H-C(5')); 3.06 (t, OCH₂CH₂); 2.92 (m, OCH₂CH₂). Anal. calc. for $C_{48}H_{46}N_{6}O_{14}$ (930.9): C 61.93, H 4.98, N 9.03; found: C 61.87, H 5.02, N 9.13.
- 16. 9-{2-Deoxy-5-O-(dimethoxytrityl)-2-[2-(4-nitrophenyl)ethoxycarbonylamino]-β-D-arabinofuranosyl}-N⁶-[2-(4-nitrophenyl)ethoxycarbonyl]adenine (22). As described in Exper. 13, with 17 (2.0 g, 3.06 mmol) and (MeO)₂TrCl (1.09 g, 3.22 mmol) in dry pyridine (30 ml). FC (toluene/AcOEt 2:1 to toluene/AcOEt/MeOH 5:5:1) gave 2.34 g (83%) of 22. Amorphous solid. UV (MeOH): 267 (4.58), 235 (4.47). ¹H-NMR (CDCl₃): 8.67 (s, H-C(2) or H-C(8)); 8.23 (m, H-C(2) or H-C(8), 2 H σ to NO₂); 8.11 (s, NH-C(6)); 8.02 (d, 2 H σ to NO₂); 7.5-7.2 (m, 9 H of Tr, 2 H m to NO₂); 7.06 (d, 2 H m to NO₂); 6.76 (m, 4 H σ to MeO); 6.38 (d, H-C(1')); 5.85 (d, NH-C(2')); 4.79 (m, H-C(2')); 4.66 (m, H-C(3'), OCH₂CH₂); 4.03 (m, OCH₂CH₂, H-C(4')); 3.78 (s, 2 MeO); 3.52 (m, 2 H-C(5')); 3.17 (t, OH-C(3'), OCH₂CH₂); 2.78 (t, OCH₂CH₂). Anal. calc. for C₄₉H₄₆N₈O₁₃ (955.0): C 61.63, H 4.86, N 11.73; found: C 61.71, H 4.90, N 11.52.
- 17. $9-\{2-Deoxy-5-O-(dimethoxytrityl)-2-[2-(4-nitrophenyl)ethoxycarbonylamino]-\beta-D-arabinofuranosyl\}-N^2-[2-(4-nitrophenyl)ethoxycarbonyl]-O^6-[2-(4-nitrophenyl)ethyl]guanine (23). As described in Exper. 13, with$

- **18** (2.04 g, 2.5 mmol) and (MeO)₂TrCl (890 mg, 2.63 mmol) in dry pyridine (50 ml). FC (toluene/AcOEt 3:1 to AcOEt) gave 2.52 g (90%) of **23**. Amorphous solid. UV (MeOH): 269 (4.63), 236 (4.51). ¹H-NMR (CDCl₃): 8.0 (*m*, 4 H *o* to NO₂); 7.87 (*m*, H-C(8), 2 H *o* to NO₂); 7.43 (*s*, NH-C(2)); 7.38 (*d*, 2 H *m* to NO₂); 7.2-6.9 (*m*, 9 H of Tr, 4 H *m* to NO₂); 6.59 (*m*, 4 H *o* to MeO); 6.45 (*d*, NH-C(2')); 6.12 (*d*, H-C(1')); 5.12 (*m*, H-C(2')); 4.6 (*m*, H-C(3'), OCH₂CH₂); 4.29 (*t*, OCH₂CH₂); 4.0-3.8 (*m*, H-C(4'), OCH₂CH₂); 3.61 (*s*, 2 MeO); 3.2 (*m*, 2 H-C(5'), OCH₂CH₂); 2.90 (*m*, OH-C(3'), OCH₂CH₂); 2.68 (*t*, OCH₂CH₂). Anal. calc. for C₅₇H₅₃N₉O₁₆ (1120.1): C 61.12, H 4.77, N 11.25; found: C 60.81, H 4.88, N 11.05.
- 18. 1-{2-Deoxy-5-O-(dimethoxytrityl)-2-[2-(4-nitrophenyl)ethoxycarbonylamino]- β -D-arabinofuranosyl}-uracil 3'-(2-Cyanoethyl N,N-Diisopropylphosphoramidite) (24). A mixture of 19 (960 mg, 1.3 mmol), (2-cyanoethoxy)bis(diisopropylamino)phosphine (588 mg, 1.95 mmol), and of 1H-tetrazole (45 mg, 0.65 mmol) was stirred in dry CH₂Cl₂ (20 ml) under N₂ at r.t. for 24 h. After dilution with CH₂Cl₂ (60 ml), the soln. was washed with sat. NaHCO₃ soln. (20 ml) and sat. NaCl soln. (20 ml), dried (Na₂SO₄), and evaporated. The residue was purified by FC (toluene to toluene/AcOEt 1:1 with addition of 0.2% of Et₃N). The product fractions were evaporated and co-evaporated with dry CH₂Cl₂: 1.06 g (87%) of 24. Amorphous solid. UV (MeOH): 265 (4.33), 234 (4.40). ¹H-NMR (CDCl₃): 10.3, 9.1 (2s, H-N(3)); 8.1 (2d, 2 H o to NO₂); 7.92, 7.79 (2d, H-C(6)); 7.4-7.2 (m, 9 H of Tr, 2 H m to NO₂); 6.86 (m, 4 H o to MeO); 6.54, 6.41 (2d, H-C(1')); 6.18 (m, NH-C(2')); 5.28 (m, H-C(5)); 4.7-4.4 (m, H-C(2'), H-C(3')); 4.2 (m, OCH₂CH₂); 4.0 (m, H-C(4')); 3.8-3.3 (m, 2 MeO, 2 H-C(5'), 2 Me₂CH, OCH₂CH₂CN); 3.1-2.9 (m, OCH₂CH₂); 2.62, 2.39 (2t, OCH₃CH₂CN); 1.3-0.9 (m, 2 Me₂CH). Anal. calc. for C₄₈H₃₅N₆O₁₂P (939.0): C 61.40, H 5.90, N 8.95; found: C 60.98, H 6.11, N 9.08.
- 19. *1*-{2-Deoxy-5-O-(dimethoxytrityl)-2-[2-(4-nitrophenyl)ethoxycarbonylamino]-β-D-arabinofuranosyl}-thymine 3'-(2-Cyanoethyl N,N-Diisopropylphosphoramidite) (25). As described in Exper. 18, with 20 (1.43 g, 1.9 mmol), (2-cyanoethoxy)bis(diisopropylamino)phosphine (900 mg, 3.0 mmol), and 1*H*-tetrazole (70 mg, 1.0 mmol) in dry CH₂Cl₂ (15 ml). FC (toluene to toluene/AcOEt 1:2 with addition of 0.2% of Et₃N) gave 1.54 g (85%) of 25. Amorphous solid. UV (MeOH): 269 (4.31), 232 (4.41). ¹H-NMR (CDCl₃): 8.61 (s, H-N(3)); 8.1, 8.0 (2d, 2 H o to NO₂); 7.51 (s, H-C(6)); 7.4-7.1 (m, 9 H of Tr, 2 H m to NO₂); 6.82 (m, 4 H o to MeO); 6.08 (d, H-C(1')); 6.0 (m, NH-C(2')); 4.5-4.0 (m, H-C(2'), H-C(3'), H-C(4'), OCH₂CH₂); 3.79 (s, 2 MeO); 3.8-3.3 (m, 2 H-C(5'), 2 Me₂CH, OCH₂CH₂CN); 3.11, 2.92 (2t, OCH₂CH₂); 2.58, 2.39 (2t, OCH₂CH₂CN); 1.65 (s,Me-C(5)); 1.3-0.9 (m, 2 Me₂CH). Anal. calc. for C₄₉H₅₇N₆O₁₂P (953.0): C 61.76, H 6.03, N 8.82; found: C 61.91, H 6.07, N 8.60.
- 20. 1-{2-Deoxy-5-O-(dimethoxytrityl)-2-[2-(4-nitrophenyl)ethoxycarbonylamino]- β -D-arabinofuranosyl}-N^4-[2-(4-nitrophenyl)ethoxycarbonyl]cytosine 3'-(2-Cyanoethyl N,N-Diisopropylphosphoramidite) (26). As described in Exper. 18, with 21 (343 mg, 0.368 mmol), (2-cyanoethoxy)bis(diisopropylamino)phosphine (174 mg, 0.575 mmol), and 1H-tetrazole (13 mg, 0.192 mmol) in dry CH₂Cl₂ (5 ml). FC (toluene/AcOEt 2:1 to 1:3 with addition of 0.2% of Et₃N) gave 347 mg (83%) of 26. Amorphous solid. UV (MeOH): 272 (4.42), 234 (4.59). 1 H-NMR (CDCl₃): 8.15 (d, 2 H o to NO₂); 8.02 (d, 2 H o to NO₂); 7.91 (d, H-C(6)); 7.55 (s, NH-C(4)); 7.40 (d, 4 H m to NO₂); 7.25 (m, 9 H of Tr); 7.10 (d, H-C(5)); 6.80 (d, 4 H o to MeO); 6.18 (d, H-C(1')); 5.59 (m, NH-C(2')); 4.64 (m, H-C(2')); 4.42 (t, H-C(3'), OCH₂CH₂); 4.19 (m, H-C(4')); 4.02 (m, OCH₂CH₂); 3.78 (s, 2 MeO); 3.7-3.4 (m, 2 H-C(5'), 2 Me₂CH, OCH₂CH₂CN); 3.21 (t, OCH₂CH₂); 2.79 (t, OCH₂CH₂); 2.58, 2.37 (2t, OCH₂CH₂CN); 1.3-0.9 (m, 2 Me₂CH). Anal. calc. for C₅₇H₆₃N₈O₁₅P (1131.2): C 60.52, H 5.61, N 9.91; found: C 60.81, H 5.97, N 9.83.
- 22. $9-\{2-Deoxy-5-O-(dimethoxytrityl)-2-[2-(4-nitrophenyl)ethoxycarbonylamino]-\beta-p-arabinofuranosyl\}-N^2-[2-(4-nitrophenyl)ethoxycarbonyl]-O^6-[2-(4-nitrophenyl)ethyl]guanine 3'-(2-Cyanoethyl N,N-Diisopropyl-phosphoramidite) (28). As described in Exper. 18, with 23 (560 mg, 0.5 mmol), (2-cyanoethoxy)bis(diisopropyl-amino)phosphine (226 mg, 0.75 mmol), and <math>1H$ -tetrazole (17 mg, 0.25 mmol) in dry CH₂Cl₂ (15 ml). FC (toluene to

toluene/AcOEt 1:2 with addition of 0.2% of Et₃N) gave 568 mg (86%) of **28**. Amorphous solid. UV (MeOH): 269 (4.64), 236 (4.53). 1 H-NMR (CDCl₃): 8.16 (t, 4 H o to NO₂); 7.96 (m, H–C(8), 2 H o to NO₂); 7.5–7.0 (m, 9 H of Tr, 6 H m to NO₂); 6.67 (m, 4 H o to MeO); 6.32 (m, H–C(1')); 6.07 (m, NH–C(2')); 5.0 (m, H–C(2')); 4.7 (m, OCH₂CH₂, H–C(3')); 4.41 (m, OCH₂CH₂); 4.1 (m, OCH₂CH₂, H–C(4')); 3.71 (t, 2 MeO); 3.6–3.4 (t, 2 H–C(5'), 2 Me₂CH, OCH₂CH₂CN); 3.30 (t, OCH₂CH₂); 3.10 (t, OCH₂CH₂); 2.71 (t, OCH₂CH₂); 2.56, 2.22 (tt, OCH₂CH₂CN); 1.15–0.95 (t, 2 t 2 t 2 t 3 t 3 t 3 t 3 t 3 t 4 t 3 t 4 t 3 t 4 t 5 t 4 t 5 t 6 t 6 t 6 t 6 t 6 t 6 t 6 t 6 t 6 t 6 t 6 t 6 t 6 t 7 t 6 t 7 t 6 t 7 t 8 t 9 t 7 t 8 t 9 t

REFERENCES

- [1] C. Hörndler, W. Pfleiderer, Helv. Chim. Acta 1996, 79, 718.
- [2] R. J. Suhadolnik, 'Nucleoside Antibiotics', J. Wiley & Sons, New York, 1970.
- [3] R. W. Carey, M. Ribas-Mundo, R. R. Ellison, Cancer 1976, 36, 1516.
- [4] B. Clarkson, M. D. Dowling, T. S. Gee, I. B. Cunningham, J. H. Burchenal, Cancer 1976, 36, 775.
- [5] G.P. Bodey, V. Rodriguez, Semin. Hematol. 1978, 15, 221.
- [6] M. Bobek, Y. C. Cheng, A. Bloch, J. Med. Chem. 1978, 21, 660.
- [7] M. Bobek, Y. C. Cheng, E. Mihich, A. Bloch, Recent Results Cancer Res. 1980, 74, 78.
- [8] J. Hobbs, H. Sternbach, M. Sprinzl, F. Eckstein, Biochemistry 1973, 12, 5138.
- [9] P. S. Miller, P. Bhan, L.-S. Kan, Nucleosides Nucleotides 1993, 12, 785.
- [10] Y. C. Cheng, D. Derse, R. S. Tan, G. Dutschman, M. Bobek, A. Schroeder, A. Bloch, Cancer Res. 1981, 41, 3144.
- [11] K. P. Stengele, W. Pfleiderer, Tetrahedron Lett. 1990, 31, 2549.
- [12] W. Pfleiderer, K. P. Stengele, F. Bergmann, M. Resmini, C. Henke, Nucleosides Nucleotides 1995, 14, 843.
- [13] A. Matsuda, J. Yasuoka, T. Ueda, Chem. Pharm. Bull. 1989, 37, 1659.
- [14] A. Matsuda, J. Yasuoka, T. Sasaki, T. Ueda, J. Med. Chem. 1991, 34, 999.
- [15] M. Bobek, V. Martin, Tetrahedron Lett. 1978, 22, 1919.
- [16] F. Himmelsbach, B.S. Schulz, T. Trichtinger, R. Charubala, W. Pfleiderer, Tetrahedron 1984, 40, 59; W. Pfleiderer, F. Himmelsbach, R. Charubala, H. Schirmeister, A. Beiter, B.S. Schulz, T. Trichtinger, Nucleosides Nucleotides 1985, 4, 81; H. Schirmeister, F. Himmelsbach, W. Pfleiderer, Helv. Chim. Acta 1993, 76, 385.
- [17] G. S. Ti, B. L. Gaffney, R. A. Jones, J. Am. Chem. Soc. 1982, 104, 1316.
- [18] M. Resmini, W. Pfleiderer, Helv. Chim. Acta 1994, 77, 429.
- [19] M. R. Robins, S. D. Hawrelak, A. E. Hernandez, S. F. Wnuk, Nucleosides Nucleotides 1992, 11, 821.
- [20] A. Kraszewski, K. E. Norris, Nucleic Acids Symp. Ser. 1987, 18, 177.