Copper-catalyzed N-Arylation of Aryl Iodides with Benzamides or Nitrogen Heterocycles in the Presence of Ethylenediamine

Suk-Ku Kang,* Doo-Hwan Kim, Joung-Nam Park

Department of Chemistry and Lab for Metal-Catalyzed Reactions, Sungkyunkwan University, Suwon 440-746, Korea E-mail: skkang@chem.skku.ac.kr

Received 7 December 2001

Abstract: The copper-catalyzed *N*-arylation of benzamides or nitrogen heterocycles was carried out with catalytic CuI (10 mol%) in the presence of ethylenediamine (10 mol%) as a ligand and K_3PO_4 or Cs_2CO_3 as a base under mild conditions.

Key words: copper-catalyst, *N*-arylation, benzamides, nitrogen heterocycles

Recently Buchwald, Hartwig and others have developed valuable and new palladium-catalyzed N-arylation of aryl halides and amines to form arylamines, which supplanted the classical Ullmann coupling reaction.¹ The reactions can be carried out at a lower temperature under milder conditions than the copper-mediated classical Ullmann condensation.² Ma et al.³ reported the CuI-catalyzed Narylation of a certain type of α -amino acid with aryl halides at 90 °C in DMF. Subsequently, copper-catalyzed amination was achieved by adding 1,10-phenanthroline as a ligand to conduct coupling at lower temperature than the classical Ullmann condensation.⁴ Recently Buchwald et al.⁵ demonstrated CuI-catalyzed N-arylation of aryl halides with nitrogen heterocycles utilizing racemic trans-1,2-cyclohexanediamine as a ligand under mild conditions. In connection with our programs to utilize CuI catalyzed carbon-carbon bond formations,⁶ we have explored the CuI-catalyzed N-arylation of benzamides and heterolytic amines using ethylenediamine (10 mol%) as a simple ligand in the presence of CuI (10 mol%). To find optimum conditions a series of experiments has been performed with 2-iodothiophene (1a) and pyrrolidinone (2a) as model compounds (Scheme), which are summarized in Table 1. Of the ligands tested ethylenediamine, 1,3-propylenediamine, TMEDA, and 1,2-benzen- diamine, ethylenediamine were the best choice. As a base K₃PO₄ or Cs₂CO₃ was suitable. As a solvent dioxane was better than other solvents even if sometimes CH₃CN was more suitable.

Synlett 2002, No. 3, 04 03 2002. Article Identifier: 1437-2096,E;2002,0,03,0427,0430,ftx,en;Y24201ST.pdf. © Georg Thieme Verlag Stuttgart · New York ISSN 0936-5214

Table 1N-Arylation of 2-Iodothiophene (1a) with 2-Pyrrolidinone(2a)

Entry	Lignad (10 mol %)	Base	Solvent	Isolated Yield (%)
1	ethylenediamine	K ₃ PO ₄	dioxane	95
2	ethylenediamine	K ₃ PO ₄	CH ₃ CN	95
3	1,3-propylenedi- amine	Cs ₂ CO ₃	dioxane	94
4	TMEDA	Cs ₂ CO ₃	dioxane	61
5	1,2-benzenedi- amine	Cs ₂ CO ₃	dioxane	70
6	ethylenediamine	Cs ₂ CO ₃	dioxane	78
7	ethylenediamine	K ₃ PO ₄	dioxane	47
8	ethylenediamine	K ₃ PO ₄	NMP	40
9	ethylenediamine	K ₃ PO ₄	toluene	20

The *N*-arylation of aryl iodides with benzamides and nitrogen heterocycles was very sensitive to the substrates and reaction conditions and the results were summarized in Table 2. 2-Iodothiophene (**1a**) reacted with pyrrolidinone (**2a**) using CuI (10 mol%) ethylenediamine (10 mol%) as a ligand in dioxane at reflux in the presence of K_3PO_4 for 24 h to afford the *N*-arylation product **3a** in 95% yield (entry 1 in Table 2). However with oxazolidone as a nitrogen heterocycles under the same conditions the *N*-substituted oxazolidinone **3b**⁷ was obtained in 59% yield (entry 2).

With benzamide 2c as the substrate the coupling product $3c^5$ was afforded in only 41% yield (entry 3). Employing 2-nitrobenzamide (2d) as an amide the coupled benzamide (3d) was afforded in 52% yield (entry 4). When 3,5-dimethyliodobenzene (1b) was treated with indole (2e) *N*-aryl-substituted indole $3e^5$ was obtained in 96% yield utilizing Cs_2CO_3 as a base (entry 5). The pyrrole (2f) was reacted under the same conditions with 1b to provide *N*-aryl-substituted pyrrole $3f^5$ in 87% yield (entry 6). For pyrrolidinone (2a) with 3,5-dimethyliodobenzene (1b) using Cs_2CO_3 as a base the arylated product $3g^5$ was provided in 68% yield (entry 7). Although the coupling reaction of 3,5-dimthyliodobenzene (1b) with benzamide gave the coupled product in a very low (20%) yield, it is notable that 2-nitro-substituted benzamide 2d smoothly

LETTER

coupled with **1b** to provide **3h** in a good (88%) yield (entry 8) presumably because of electronic effect. Accordingly picolinamide (**2g**) was also coupled with **1b** to give **3i** in 50% isolated yield (entry 9). When *p*-methoxyiodobenzene (**1c**) was employed as a substrate for aryl iodides *N*-arylation of pyrrolidine afforded **3j**⁸ in 85% yield (entry 10). However oxazolidinone (**2b**) and benzamide (**2c**)

were coupled with *p*-methoxyiodobenzene (1c) afforded $3k^9$ and $3l^{10}$ in 45% and 60% isolated yields, respectively (entries 11 and 12). This coupling was applied to 2-nitrobenzamide (2d), 4-nitrobenzamide (2h), and picolinamide (2i), the *N*-arylated products **3m**, **3n**, and **3o** were afforded in moderate yields (entries 13–15).

Table 2	The Copper-catalyzed N-A	rylation Iodides with Benzamide	s and Nitrogen Heterocycles
---------	--------------------------	---------------------------------	-----------------------------

Entry	Ioiodides	Heterocycles or Benzamides	Base	Products	Isolated Yield (%)
1		HN HN	K ₃ PO ₄	⟨_N_N_N_N_N_N_N_N_N_N_N_N_N_N_N_N_N_N_N	95
2	1a		K ₃ PO ₄	3a	59
3	1a	2b H₂N ↓ ↓ ↓	K ₃ PO ₄	3b	41
4	1a	$2c$ H_2N V V V V V V V V V	K ₃ PO ₄	3c	52
5		2d	Cs ₂ CO ₃	3d	96
6	1b 1b	2e HN	K ₃ PO ₄	3e	87
7	1b		Cs ₂ CO ₃	3f	68
8	1b	$\begin{array}{c} \mathbf{2a} \\ H_2 N \\ \end{array} \begin{array}{c} 0 \\ H_2 N \\ \end{array} \begin{array}{c} NO_2 \\ \\ \end{array}$	K ₃ PO ₄	3g	88
9	1b	$2d$ H_2N N	K ₃ PO ₄	$\frac{3h}{\swarrow - N} \xrightarrow{O}_{H} \xrightarrow{N} \xrightarrow{N}$	50
		2g		/ ~ ~ 3i	

Synlett 2002, No. 3, 427-430 ISSN 0936-5214 © Thieme Stuttgart · New York

Entry	Ioiodides	Heterocycles or Benzamides	Base	Products	Isolated Yield (%)
10	MeO-		K ₃ PO ₄		85
11	1c	2a	K ₃ PO ₄	3j MeO N O N O	45
12	1c	2b	K ₃ PO ₄	3k	60
13	1c	$\begin{array}{c} H_2 N \\ 2c \\ H_2 N \\ H_$	K ₃ PO ₄	MeO - MEO	61
14	1c	2d	K ₃ PO ₄	3m $MeO \longrightarrow NH$	67
15	1c	$2h$ H_2N NO_2	K ₃ PO ₄	3n $MeO - N + N + N$	59
		2i		30	

Table 2 The Copper-catalyzed N-Arylation Iodides with Benzamides and Nitrogen Heterocycles (continued)

Typical Procedure:

To a stirred solution of 2-pyrrolidinone (**2a**) (102 mg, 1.20 mmol) and 2-iodothiophene (**1a**) (210 mg, 1.00 mmol) in 1,4-dioxane (2 mL) under argon atmosphere were added CuI (19 mg, 10 mol%), and ethylenediamine (6.7 μ L, 10 mol%) followed by K₃PO₄ (652 mg, 2.00 mmol) and stirred at 110 °C for 24 h. The reaction mixture was filtered and the filtrate was concentrated in vacuo. The crude product was separated on SiO₂ column chromatography using EtOAc and hexane (1: 1) as eluents to afford the coupled product **3a**⁵ (158 mg, 95%) as white needles.

In summary, the CuI (10 mol%) catalyzed *N*-arylation of some benzamides or nitrogen nucleophiles was carried out in the presence of ethylenediamine (10 mol%) and base under mild conditions.

Acknowledgement

Generous financial support by NRL program administrated by Ministry of Science and Technology and KOSEF-CMDS is gratefully acknowledged. D.-H. Kim and J.-N. Park thank for the financial supports by BK21 programs.

References

 Reviews: (a) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. **1998**, *31*, 805.
 (b) Hartwig, J. F. Acc. Chem. Res. **1998**, *31*, 853. (c) Yang, B. H.; Buchwald, S. L. J. Organomet. Chem. **1999**, *576*, 125.

- (2) Lindley, J. Tetrahedron 1984, 40, 1433.
- (3) Ma, D.; Zhang, Y.; Yao, J.; Wa, S.; Tao, F. J. Am. Chem. Soc. **1998**, *120*, 12459.
- (4) Kiyomori, A.; Marcoux, J.-F.; Buchwald, S. L. *Tetrahedron Lett.* **1999**, *40*, 2657.
- (5) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 7727.
- (6) (a) Kang, S.-K.; Yamaguchi, T.; Kim, T.-H.; Ho, P.-S. J. Org. Chem. 1996, 61, 9082. (b) Kang, S.-K.; Kim, J.-S.; Choi, S.-C. J. Org. Chem. 1997, 62, 4208. (c) Kang, S.-K.; Lee, S.-H.; Lee, D. Synthesis 2000, 1022. (d) Kang, S.-K.; Yoon, S.-K.; Kim, Y.-M. Org. Lett. 2001, 3, 2697.
- (7) Selected physical and spectral data are as follows. 3b: mp 88 °C (hexane–ethyl acetate). ¹H NMR (500 MHz, CDCl₃, δ ppm) 6.90 (1 H, dd, J = 5.5 and 1.5 Hz), 6.85 (1 H, dd, J = 5.5 and 3.7 Hz), 6.45 (1 H, dd, J = 3.7 and 1.5 Hz), 4.50 (2 H, m), 4.00 (2 H, m). ¹³C NMR (125 MHz, CDCl₃, δ ppm) 154.62, 140.33, 124.65, 118.13, 110.93, 62.21, 46.03. IR (KBr, cm⁻¹): 1726, 1545, 1483, 1035. HRMS: calcd for C₇H₇NO₂S: 169.0197, found: 169.0194. 3d: mp 196 °C (hexane–ethyl acetate). ¹H NMR (500 MHz, CDCl₃, δ ppm) 8.15 (1 H, m), 7.88 (1 H, m), 7.78 (2 H, m), 7.06 (1 H, dd, J = 5.5 and 1.5 Hz), 6.91 (1 H, dd, J = 5.5 and 3.7 Hz), 6.78 (1 H, dd, J = 3.7 and 1.5 Hz). ¹³C NMR (125 MHz, CDCl₃, δ ppm) 162.83, 147.69, 140.22, 134.88, 132.29, 131.95, 130.30, 125.08, 118.60, 113.18. IR (KBr, cm⁻¹): 3235, 3118, 2888, 1636, 1574, 1527, 1354. HRMS: calcd for $C_{11}H_8N_2O_3S$: 248.0256, found: 248.0254. 3h: mp 162 °C (hexane-ethyl acetate). ¹H NMR (500 MHz,

CDCl₃, δ ppm) 8.13 (1 H, d, J = 8.8 Hz), 7.74 (1 H, m), 7.64 (2 H, m), 7.38 (1 H, s), 7.23 (1 H, s), 6.84 (1 H, s), 2.33 (6 H, s). ¹³C NMR (125 MHz, DMSO-d₆, δ ppm) 164.85, 147.36, 139.67, 138.68, 134.92, 133.69, 131.74, 130.12, 126.32, 125.09, 118.29, 21.96. IR (KBr, cm⁻¹): 3256, 1657, 1523, 1350, 836. HRMS: calcd for C₁₅H₁₄N₂O₃: 270.1004, found: 270.1007.

3i: mp 80 °C (pentane–ether). ¹H NMR (500 MHz, CDCl₃, δ ppm) 9.95 (1 H, s), 8.61 (1 H, m), 8.23 (1 H, m), 7.91 (1 H, m), 7.48 (1 H, m), 7.44 (2 H, s) 6.80 (1 H, s) 2.34 (6 H, s). ¹³C NMR (125 MHz, CDCl₃, δ ppm) 162.31, 150.40, 148,36, 139.21, 138.08, 138.00, 126.77, 126.52, 122.78, 117.87, 21.85. IR (KBr, cm⁻¹): 3341, 2913, 1683, 1540, 1458. HRMS: calcd for C₁₄H₁₄N₂O: 226.1106, found: 226.1117. **3m**: mp 154 °C (methylene chloride). ¹H NMR (500 MHz, CDCl₃, δ ppm) 10.53 (1 H, s), 8.13 (2 H, d, *J* = 8.1 Hz), 7.86 (2 H, m), 7.75 (2 H, m), 7.57 (2 H, d, *J* = 8.8 Hz), 6.94 (2 H, d, *J* = 8.8 Hz) 3.74 (3 H, s). ¹³C NMR (125 MHz, CDCl₃, δ ppm) 164.49, 156.61, 147.48, 134.84, 133.65, 132.83, 131.72, 130.14, 125.09, 122.11, 114.82, 56.08. IR (KBr, cm⁻¹): 3263, 1650, 1532, 1350, 1251. HRMS: calcd for C₁₄H₁₂N₂O₄: 272.0797, found: 272.0793.

3n: mp 192 °C (hexane–ethyl acetate). ¹H NMR (500 MHz, DMSO-d₆, δ ppm) 10.46 (1 H, s), 8.37 (2 H, d, *J* = 9.2 Hz), 8.17 (2 H, d, *J* = 9.2 Hz), 7.68 (2 H, d, *J* = 9.2 Hz), 6.95 (2 H, d, *J* = 9.2 Hz), 3.75 (3 H, s). ¹³C NMR (125 MHz, DMSO-d₆, δ ppm) 164.23, 156.75, 149.91, 141.57, 132.61, 129.95, 124.38, 122.94, 114.69, 56.05. IR (KBr, cm⁻¹): 3295, 2951, 1648, 1527, 1342. HRMS: calcd for C₁₄H₁₂N₂O₄: 272.0797, found: 272.0793.

30: mp 90 °C (hexane–ethyl acetate). ¹H NMR (500 MHz, DMSO-d₆, δ ppm) 10.54 (1 H, s), 8.73 (1 H, m), 8.14 (1 H, m), 8.01 (1 H, m), 7.81 (2 H, d, *J* = 8.8 Hz), 7.66 (1 H, m) 6.93 (2 H, d, *J* = 8.8 Hz), 3.75 (1 H, m). ¹³C NMR (125 MHz, DMSO-d₆, δ ppm) 163.09, 156.65, 150.64, 149.32, 138.98, 132.05, 127.68, 123.06, 122.76, 114.72, 56.05. IR (KBr, cm⁻¹): 3263, 1650, 1532, 1350, 1251. HRMS: calcd for C₁₃H₁₂N₂O₂: 228.0899, found: 228.0897.

- (8) Duplantier, A. J.; Andresen, C. J.; Cheng, J. B.; Cohan, V. L.; Decker, C. J. Med. Chem. 1998, 41, 2268.
- (9) (a) Gulbins, E.; Hanann, K. *Chem. Ber.* **1966**, *99*, 55.
 (b) Rudesill, J. T.; Severson, R. F.; Pomonis, G. J. *J. Org. Chem.* **1971**, *36*, 3071.
- (10) Pai, S. G.; Bajpai, A. R.; Deshpande, A. B.; Samant, S. D. Synth. Commun. **1977**, 27, 379.